[go: up one dir, main page]

JPH04294322A - Optical device - Google Patents

Optical device

Info

Publication number
JPH04294322A
JPH04294322A JP5914391A JP5914391A JPH04294322A JP H04294322 A JPH04294322 A JP H04294322A JP 5914391 A JP5914391 A JP 5914391A JP 5914391 A JP5914391 A JP 5914391A JP H04294322 A JPH04294322 A JP H04294322A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical
crystal element
light
signal generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5914391A
Other languages
Japanese (ja)
Inventor
Atsushi Amako
淳 尼子
Hirotsuna Miura
弘綱 三浦
Tomio Sonehara
富雄 曽根原
Jieiu Jin
ジン ジェイウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5914391A priority Critical patent/JPH04294322A/en
Publication of JPH04294322A publication Critical patent/JPH04294322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液晶素子を応用した光
学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device using a liquid crystal element.

【0002】0002

【従来の技術】従来、光波面の位相誤差を補償するには
、1枚続きのミラーの形状を裏からアクチュエータで変
形させる方式が主流であった。変形させるアクチュエー
タとしてはピエゾ素子が広く用いられており、ストロー
クが数μm、個数が500個程度のものが試作されてい
る(例えば、Proc.SPIE,Vol.1114,
p134(1989)参照)。
2. Description of the Related Art Conventionally, in order to compensate for phase errors in optical wavefronts, the mainstream method has been to deform the shape of a series of mirrors from behind using an actuator. Piezo elements are widely used as actuators for deformation, and one with a stroke of several μm and around 500 pieces has been prototyped (for example, Proc. SPIE, Vol. 1114,
p134 (1989)).

【0003】0003

【発明が解決しようとする課題】しかし、ピエゾ素子に
は、発熱、ヒステリシスなどの制御に工夫がいる、素子
数が限られている、駆動電圧が高いなどの問題点があっ
た。
[Problems to be Solved by the Invention] However, piezo elements have problems such as the need for control of heat generation and hysteresis, the limited number of elements, and the high driving voltage.

【0004】本発明はこのような問題点を解決するもの
であって、その目的は、簡便な手段により光波面の位相
誤差を高精度かつ高速に補償できる光学装置を提供する
ところにある。
The present invention is intended to solve these problems, and its object is to provide an optical device that can compensate for phase errors in optical wavefronts with high precision and high speed using simple means.

【0005】[0005]

【課題を解決するための手段】本発明の第1の光学装置
は、少なくとも位相変調用液晶素子と、前記液晶素子に
対する信号発生器と、ランダム偏光を1方向の直線偏光
に変換する偏光素子と、光波面測定器と、前記光波面測
定器の出力を前記信号発生器へ帰還する回路を備えて成
ることを特徴とする。
[Means for Solving the Problems] A first optical device of the present invention includes at least a phase modulating liquid crystal element, a signal generator for the liquid crystal element, and a polarizing element that converts random polarized light into linearly polarized light in one direction. , comprising an optical wavefront measuring device and a circuit for feeding back the output of the optical wavefront measuring device to the signal generator.

【0006】本発明の第2の光学装置は、少なくとも位
相変調用液晶素子と、前記液晶素子に対する信号発生器
と、ランダム偏光を2方向の直線偏光に分離する偏光素
子と、光波面測定器と、前記光波面測定器の出力を前記
信号発生器へ帰還する回路を備えて成ることを特徴とす
る。
A second optical device of the present invention includes at least a phase modulating liquid crystal element, a signal generator for the liquid crystal element, a polarizing element for separating random polarized light into two linearly polarized lights, and an optical wavefront measuring device. , comprising a circuit for feeding back the output of the optical wavefront measuring device to the signal generator.

【0007】本発明の第3の光学装置は、前記第1ない
し第2の光学装置において、位相変調用液晶素子がEC
B(電界制御複屈折)モード液晶素子であることを特徴
とする。
A third optical device of the present invention is that in the first or second optical device, the phase modulation liquid crystal element is an EC
It is characterized by being a B (field-controlled birefringence) mode liquid crystal element.

【0008】[0008]

【実施例】以下では実施例にもとづき、本発明の内容に
ついて詳しく説明する。 (実施例1)図1に本実施例の光学装置の構成を示す。 位相誤差を含むランダム偏光な光aは、偏光素子101
の作用により一方向にそろった直線偏光となる。そして
、位相変調用液晶素子102で位相変調を受けた後、ミ
ラー103により一部は光波面測定器104へ導かれ、
残りは、波面の位相誤差が補償されてた光bとなって装
置の外へ出る。
[Examples] The contents of the present invention will be explained in detail below based on Examples. (Embodiment 1) FIG. 1 shows the configuration of an optical device of this embodiment. Randomly polarized light a containing a phase error is passed through the polarizing element 101
Due to this action, the light becomes linearly polarized in one direction. After receiving phase modulation in the phase modulation liquid crystal element 102, a portion is guided to the optical wavefront measuring device 104 by the mirror 103.
The remainder exits the device as light b whose wavefront phase error has been compensated.

【0009】本発明に用いた位相変調液晶素子102は
、各画素にTFT(薄膜トランジスタ)を備えたマトリ
クス駆動型の液晶素子であって、5ボルト以下の電圧で
使用できる。有効画素数は320×220、画素間隔は
水平方向80μm、垂直方向90μmである。液晶分子
の初期配向がホモジニアスなECBモードを採用するこ
とにより、光の位相を連続的に変調することができる(
第51回応用物理学会学術講演会予稿集26a−H−1
0)。
The phase modulation liquid crystal element 102 used in the present invention is a matrix drive type liquid crystal element having a TFT (thin film transistor) in each pixel, and can be used at a voltage of 5 volts or less. The number of effective pixels is 320×220, and the pixel spacing is 80 μm in the horizontal direction and 90 μm in the vertical direction. By adopting the ECB mode in which the initial orientation of liquid crystal molecules is homogeneous, the phase of light can be continuously modulated (
Proceedings of the 51st Academic Conference of the Japan Society of Applied Physics 26a-H-1
0).

【0010】光波面測定器104は、光波面に含まれる
位相誤差を時々刻々測定する。そして、測定の結果をも
とに、位相変調用液晶素子102の各画素へ加えるべき
電圧値を算出して、これを補償指令として信号発生器1
05へ帰還する。信号発生器105は、受け取った補償
指令にしたがって、通過する光の位相を画素単位で制御
する。光波面の位相誤差の測定方法としては、ジャック
ハルトマン法(Publ.Nat.Astron.Ob
s.,Vol.1,p49(1989)参照)やロジェ
法(Proc.SPIE,Vol.1114.p92(
1989)参照)が用いられる。
[0010] The optical wavefront measuring device 104 measures the phase error included in the optical wavefront from time to time. Then, based on the measurement results, the voltage value to be applied to each pixel of the phase modulation liquid crystal element 102 is calculated, and this is used as a compensation command to the signal generator 1.
Return to 05. The signal generator 105 controls the phase of the passing light on a pixel-by-pixel basis according to the received compensation command. As a method for measuring the phase error of an optical wavefront, the Jack Hartmann method (Publ. Nat. Astron. Ob
s. , Vol. 1, p. 49 (1989)) and the Roger method (Proc. SPIE, Vol. 1114. p. 92 (
1989)) is used.

【0011】次に、本実施例で用いる偏光素子101の
構造および作用について説明する。
Next, the structure and operation of the polarizing element 101 used in this embodiment will be explained.

【0012】図4に偏光素子101の構造を示す。この
偏光素子は、複屈折材料層401と402の交互の繰り
返しから成る周期構造をもっている。ただし、この繰り
返しの1単位の長さは、入射光の波長に比べて充分に短
いとする。
FIG. 4 shows the structure of the polarizing element 101. This polarizing element has a periodic structure consisting of alternating repetitions of birefringent material layers 401 and 402. However, the length of one unit of this repetition is sufficiently short compared to the wavelength of the incident light.

【0013】ここで、複屈折材料層401の常光線に対
する屈折率をno1、異常光線に対する屈折率をne1
、複屈折材料層402の常光線に対する屈折率をno2
、異常光線に対する屈折率をne2とする。ただし、n
o1=ne2、ne1≠no2  とする。複屈折材料
層401の光学軸403は、周期繰り返し方向405に
対して45°になるように配向されている。一方、複屈
折材料層402の光学軸404は、複屈折材料層401
の光学軸403に対して90°になるように配向されて
いる。
Here, the refractive index of the birefringent material layer 401 for ordinary rays is no1, and the refractive index for extraordinary rays is ne1.
, the refractive index of the birefringent material layer 402 for ordinary rays is no2
, the refractive index for the extraordinary ray is ne2. However, n
Let o1=ne2, ne1≠no2. The optical axis 403 of the birefringent material layer 401 is oriented at 45° with respect to the periodicity direction 405. On the other hand, the optical axis 404 of the birefringent material layer 402
It is oriented at 90° with respect to the optical axis 403 of.

【0014】このような構造の偏光素子の上面406に
光が垂直に入射した時の、入射光の偏光成分の振る舞い
について以下に述べる。
The behavior of the polarization components of the incident light when the light is perpendicularly incident on the upper surface 406 of the polarizing element having such a structure will be described below.

【0015】図5は、図4の偏光素子を上方からながめ
たところである。入射光の偏光成分の振る舞いについて
は、複屈折材料層502の異常光成分505と常光成分
506に分けて考えればよい。複屈折材料層の繰り返し
周期は波長に対して充分に短いから、各偏光成分は複屈
折材料層501と複屈折材料層502の平均的な屈折率
を感じることになる。まず、異常光成分505は、no
1=ne2から、偏光成分をそのまま維持して透過する
。一方、常光成分に対しては、ne1≠no2から、周
期繰り返し方向509に垂直な成分と507と平行な成
分508で屈折率が異なり、構造複屈折が生じることに
なる。すなはち、常光成分506は偏光素子101の中
を偏光状態を変化させながら伝搬していくことになる。 そこで、光路差が半波長となるように素子を設計すれば
、常光成分506は全て異常光成分505となって偏光
素子から出射されるので、エネルギー損失をともなうこ
となく方向のそろった直線偏光を得ることができる。
FIG. 5 shows the polarizing element of FIG. 4 viewed from above. The behavior of the polarization component of the incident light may be considered separately into the extraordinary light component 505 and the ordinary light component 506 of the birefringent material layer 502. Since the repetition period of the birefringent material layer is sufficiently short relative to the wavelength, each polarized light component senses the average refractive index of the birefringent material layer 501 and the birefringent material layer 502. First, the extraordinary light component 505 is no.
Since 1=ne2, the polarized light component is maintained as it is and is transmitted. On the other hand, for the ordinary light component, since ne1≠no2, the refractive index is different between the component perpendicular to the periodic repeating direction 509 and the component 508 parallel to 507, resulting in structural birefringence. In other words, the ordinary light component 506 propagates through the polarizing element 101 while changing its polarization state. Therefore, if the element is designed so that the optical path difference is half a wavelength, the ordinary light component 506 will all become the extraordinary light component 505 and will be emitted from the polarizing element, allowing linearly polarized light with the same direction to be produced without energy loss. Obtainable.

【0016】本実施例によれば、1枚の位相変調用液晶
素子で光波面の位相誤差を補償することができる。液晶
素子は、低電圧駆動、低消費電力、高画素密度という特
徴を備えており、従来のピエゾ素子に比べて一段と高い
精度で光波面の位相を制御することができる。
According to this embodiment, it is possible to compensate for the phase error of the light wavefront with one phase modulation liquid crystal element. Liquid crystal elements are characterized by low voltage drive, low power consumption, and high pixel density, and can control the phase of a light wavefront with much higher precision than conventional piezo elements.

【0017】なお、対象とする光波面の直線偏光度が充
分に高い場合には、本実施例で用いた偏光素子を構成要
素から除くことも可能である。 (実施例2)図2に本実施例の光学装置の構成を示す。 位相誤差を含むランダム偏光な光aは、偏光素子201
の作用により一方向にそろった直線偏光となる。そして
、偏光ビームスプリッタ202で反射されて、位相変調
用液晶素子203へ入射する。ここで、光は位相変調を
受けると同時にその偏光面が90°だけ回転されて出射
する。この後、光は偏光ビームスプリッタ202を透過
して、ミラー204により一部は光波面測定器205へ
導かれ、残りは、波面の位相誤差が補償された光bとな
って装置の外へ出る。
Note that if the degree of linear polarization of the target light wavefront is sufficiently high, it is also possible to exclude the polarizing element used in this embodiment from the constituent elements. (Embodiment 2) FIG. 2 shows the configuration of an optical device of this embodiment. Randomly polarized light a containing a phase error is passed through the polarizing element 201
Due to this action, the light becomes linearly polarized in one direction. The light is then reflected by the polarizing beam splitter 202 and enters the phase modulation liquid crystal element 203. Here, the light undergoes phase modulation and at the same time its polarization plane is rotated by 90 degrees and output. After that, the light passes through the polarizing beam splitter 202, and part of the light is guided by the mirror 204 to the optical wavefront measuring device 205, and the rest goes out of the device as light b whose wavefront phase error has been compensated. .

【0018】光波面測定器205は、光波面に含まれる
位相誤差を時々刻々測定する。そして、測定の結果をも
とに位相変調用液晶素子201の各画素へ加える電圧値
を算出して、これを補償指令として信号発生器206へ
帰還する。
The optical wavefront measuring device 205 measures the phase error included in the optical wavefront every moment. Then, based on the measurement results, a voltage value to be applied to each pixel of the phase modulation liquid crystal element 201 is calculated, and this is fed back to the signal generator 206 as a compensation command.

【0019】本実施例で用いた位相変調用液晶素子20
1は、初期配向がホモジニアスな液晶層と光反射層の間
に4分の1波長板を備えた光書き込み型の液晶素子であ
る。この液晶素子は、連続的な位相変調を行うと同時に
入射直線偏光の方位を90°だけ回転させる。液晶素子
201への信号の書き込みは、信号発生器206により
行う。信号発生器206はレーザスキャニング機構を備
え、補償指令にしたがって生成した2次元画像を液晶素
子201へ書き込む。なお、2次元画像を液晶素子20
1へ書き込む手段として、CRT表示体や液晶表示体を
用いることもできる。
Phase modulation liquid crystal element 20 used in this example
Reference numeral 1 denotes an optical writing type liquid crystal element that includes a quarter-wave plate between a liquid crystal layer whose initial orientation is homogeneous and a light reflection layer. This liquid crystal element performs continuous phase modulation and simultaneously rotates the orientation of incident linearly polarized light by 90 degrees. A signal generator 206 writes signals to the liquid crystal element 201 . The signal generator 206 includes a laser scanning mechanism and writes a two-dimensional image generated in accordance with the compensation command onto the liquid crystal element 201. Note that the two-dimensional image is displayed on the liquid crystal element 20.
1, a CRT display or a liquid crystal display can also be used.

【0020】本実施例によれば、光利用効率ならびに解
像度の高い光書き込み型の液晶素子を用いることにより
、光波面の歪をきわめて高い精度で補償することができ
る。 (実施例3)図3に本実施例の光学装置の構成を示す。 位相誤差を含むランダム偏光な光aは、偏光ビームスプ
リッタ301で紙面に垂直な成分(S偏光)と紙面に平
行な成分(P偏光)に分かれる。それぞれの成分は位相
変調用液晶素子302、303で位相変調を受けた後、
ミラー304、305により一部は光波面測定器306
、307へ入射し、残りは偏光ビームスプリッタ310
へ入射する。ここでふたつの成分は合成され、波面の位
相誤差が補償された光bとなって装置の外へ出る。
According to this embodiment, by using an optical writing type liquid crystal element with high light utilization efficiency and high resolution, distortion of the optical wavefront can be compensated with extremely high precision. (Embodiment 3) FIG. 3 shows the configuration of an optical device of this embodiment. Randomly polarized light a containing a phase error is split by a polarization beam splitter 301 into a component perpendicular to the plane of the paper (S polarization) and a component parallel to the plane of the paper (P polarization). After each component undergoes phase modulation in phase modulation liquid crystal elements 302 and 303,
A part of the optical wavefront measuring device 306 is formed by mirrors 304 and 305.
, 307, and the rest is polarized beam splitter 310.
incident on the Here, the two components are combined and exit from the device as light b whose wavefront phase error has been compensated.

【0021】本発明に用いた位相変調液晶素子302、
303は、いずれも各画素にTFT(薄膜トランジスタ
)を備えたマトリクス駆動型の液晶素子であって、5ボ
ルト以下の電圧で使用できる。有効画素数は320×2
20、画素間隔は水平方向80μm、垂直方向90μm
である。液晶分子の初期配向がホモジニアスなECBモ
ードを採用することにより、光の位相を連続的に変調す
ることができる(第51回応用物理学会学術講演会予稿
集26a−H−10)。
Phase modulation liquid crystal element 302 used in the present invention,
Reference numeral 303 is a matrix drive type liquid crystal element having a TFT (thin film transistor) in each pixel, and can be used at a voltage of 5 volts or less. Effective number of pixels is 320 x 2
20. Pixel spacing is 80 μm in the horizontal direction and 90 μm in the vertical direction.
It is. By adopting the ECB mode in which the initial orientation of liquid crystal molecules is homogeneous, the phase of light can be continuously modulated (Proceedings of the 51st Japan Society of Applied Physics Conference 26a-H-10).

【0022】光波面測定器306、307は、光波面に
含まれる位相誤差を時々刻々測定する。測定の結果をも
とに位相変調用液晶素子302、303の各画素へ加え
るべき電圧値を算出して、これを補償指令として信号発
生器308、309へ帰還する。信号発生器308、3
09は、受け取った補償指令にしたがって、通過する光
の位相を画素単位で制御する。なお、光波面の位相誤差
の測定方法は、実施例1と同じである。
The optical wavefront measuring devices 306 and 307 measure the phase error included in the optical wavefront every moment. Based on the measurement results, the voltage value to be applied to each pixel of the phase modulation liquid crystal elements 302 and 303 is calculated, and this is fed back to the signal generators 308 and 309 as a compensation command. Signal generator 308,3
09 controls the phase of the passing light on a pixel-by-pixel basis in accordance with the received compensation command. Note that the method for measuring the phase error of the optical wavefront is the same as in the first embodiment.

【0023】本実施例によれば、2枚の液晶素子と偏光
分離素子を組み合わせることにより、光波面の位相誤差
を高精度かつ高速に補償することができる。
According to this embodiment, by combining two liquid crystal elements and a polarization separation element, it is possible to compensate for phase errors in optical wavefronts with high precision and high speed.

【0024】[0024]

【発明の効果】本発明によれば、光波面の位相誤差を高
精度に補償することができる。本発明の光学装置は、そ
の実時間性を活かして、天文観測を始めとする広範な補
償光学分野への応用が可能である。
According to the present invention, phase errors in optical wavefronts can be compensated with high precision. The optical device of the present invention can be applied to a wide range of fields of adaptive optics, including astronomical observation, by taking advantage of its real-time properties.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of Example 1 of the present invention.

【図2】本発明の実施例2の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of Example 2 of the present invention.

【図3】本発明の実施例3の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of Example 3 of the present invention.

【図4】本発明の実施例1で用いる偏光素子の構造を示
す斜視図である。
FIG. 4 is a perspective view showing the structure of a polarizing element used in Example 1 of the present invention.

【図5】本発明の実施例1で用いる偏光素子の作用を説
明する図である。
FIG. 5 is a diagram illustrating the action of a polarizing element used in Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

101  偏光素子 102  マトリクス駆動型のECBモード液晶素子1
03  ミラー 104  光波面測定器 105  信号発生器 201  偏光素子 202  偏光ビームスプリッタ 203  光書き込み型のECBモード液晶素子204
  ミラー 205  光波面測定器 206  信号発生器 301  偏光ビームスプリッタ 302  マトリクス駆動型のECBモード液晶素子3
03  マトリクス駆動型のECBモード液晶素子30
4  ミラー 305  ミラー 306  光波面測定器 307  光波面測定器 308  信号発生器 309  信号発生器 401  複屈折材料層 402  複屈折材料層 403  光学軸 404  光学軸 405  周期繰り返し方向 406  上面 501  複屈折材料 502  複屈折材料 503  光学軸 504  光学軸 505  複屈折材料層502の異常光成分506  
複屈折材料層502の常光成分507  周期繰り返し
方向に垂直な成分508  周期繰り返し方向に平行な
成分509  周期繰り返し方向
101 Polarizing element 102 Matrix-driven ECB mode liquid crystal element 1
03 Mirror 104 Optical wavefront measuring instrument 105 Signal generator 201 Polarizing element 202 Polarizing beam splitter 203 Optical writing type ECB mode liquid crystal element 204
Mirror 205 Optical wavefront measuring device 206 Signal generator 301 Polarizing beam splitter 302 Matrix-driven ECB mode liquid crystal element 3
03 Matrix drive type ECB mode liquid crystal element 30
4 Mirror 305 Mirror 306 Optical wavefront measuring device 307 Optical wavefront measuring device 308 Signal generator 309 Signal generator 401 Birefringent material layer 402 Birefringent material layer 403 Optical axis 404 Optical axis 405 Periodic repeating direction 406 Upper surface 501 Birefringent material 502 Birefringent material layer 403 Refractive material 503 Optical axis 504 Optical axis 505 Extraordinary light component 506 of birefringent material layer 502
Ordinary light component 507 of birefringent material layer 502 Component 508 perpendicular to the periodic repeating direction Component 509 parallel to the periodic repeating direction Periodic repeating direction

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光波面の位相補償技術に関し、少なくとも
位相変調用液晶素子と、前記液晶素子に対する信号発生
器と、ランダム偏光を1方向の直線偏光に変換する偏光
素子と、光波面測定器と、前記光波面測定器の出力を前
記信号発生器へ帰還する回路を備えて成ることを特徴と
する光学装置。
1. A phase compensation technique for a light wavefront, comprising at least a liquid crystal element for phase modulation, a signal generator for the liquid crystal element, a polarizing element for converting random polarized light into linearly polarized light in one direction, and an optical wavefront measuring device. , an optical device comprising: a circuit for feeding back the output of the optical wavefront measuring device to the signal generator.
【請求項2】光波面の位相補償技術に関し、少なくとも
位相変調用液晶素子と、前記液晶素子に対する信号発生
器と、ランダム偏光を2方向の直線偏光に分離する偏光
素子と、光波面測定器と、前記光波面測定器の出力を前
記信号発生器へ帰還する回路を備えて成ることを特徴と
する光学装置。
2. A phase compensation technique for a light wavefront, comprising at least a phase modulating liquid crystal element, a signal generator for the liquid crystal element, a polarizing element for separating random polarized light into two linearly polarized lights, and an optical wavefront measuring device. , an optical device comprising: a circuit for feeding back the output of the optical wavefront measuring device to the signal generator.
【請求項3】前記位相変調用液晶素子がECB(電界制
御複屈折)モード液晶素子であることを特徴とする請求
項1ないし請求項2に記載の光学装置。
3. The optical device according to claim 1, wherein the phase modulation liquid crystal element is an ECB (Electric Field Controlled Birefringence) mode liquid crystal element.
JP5914391A 1991-03-22 1991-03-22 Optical device Pending JPH04294322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5914391A JPH04294322A (en) 1991-03-22 1991-03-22 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5914391A JPH04294322A (en) 1991-03-22 1991-03-22 Optical device

Publications (1)

Publication Number Publication Date
JPH04294322A true JPH04294322A (en) 1992-10-19

Family

ID=13104815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5914391A Pending JPH04294322A (en) 1991-03-22 1991-03-22 Optical device

Country Status (1)

Country Link
JP (1) JPH04294322A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717304A1 (en) * 1994-06-24 1996-06-19 Hitachi, Ltd. Active matrix type liquid crystal display device and its driving method
US6198464B1 (en) 1995-01-13 2001-03-06 Hitachi, Ltd. Active matrix type liquid crystal display system and driving method therefor
JP2007014569A (en) * 2005-07-08 2007-01-25 Nidek Co Ltd Ophthalmologic imaging apparatus
US7209279B2 (en) 2001-10-25 2007-04-24 Hamamatsu Photonics K.K. Phase modulating apparatus and phase modulating method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717304A1 (en) * 1994-06-24 1996-06-19 Hitachi, Ltd. Active matrix type liquid crystal display device and its driving method
EP0717304A4 (en) * 1994-06-24 1997-10-22 Hitachi Ltd ACTIVE MATRIX LIQUID CRYSTAL DISPLAY AND ACTIVATION METHOD
US5854616A (en) * 1994-06-24 1998-12-29 Hitach, Ltd. Active matrix type liquid crystal display system and driving method therefor
US6028578A (en) * 1994-06-24 2000-02-22 Hitachi, Ltd. Active matrix type liquid crystal display system and driving method therefor
US6198464B1 (en) 1995-01-13 2001-03-06 Hitachi, Ltd. Active matrix type liquid crystal display system and driving method therefor
US7209279B2 (en) 2001-10-25 2007-04-24 Hamamatsu Photonics K.K. Phase modulating apparatus and phase modulating method
JP2007014569A (en) * 2005-07-08 2007-01-25 Nidek Co Ltd Ophthalmologic imaging apparatus
JP4653577B2 (en) * 2005-07-08 2011-03-16 株式会社ニデック Ophthalmic imaging equipment

Similar Documents

Publication Publication Date Title
US5497254A (en) Optical apparatus including a liquid crystal modulator
US5784139A (en) Image display device
US10303039B2 (en) SAW optical modulators with sense transducers
US10416468B2 (en) Light field generator devices with series output couplers
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
JPH06118359A (en) Phase type space optical modulator
Zhang et al. Non-mechanical optical beam-steering of a liquid crystal laser
JP2001100172A (en) Spatial optical modulating device
US6388697B1 (en) Image forming device and two dimensional optical scanning device
JPH04294322A (en) Optical device
Redfield et al. Data storage in photorefractives revisited
JP2002049002A (en) Laser beam machine
CN115047638B (en) Laser double-view-direction scanning assembly system without movable parts
JP2964467B2 (en) Multiple reflection element
JPH0566377A (en) Optical device
JP3401793B2 (en) Optical device
JPH08211423A (en) Deflector and image shift type image pickup device formed by using the same
JPH04223208A (en) Real-time deformation/shape analysis method and device
JP2002049295A (en) Hologram display
JPH03105310A (en) Optical delay device
US20230194944A1 (en) Liquid crystal phase modulation device
JP2006243760A (en) Spatial light modulating device
US5381188A (en) Light to light modulator with reading light of specified wavelength
JP3066457B2 (en) Optical pattern recognition device
JP2613479B2 (en) Computer holography equipment