[go: up one dir, main page]

JPH0429477B2 - - Google Patents

Info

Publication number
JPH0429477B2
JPH0429477B2 JP61162455A JP16245586A JPH0429477B2 JP H0429477 B2 JPH0429477 B2 JP H0429477B2 JP 61162455 A JP61162455 A JP 61162455A JP 16245586 A JP16245586 A JP 16245586A JP H0429477 B2 JPH0429477 B2 JP H0429477B2
Authority
JP
Japan
Prior art keywords
light
processing
laser
distance measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61162455A
Other languages
Japanese (ja)
Other versions
JPS6316892A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61162455A priority Critical patent/JPS6316892A/en
Publication of JPS6316892A publication Critical patent/JPS6316892A/en
Publication of JPH0429477B2 publication Critical patent/JPH0429477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザ加工において、レーザ光を
用いて対象物の基準面からの変位を検出するレー
ザ加工装置用測距装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a distance measuring device for a laser processing device that uses laser light to detect displacement of an object from a reference plane in laser processing.

〔従来の技術〕[Conventional technology]

第2図は特願昭59−227226号に記載されたこの
種の装置断面を示し、同図において、1は加工用
レーザ光、2は加工用レーザ光1を集束する加工
用レンズ、3は加工ヘツド、4は半導体レーザか
らなる計測用レーザ光としてのビームを放射する
光源、5は光源4から放射されるビームを集束す
る投光レンズ、6は対象物W1表面上の放射ビー
ム像を撮像する受光レンズ、7は放射ビーム像の
結像位置に応じた電気信号を発生する位置検出素
子(Position Sensitive Detector、以下PSDと
いう)、8はPSD7から出力される変位検出電流
Ia,Ibに基づき所定の演算を行なつて対象物W1
の基準面Sからの変位を演算する演算処理器、9
は演算処理器8の演算結果に応じて基準面Sに対
する所定距離範囲内に対像物W1を位置ずける制
御を行う距離制御装置である。
Figure 2 shows a cross section of this type of device described in Japanese Patent Application No. 59-227226. In the figure, 1 is a processing laser beam, 2 is a processing lens that focuses the processing laser beam 1, and 3 is a processing lens that focuses the processing laser beam 1. A processing head, 4 is a light source that emits a beam as a measuring laser beam made of a semiconductor laser, 5 is a projection lens that focuses the beam emitted from the light source 4, and 6 is an image of the radiation beam on the surface of the object W1. 7 is a position detection element (Position Sensitive Detector, hereinafter referred to as PSD) that generates an electric signal according to the imaging position of the radiation beam image, 8 is a displacement detection current output from PSD 7
By performing predetermined calculations based on Ia and Ib, the object W1 is
an arithmetic processor for calculating the displacement from the reference surface S;
is a distance control device that performs control to position the object W1 within a predetermined distance range with respect to the reference plane S according to the calculation result of the calculation processor 8.

次に動作について説明する。光源4から放射さ
れたビームは、投光レンズ5により適当な大きさ
の光スポツトとなり対像物W1の表面に照射され
る。受光レンズ6はこの光スポツトを撮像し、
PSD7の受光面に光スポツトの像を結像する。
PSD7は光スポツト像の結像位置に応じた電気
信号Ia,Ibを発生する。演算処理器8はこの変位
検出電流Ia,Ibに基づき対像物W1の基準面Sか
らの変位を演算する。この演算結果を入力した距
離制御装置9は加工ヘツド3の位置をその演算結
果応じて制御する。
Next, the operation will be explained. The beam emitted from the light source 4 becomes a light spot of an appropriate size by the projection lens 5, and is irradiated onto the surface of the object W1. The light receiving lens 6 images this light spot,
A light spot image is formed on the light receiving surface of the PSD 7.
The PSD 7 generates electrical signals Ia and Ib according to the imaging position of the optical spot image. The arithmetic processor 8 calculates the displacement of the object W1 from the reference plane S based on the displacement detection currents Ia and Ib. The distance control device 9 receives the calculation result and controls the position of the machining head 3 according to the calculation result.

まず対象物W1表面が基準面Sにある場合、受
光レンズ6に入力された光はPSD7にスポツト
状の光となつて照射される。対象物W1の表面が
基準面Sにあるとき、この光の重心位置がPSD
7の中心P1になるように設定しておくと、変位
検出電流1a,1bは互いに等しくなる。この変
位検出電流Ia,Ibを入力した演算処理器8は変位
0として距離制御装置9に出力する。これによ
り、距離制御装置9は加工ヘツド3をそのまゝの
位置に保つ。
First, when the surface of the object W1 is on the reference plane S, the light input to the light receiving lens 6 is irradiated onto the PSD 7 as a spot of light. When the surface of the object W1 is on the reference plane S, the center of gravity of this light is PSD
7, the displacement detection currents 1a and 1b become equal to each other. The arithmetic processor 8 inputting the displacement detection currents Ia and Ib outputs the displacement as 0 to the distance control device 9. This causes the distance control device 9 to keep the machining head 3 in the same position.

次に対象物W1表面がΔHだけ下方に変位した
場合、対像物W1表面で散乱された光は受光レン
ズ6を通つた後PSD7の中心P1からΔX離れた
点P2にスポツト状になつて入射される。この入
射光により変位検出電流Ia,Ibが出力されるが、
変位検出電流Ia,Ibは互いに違つた値となる。
ΔHとΔXは比例関係にあるので、ΔXを算出する
ことによりΔHを算出し出力することができる。
この出力信号に応じて距離制御装置9は加工ヘツ
ド3を降下させΔHの変位を例えば零にするよう
にしている。このようにして加工ヘツド3と対象
物W1の表面との間の距離は常に一定所定範囲内
に保たれる。
Next, when the surface of the object W1 is displaced downward by ΔH, the light scattered on the surface of the object W1 passes through the light receiving lens 6 and then enters the point P2, which is ΔX away from the center P1 of the PSD 7, in the form of a spot. be done. Displacement detection currents Ia and Ib are output by this incident light, but
The displacement detection currents Ia and Ib have different values.
Since ΔH and ΔX are in a proportional relationship, ΔH can be calculated and output by calculating ΔX.
In response to this output signal, the distance control device 9 lowers the machining head 3 so that the displacement ΔH becomes zero, for example. In this way, the distance between the processing head 3 and the surface of the object W1 is always kept within a certain predetermined range.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のレーザ加工装置用測距装置は以上のよう
に構成されているので、加工ヘツドと対象物表面
との距離が変化すれば、測距用光源から出力され
た光スポツトの位置が加工用レーザの光軸中心か
らΔEだけ離れた点に移るため、対象物が曲面を
有し、その曲面部などでは対象物が平坦の場合と
異なつた位置に光スポツトが形成されるので、加
工ヘツドと加工点までの距離が正しく測定され
ず、また、距離計測用の光源が独立して必要であ
り、装置構成の複雑化を招くなどの問題点があつ
た。
Conventional distance measuring devices for laser processing equipment are configured as described above, so if the distance between the processing head and the surface of the object changes, the position of the light spot output from the distance measurement light source changes to the position of the processing laser. Since the object moves to a point ΔE away from the center of the optical axis, the object has a curved surface, and the light spot is formed at a different position on the curved surface than when the object is flat. There were problems in that the distance to a point could not be measured correctly, and a separate light source for distance measurement was required, leading to a complicated device configuration.

この発明は上記のような問題点を解消するため
になされたもので加工点と同じ位置を距離測定点
とすることができる距離測定が可能なレーザ加工
装置用測距装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and its purpose is to obtain a distance measuring device for a laser processing device that can measure a distance by using the same position as a processing point as a distance measurement point. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザ加工装置用測距装置は、
対象物表面の基準面からの変位を計測用レーザ光
を用いて測距する時に計測用レーザ光を加工用レ
ーザ光で兼用したものである。
The distance measuring device for laser processing equipment according to the present invention includes:
When the displacement of the surface of the object from the reference plane is measured using the measuring laser beam, the processing laser beam is also used as the measuring laser beam.

〔作用〕[Effect]

この発明におけるレーザ加工装置用測距装置
は、計測用レーザ光として加工用レーザ光を用い
ているので、対象物表面から反射される加工用レ
ーザ光と加工用レーザ光のエネルギーにより熱せ
られた対象物からの光とを選択的に計測用に用い
ることができ、対象物表面上の計測点と加工点と
のズレがなく、計測精度を高め、しかも曲率のあ
る対象物表面迄の測距も精度高くでき、また、測
距用光源を別個に特に必要としない。
Since the distance measuring device for laser processing equipment according to the present invention uses a processing laser beam as the measurement laser beam, the object is heated by the processing laser beam reflected from the object surface and the energy of the processing laser beam. The light from the object can be selectively used for measurement, there is no deviation between the measurement point on the object surface and the processing point, improving measurement accuracy, and it is also possible to measure the distance to the object surface with curvature. High accuracy can be achieved, and a separate light source for distance measurement is not particularly required.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図において、第2図と同符号の部分は従来
例のものと同一で、10は受光レンズ6の光入射
側に配置され入射光量を制御する絞り、11は受
光レンズ6の光出射側に配置された例えば1次元
CCD等のような位置検出素子としての位置セン
サ、12は位置センサ11からの出力信号に基づ
き基準面Sからの対象物W1の変化を演算する信
号処理器、13は信号処理器12の演算結果を表
示する表示装置である。
In FIG. 1, parts with the same symbols as in FIG. 2 are the same as those in the conventional example, and 10 is a diaphragm arranged on the light incident side of the light receiving lens 6 to control the amount of incident light, and 11 is the light exit side of the light receiving lens 6. For example, a one-dimensional
A position sensor as a position detection element such as a CCD, 12 a signal processor that calculates a change in the object W1 from the reference plane S based on the output signal from the position sensor 11, and 13 a calculation result of the signal processor 12. This is a display device that displays.

次に、この実施例の動作について説明する。ま
ず、対象物W1を加工中の場合について述べる。
加工中は、加工用レーザ光1が加工用レンズ2に
より絞られ、対象物W1の表面の加工点を照射し
て、対象物W1を加工する。このとき、加工点及
びその近傍周辺において、加工用レーザ光1の一
部が乱反射すると共に残りの加工用レーザ光1の
エネルギーにより対象物W1が熱せられて光を発
生する。受光レンズ6は加工点及びその近傍周辺
からのこのような光を絞り10を介して入射し、
位置センサ11上に光スポツト像を形成する。信
号処理器12は、背景光による雑音成分を取除
き、S/N比を向上させ、位置センサ11上に形
成された光スポツト像の位置信号に基づき対象物
W1の基準面Sからの変位に応じた距離信号を演
算して出力する。距離制御装置9はこの距離信号
に応じて対象物W1の表面が基準面Sから所定距
離範囲内例えば基準面Sから零に入るように加工
用ヘツド3の位置を制御する。
Next, the operation of this embodiment will be explained. First, a case where the object W1 is being processed will be described.
During processing, the processing laser beam 1 is focused by the processing lens 2 and irradiates the processing point on the surface of the object W1 to process the object W1. At this time, a part of the processing laser light 1 is diffusely reflected at the processing point and its vicinity, and the object W1 is heated by the energy of the remaining processing laser light 1 to generate light. The light-receiving lens 6 receives such light from the processing point and its vicinity through the aperture 10, and
A light spot image is formed on the position sensor 11. The signal processor 12 removes noise components caused by background light, improves the S/N ratio, and adjusts the displacement of the object W1 from the reference plane S based on the position signal of the light spot image formed on the position sensor 11. A corresponding distance signal is calculated and output. The distance control device 9 controls the position of the processing head 3 in response to this distance signal so that the surface of the object W1 is within a predetermined distance range from the reference surface S, for example, zero from the reference surface S.

例えば位置センサ11が一次元CCDであれば、
位置センサ11の光スポツト像が1次元の位置信
号として得られ、この位置信号に含まれるパルス
の基準時刻からの時間ズレを検出することにより
対象物W1の変位ΔHを演算処理することが信号
処理器12の処理により可能となる。例えば、対
象物W1の表面が基準面Sにある時、位置センサ
11上の光スポツト像の位置をP1とし、同じく
基準面SからΔH変位した時、位置センサ11上
の光スポツト像の位置をP2とする。ここで、位
置センサ11のP1点を走査した時を基準時刻に
とれば、この基準時刻からP2点を走査する迄の
時間は、P1点とP2点間の距離ΔXに対応してい
る。従つて、基準時刻からパルスを検出する迄の
定査時間の計測により変位ΔHを演算することが
できる。
For example, if the position sensor 11 is a one-dimensional CCD,
The optical spot image of the position sensor 11 is obtained as a one-dimensional position signal, and signal processing involves calculating the displacement ΔH of the object W1 by detecting the time deviation of the pulse included in this position signal from the reference time. This is made possible by the processing of the device 12. For example, when the surface of the object W1 is on the reference plane S, the position of the light spot image on the position sensor 11 is set to P1 , and when the surface of the object W1 is also displaced by ΔH from the reference plane S, the position of the light spot image on the position sensor 11 is P1. Let be P 2 . Here, if the time when point P1 of the position sensor 11 is scanned is taken as the reference time, the time from this reference time until the point P2 is scanned corresponds to the distance ΔX between point P1 and point P2 . ing. Therefore, the displacement ΔH can be calculated by measuring the regular scanning time from the reference time until the pulse is detected.

次に、教示中について述べる。教示中は、加工
用レーザ光1が可視光の教示用レーザ光に置換さ
れ、上記と同様の動作によつて教示時にも測距等
が行なわれると共に対象物W1表面の基準面Sか
らの変位が距離として信号処理器12から距離信
号を入力した表示装置13により表示される。
Next, the teaching process will be described. During teaching, the processing laser beam 1 is replaced with a visible teaching laser beam, and distance measurement, etc. is performed during teaching by the same operation as above, and the displacement of the surface of the object W1 from the reference plane S is measured. is displayed as a distance by the display device 13 into which the distance signal is input from the signal processor 12.

なお、上記実施例では位置センサとして1次元
CCDを用いたが、その他のリニアイメージセン
サでもよく、また、2次元撮像素子を用いてもよ
く、フオトダイオードアレイ、PSD等を用い、
用いる位置センサに適合した信号処理器を用いる
周知の測距装置等を用いても上記実施例と同様の
効果を奏する。
In addition, in the above embodiment, a one-dimensional position sensor is used.
Although a CCD is used, other linear image sensors or two-dimensional image sensors may be used, and photodiode arrays, PSDs, etc. may be used.
Even if a well-known distance measuring device or the like using a signal processor suitable for the position sensor used is used, the same effect as in the above embodiment can be obtained.

また、絞りの代りに対象物からの計測用光を選
択するために対象物表面から位置センサ迄の光路
上に光の波長領域を選択するフイルタをあるいは
絞りとこのフイルタを組合せたものを使用しても
よいことは勿論言うまでもないし、また、絞りの
代りにNDフイルタを用いてもよいし、受光レン
ズがフイルタの機能を兼ねてもよいし、また、上
記実施例においては時に絞りを必要としなくとも
よい。
In addition, instead of an aperture, a filter that selects the wavelength range of light can be used on the optical path from the object surface to the position sensor, or a combination of this filter and an aperture can be used to select the measurement light from the object. Needless to say, it is possible to use a diaphragm instead of an diaphragm, an ND filter may be used instead of an diaphragm, a light-receiving lens may also serve as a filter, and in the above embodiments, an diaphragm is sometimes not necessary. Tomoyoshi.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば距離測定用の
光源を使用せずに加工中は加工用レーザ光及び加
工用レーザ光の加熱により加工点周辺で発生する
光を選択的に測距用光源として用いて測距をする
ように構成したので、加工点と測距位置の距離変
動によつても変化せず、曲面部分等でも測距誤差
を生じなくなり、精度高く測距することができ、
また、測距用に別光源を設けることを不要とした
ので構成を簡単化できるものが得られる効果があ
る。
As described above, according to the present invention, during processing, light generated around the processing point is selectively used as a distance measurement light source by heating the processing laser light and the processing laser light without using a distance measurement light source. Since it is configured so that it can be used for distance measurement, it does not change even when the distance between the processing point and the distance measurement position changes, and distance measurement errors do not occur even on curved surfaces, and distance measurement can be performed with high accuracy.
Further, since it is not necessary to provide a separate light source for distance measurement, there is an effect that the configuration can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるレーザ加工
装置用測距装置を示す断面側面図、第2図は従来
のレーザ加工装置用測距装置を示す断面図であ
る。 図において、1は加工用レーザ光、2は加工用
レンズ、3は加工ヘツド、6は受光レンズ、10
は絞り、11は位置センサ、12は信号処理器、
13は表示装置。なお、図中、同一符号は同一、
又は相当部分を示す。
FIG. 1 is a sectional side view showing a distance measuring device for a laser processing device according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional distance measuring device for a laser processing device. In the figure, 1 is a processing laser beam, 2 is a processing lens, 3 is a processing head, 6 is a light receiving lens, and 10 is a processing head.
is an aperture, 11 is a position sensor, 12 is a signal processor,
13 is a display device. In addition, in the figure, the same reference numerals are the same,
or a corresponding portion.

Claims (1)

【特許請求の範囲】 1 加工用レーザ光を対象物に照射する加工時
に、計測用レーザ光を前記対象物に照射して前記
対象物からの計測用光を集光用の受光レンズで位
置検出素子上に集光し、この位置検出素子からの
位置検出信号に基づき前記対象物の基準面からの
変位を出すレーザ加工装置用測距装置において、
前記計測用レーザ光を前記加工用レーザ光で兼用
したことを特徴とするレーザ加工装置用測距装
置。 2 前記対象物から前記位置検出素子迄の光路上
に透過光の波長領域を限定するフイルタを設けた
ことを特徴とする特許請求の範囲第1項記載のレ
ーザ加工装置用測距装置。 3 前記受光レンズの光入射側に絞りを設けたこ
とを特徴とする特許請求の範囲第1項又は第2項
記載のレーザ加工装置用測距装置。 4 前記対象物から前記位置検出素子迄の光路上
にNDフイルタを設けたことを特徴とする特許請
求の範囲第1項又は第2項記載のレーザ加工装置
用測距装置。 5 非加工中の教示中に、前記計測用レーザ光と
して前記加工用レーザ光に代えて出射される可視
の教示用レーザをも用いることを特徴とする特許
請求の範囲第1項乃至第4項のいずれか1項に記
載のレーザ加工装置用測距装置。 6 前記検出した変位を表示する表示装置を設け
たことを特徴とする特許請求の範囲第5項記載の
レーザ加工装置用測距装置。
[Claims of Claims] 1. During processing in which a target object is irradiated with a processing laser beam, the measurement laser beam is irradiated onto the object and the position of the measurement light from the object is detected using a light-receiving lens for focusing. In a distance measuring device for a laser processing device that focuses light on an element and outputs a displacement of the object from a reference plane based on a position detection signal from the position detection element,
A distance measuring device for a laser processing device, characterized in that the processing laser light also serves as the measurement laser light. 2. The distance measuring device for a laser processing device according to claim 1, further comprising a filter for limiting the wavelength range of transmitted light on the optical path from the object to the position detection element. 3. A distance measuring device for a laser processing device according to claim 1 or 2, characterized in that a diaphragm is provided on the light incident side of the light receiving lens. 4. A distance measuring device for a laser processing device according to claim 1 or 2, characterized in that an ND filter is provided on the optical path from the object to the position detection element. 5. Claims 1 to 4, characterized in that during teaching during non-processing, a visible teaching laser emitted instead of the processing laser light is also used as the measurement laser light. A distance measuring device for a laser processing device according to any one of the above. 6. The distance measuring device for a laser processing device according to claim 5, further comprising a display device that displays the detected displacement.
JP61162455A 1986-07-10 1986-07-10 Distance measuring instrument for laser beam machine Granted JPS6316892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162455A JPS6316892A (en) 1986-07-10 1986-07-10 Distance measuring instrument for laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162455A JPS6316892A (en) 1986-07-10 1986-07-10 Distance measuring instrument for laser beam machine

Publications (2)

Publication Number Publication Date
JPS6316892A JPS6316892A (en) 1988-01-23
JPH0429477B2 true JPH0429477B2 (en) 1992-05-19

Family

ID=15754940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162455A Granted JPS6316892A (en) 1986-07-10 1986-07-10 Distance measuring instrument for laser beam machine

Country Status (1)

Country Link
JP (1) JPS6316892A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660929B2 (en) * 1989-04-19 1997-10-08 ファナック株式会社 Arc sensor using CCD solid-state imaging device
JPH0385408A (en) * 1989-08-30 1991-04-10 Sumitomo Metal Ind Ltd Measuring method by laser range finder
JPH0447883U (en) * 1990-08-30 1992-04-23
JP2008032524A (en) * 2006-07-28 2008-02-14 National Institute Of Advanced Industrial & Technology Laser processing apparatus and focus detection method of laser beam for measurement
DE102007036556A1 (en) * 2007-08-03 2009-02-05 Siemens Ag Method for monitoring the focus position in laser beam machining processes
US20210220944A1 (en) * 2018-02-09 2021-07-22 Laserax Inc. Method for laser-processing a surface and laser processing system
WO2024095352A1 (en) * 2022-10-31 2024-05-10 ファナック株式会社 Measurement system and measurement method

Also Published As

Publication number Publication date
JPS6316892A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
EP1191306B1 (en) Distance information obtaining apparatus and distance information obtaining method
JPH0429477B2 (en)
JPS60117102A (en) Welding line tracing detection device
JPS61104202A (en) Optical displacement meter
JP2987540B2 (en) 3D scanner
JPS63108981A (en) Distance measuring instrument
JPS61112905A (en) Optical measuring apparatus
JPH08193810A (en) Device for measuring displacement
JPS61103692A (en) Laser beam machine
JP2019023593A (en) Laser displacement meter and laser ultrasonic inspection device using the same
JPH0495859A (en) Optically inspecting apparatus for printed board
JPH03111707A (en) Object shape detection method
JP2866566B2 (en) 3D shape input device
JPH04268404A (en) Measuring apparatus for displacement and measuring apparatus for geometry
CN117460125A (en) A UV light energy compensation intelligent control system and method
JPS5826325Y2 (en) position detection device
JPS623609A (en) Range finder
JPH037476B2 (en)
JPH1054714A (en) Distance measurement method
JPH0617767B2 (en) Distance measuring device
JPH07167623A (en) Measuring device for height of ic lead
JPS62259012A (en) optical distance measuring device
JPH06102026A (en) Three dimensional image input system
JPH0317282B2 (en)
JPH02173509A (en) Surface roughness measuring instrument