[go: up one dir, main page]

JPH0429104A - Fine optical fiber collimator - Google Patents

Fine optical fiber collimator

Info

Publication number
JPH0429104A
JPH0429104A JP13434090A JP13434090A JPH0429104A JP H0429104 A JPH0429104 A JP H0429104A JP 13434090 A JP13434090 A JP 13434090A JP 13434090 A JP13434090 A JP 13434090A JP H0429104 A JPH0429104 A JP H0429104A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
lens
optical
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13434090A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konno
良博 今野
Hiroshi Kume
久米 浩
Masato Tadenuma
蓼沼 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP13434090A priority Critical patent/JPH0429104A/en
Publication of JPH0429104A publication Critical patent/JPH0429104A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain high coupling efficiency and enable inexpensive manufacture by coupling a specific fiber lens at the tip part of an optical fiber. CONSTITUTION:One end of the fiber lens which consists of SiO2 or principally of SiO2 and has a single refractive index and is long enough for beam expansion by Gaussian diffusion is made into a curved surface lens, and an optical fiber 8 which has the same external diameter is united by fusion splicing. Consequently, the fiber lens can be spliced directly to the optical fiber by fusion, so an optical component which has high reliability unlike an adhesion system is obtained and there is no border surface formed, so low reflection loss and high coupling efficiency are realized; and the optical axes need not be adjusted at the time of assembly, so the collimator system which includes even a pigtail part is formed at low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光スィッチ、光合分波器、光アイソレータ等
各種光学部品用の微小光ファイバコリメータの構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of a micro optical fiber collimator for various optical components such as optical switches, optical multiplexers/demultiplexers, and optical isolators.

[従来の技術] 光通信の発達に伴って利用されている光デバイス、光学
部品の小型化が望まれている。特に光アイソレータ、光
サーキュレータ、光合分波器等においては、光ファイバ
と結合した状態で小型化、vA造の簡素化が要求されて
いる。一般に光ファイバを伴うピグテール化された光ア
イソレータ等では、第2図に示すように光ファイバ1か
ら出射された光は球レンズ2あるいは屈折率分布型レン
ズ3で平行光として光学デバイス4へ入射させ、出射し
た光を再び同様にして光ファイバ1へ集光することによ
り結合している。
[Background Art] With the development of optical communications, there is a desire for miniaturization of optical devices and optical components used. In particular, optical isolators, optical circulators, optical multiplexers/demultiplexers, and the like are required to be miniaturized and simplified in VA construction when coupled with optical fibers. In general, in a pigtailed optical isolator with an optical fiber, as shown in FIG. , the emitted light is similarly condensed onto the optical fiber 1 and coupled.

[発明が解決しようとする課題] これまでのコリメート系は、光ファイバとレンズの光軸
位置調整が問題であり、組立装置等に費用がかかり、光
ファイバコリメート製品として高価になっていた。また
従来方式の場合第3図に示すように、有機物質による屈
折率整合剤5を用いて反射防止を行なっている。したが
って耐候的、耐熱的な課題がある。また第3図における
光の人出射面6では反射防止膜を形成するために、光フ
ァイバコードが付属した状態で実施されることから、通
常の蒸着のように約300℃程度に加熱したハードコー
トが光ファイバ被覆部の耐熱性やガス発生のため用いら
れずイオンアシスト等を用いたコートが採用され、均一
性および低価格化を妨げる要因になっていた。さらに光
デバイスの小形化の面から十分に光束の細い(例えば1
00Q以下)ファイバコリメート光が必要とされている
が、従来の光ファイバコリメータでは細くとも300虜
までしか得られなかった。
[Problems to be Solved by the Invention] Conventional collimating systems have had problems with adjusting the optical axis positions of the optical fiber and lens, and the cost of assembly equipment and the like has been high, making the optical fiber collimating product expensive. Further, in the case of the conventional method, as shown in FIG. 3, a refractive index matching agent 5 made of an organic substance is used to prevent reflection. Therefore, there are issues regarding weather resistance and heat resistance. Furthermore, since the light emitting surface 6 in FIG. 3 is coated with an optical fiber cord attached to form an anti-reflection film, it is coated with a hard coat heated to about 300°C like normal vapor deposition. However, due to the heat resistance of the optical fiber coating and gas generation, a coating using ion assist or the like was adopted, which hindered uniformity and cost reduction. Furthermore, from the standpoint of miniaturization of optical devices, the luminous flux is sufficiently narrow (for example, 1
Although fiber collimated light (below 00Q) is required, conventional optical fiber collimators can only provide at least 300 beams.

近年微小コリメータ光を形成する試みがなされティる。Recently, attempts have been made to form microcollimated light.

Journal of Lightwave Tech
nologyVol LT−5No9. 1987には
、William L、  Emkey等によりシング
ルモードファイバ(SHF)にマルチモード屈折率分布
ファイバ(HMGIF)を融着し、約40μまでの微小
コリメータ光の結合を提案している。ここでは約3線ま
での距離を0.1〜1.6dBの結合損失でカップリン
グを行なっている。しかしHHGrFを用いる構造では
、光束の拡大が約40μ程度であり、コリメート距離の
自由度がなく、製造工程において屈折率分布ファイバ部
分の分布状態や波長ピッチの調整を個々に測定しながら
行なわなければならず、量産に不適当であり価格的にも
高価となる欠点があった。
Journal of Lightwave Tech
nologyVol LT-5No9. In 1987, William L. Emkey et al. proposed coupling a micro-collimated light of up to about 40μ by fusing a multimode graded index fiber (HMGIF) to a single mode fiber (SHF). Here, coupling is performed over a distance of about three wires with a coupling loss of 0.1 to 1.6 dB. However, in the structure using HHGrF, the beam expansion is about 40μ, and there is no flexibility in the collimation distance, and the distribution state and wavelength pitch of the gradient index fiber portion must be adjusted individually during the manufacturing process. However, it has the disadvantage of being unsuitable for mass production and being expensive.

[課題を解決するための手段] 本発明は上記の欠点を解決する手段として、中央部に導
波構造をなす光ファイバ先端に、S02もしくはSiO
2を主成分とした単一屈折率からなり、ガウス拡散によ
るビーム拡大に必要な長さを有するファイバレンズの片
端を曲面レンズとし、同一外径の光ファイバを融着によ
り一体化した構造である。さらに曲面レンズは使用波長
帯域に適合する反射防止膜を形成する。
[Means for Solving the Problems] The present invention solves the above-mentioned drawbacks by adding S02 or SiO2 to the tip of an optical fiber having a waveguide structure in the center.
It is a structure in which optical fibers with the same outer diameter are integrated by fusion, with one end of a fiber lens having a single refractive index of 2 as the main component and having the length necessary for beam expansion by Gaussian diffusion, with a curved lens at one end. . Furthermore, the curved lens forms an antireflection coating that is compatible with the wavelength band used.

[実施例] 本発明の光コリメータ先端部を第1図(a)の実施例に
示すように作製した。先端SiQ 2ファイバレンズ7
、中継ファイバ8.ピグテールファイバ本線9.先端部
保護用フェルール10から構成され、中継ファイバ8.
先端部保護用フェルール10は省略することも可能であ
る。第1図(b)は光の透過状態を示し、SHFの出射
ビーム径を2 w o 、S i O2ファイバレンズ
7の長さをし、レンズから出射した光の収束点(ビーム
ウェイスト)間での距離を2とすると、波長λにおける
SiQ 2の屈折率をnとして、ファイバレンズ7中を
伝播することによりガウシアンビームの広がり度合は■
式で示される。
[Example] An optical collimator tip of the present invention was manufactured as shown in the example of FIG. 1(a). Tip SiQ 2 fiber lens 7
, relay fiber 8. Pigtail fiber main line9. It consists of a ferrule 10 for protecting the tip end, and a relay fiber 8.
The tip protection ferrule 10 can also be omitted. Figure 1(b) shows the transmission state of light, where the diameter of the SHF output beam is 2 w o , the length of the SiO2 fiber lens 7, and the point of convergence (beam waste) of the light emitted from the lens. When the distance is 2, and the refractive index of SiQ 2 at wavelength λ is n, the degree of spread of the Gaussian beam by propagating through the fiber lens 7 is
It is shown by the formula.

すなわちLを制御することにより光ファイバ径近傍まで
拡大することができる。
That is, by controlling L, it is possible to expand the diameter to near the optical fiber diameter.

コア径10膚、外径1251m、コア屈折率約1.47
のSHFファイバ本線と同じ外径125贋のSiO2も
しくはSiO2ファイバを使用する。1.31Mの波長
ではLの最大長は■式からし  =約1.1.w以下で
あるなll1a× らば良い。第1図(b)においてSMFからビームウェ
イストへ経る光の光線行列は、5iOzファイバの先端
レンズの曲率をRとすると、■式の関係がある。
Core diameter: 10 mm, outer diameter: 1251 m, core refractive index: approximately 1.47
Use a counterfeit SiO2 or SiO2 fiber with an outer diameter of 125mm, which is the same as the SHF fiber main line. At a wavelength of 1.31M, the maximum length of L is approximately 1.1. It is good if it is less than ll1a×. In FIG. 1(b), the ray matrix of light passing from the SMF to the beam waste has the relationship of the following equation, where R is the curvature of the tip lens of the 5iOz fiber.

ざらにガウシアンビームの光線式から0式となりビーム
ウェイストまでの距@2が得られる。
Roughly speaking, the ray equation of the Gaussian beam becomes the 0 equation, and the distance to the beam waste @2 can be obtained.

ただしa=λ/πnWo2である。However, a=λ/πnWo2.

■、■式およびガウシアンビームの光線式からとなり、
■式から拡大ビーム径が90μになるようにLを算出し
、L=0.7mを選定した。この場合前記従来の提案に
よるビーム径40μの二倍の直径となる。SiQ 、フ
ァイバの先端レンズの曲率Rはビームウェイスト位置2
や、ビーム径2W に大きく作用する。第1表にその関
係を示す。
It consists of the ■, ■ formula and the Gaussian beam ray formula,
L was calculated from the formula (2) so that the expanded beam diameter would be 90 μm, and L = 0.7 m was selected. In this case, the beam diameter will be twice the beam diameter of 40μ according to the conventional proposal. SiQ, the curvature R of the fiber tip lens is at the beam waste position 2
It also has a large effect on the beam diameter 2W. Table 1 shows the relationship.

[出射ビーム径 2 W = 90μコしたがって曲率
R=200μでは、ビームウェイスト位置的1.8m+
、ビーム径88μとなり、ビームウェイストを対称中心
とし、その対向位置に同一光学系を設置し結合状態を測
定したところ、結合損失は0.5dBとなった。ただし
レンズレンズ間距離は3.6amである。
[Outgoing beam diameter 2 W = 90μ Therefore, when the curvature R = 200μ, the beam waste position is 1.8m +
The beam diameter was 88μ, and when the beam waist was set as the center of symmetry and the same optical system was installed at the opposite position to measure the coupling state, the coupling loss was 0.5 dB. However, the distance between the lenses is 3.6 am.

「発明の効果] 本発明により、ファイバレンズが光ファイバに直接融着
できるので、接着方式と異なり信■性の高い光学部品と
なり、界面がないために反射損失が少なく高い結合効率
が実現できる。さらにHHGIファイバをレンズとして
使用した時は波長ピッチが集光性を左右するため、レン
ズ長を厳しい交差で調整しなければならない。また組立
時の光軸調整が不要なため、ピグテール部も含むコリメ
ータ系として低価格で供給できる利点がある。特に光ア
イソレータ、光スイツチ光合分波器等さらに曲率を調整
することにより光ファイバアレイ結合部として広範な用
途に応用できる。
"Effects of the Invention" According to the present invention, a fiber lens can be directly fused to an optical fiber, so unlike the adhesive method, it becomes a highly reliable optical component, and since there is no interface, low reflection loss and high coupling efficiency can be achieved. Furthermore, when using an HHGI fiber as a lens, the wavelength pitch affects the light focusing ability, so the lens length must be adjusted with strict intersection.Also, since there is no need to adjust the optical axis during assembly, the collimator, including the pigtail part, It has the advantage that it can be supplied as a system at a low price.In particular, by adjusting the curvature, it can be applied to a wide range of applications such as optical isolators, optical switches, optical multiplexers and demultiplexers, etc. as optical fiber array coupling parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光コリメータ先端部を示す概略図。 第2図は光ファイバ光学系の概略図。 第3図は従来の光ファイバコリメータの断面図。 1光ファイバ        2゛球レンズ3、屈折率
分布型レンズ    4:光学デバイス7・3102フ
ァイバレンズ   8゛中継ファイバピグテールファイ
バ本線 先端部保護用フェルール p゛融着部
FIG. 1 is a schematic diagram showing the tip of the optical collimator of the present invention. FIG. 2 is a schematic diagram of an optical fiber optical system. FIG. 3 is a cross-sectional view of a conventional optical fiber collimator. 1 Optical fiber 2゛ Ball lens 3, refractive index gradient lens 4: Optical device 7, 3102 fiber lens 8゛ Relay fiber pigtail fiber Main line tip protection ferrule P゛ Fusion part

Claims (4)

【特許請求の範囲】[Claims] (1)光ファイバ先端部において、SiO_2もしくは
SiO_2を主成分とし全体が単一屈折率からなり、ビ
ーム拡大に必要な長さおよびコリメート化に必要な凸状
の曲面を有するファイバレンズを結合したことを特徴と
する微小光ファイバコリメータ。
(1) At the tip of the optical fiber, a fiber lens is coupled, which is mainly composed of SiO_2 or SiO_2 and has a single refractive index, and has a length necessary for beam expansion and a convex curved surface necessary for collimation. A miniature optical fiber collimator featuring:
(2)前記ファイバレンズが融着により前記光ファイバ
と一体化された請求項(1)記載の微小光ファイバコリ
メータ。
(2) The micro optical fiber collimator according to claim (1), wherein the fiber lens is integrated with the optical fiber by fusion.
(3)導波構造をなす光ファイバとファイバレンズが同
一外径を有する請求項(1)記載の微小光ファイバコリ
メータ。
(3) The micro optical fiber collimator according to claim (1), wherein the optical fiber and the fiber lens forming the waveguide structure have the same outer diameter.
(4)ファイバレンズの曲面には使用波長帯域に適合す
る反射防止膜を形成した請求項(1)記載の微小光ファ
イバコリメータ。
(4) The micro optical fiber collimator according to claim (1), wherein an anti-reflection film suitable for the wavelength band used is formed on the curved surface of the fiber lens.
JP13434090A 1990-05-24 1990-05-24 Fine optical fiber collimator Pending JPH0429104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13434090A JPH0429104A (en) 1990-05-24 1990-05-24 Fine optical fiber collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13434090A JPH0429104A (en) 1990-05-24 1990-05-24 Fine optical fiber collimator

Publications (1)

Publication Number Publication Date
JPH0429104A true JPH0429104A (en) 1992-01-31

Family

ID=15126065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13434090A Pending JPH0429104A (en) 1990-05-24 1990-05-24 Fine optical fiber collimator

Country Status (1)

Country Link
JP (1) JPH0429104A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446816A (en) * 1993-08-04 1995-08-29 The Furukawa Electric Co., Ltd. Optical fiber having a lens formed at an end thereof
CN102129129A (en) * 2011-04-08 2011-07-20 中国科学技术大学 Integrated optical fiber laser collimator and manufacturing device thereof
CN102621705A (en) * 2011-04-08 2012-08-01 中国科学技术大学 Manufacturing device of integrated optical fiber laser collimator
WO2024024050A1 (en) * 2022-07-28 2024-02-01 康博 小池 Optical transmission line, optical transmission system, and optical transmission line connection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446816A (en) * 1993-08-04 1995-08-29 The Furukawa Electric Co., Ltd. Optical fiber having a lens formed at an end thereof
CN102129129A (en) * 2011-04-08 2011-07-20 中国科学技术大学 Integrated optical fiber laser collimator and manufacturing device thereof
CN102621705A (en) * 2011-04-08 2012-08-01 中国科学技术大学 Manufacturing device of integrated optical fiber laser collimator
WO2024024050A1 (en) * 2022-07-28 2024-02-01 康博 小池 Optical transmission line, optical transmission system, and optical transmission line connection method

Similar Documents

Publication Publication Date Title
JP3066866B2 (en) Optical splitter
CN1307448C (en) Beam bending apparatus and method of manufacture
KR100235675B1 (en) Rotary variable optical tap and manufacturing method thereof
JP2003528347A (en) Optical waveguide lens and fabrication method
KR20040015329A (en) Hybrid fiber expanded beam connector and methods for using and making the hybrid fiber expanded beam connector
US11927805B2 (en) Optical fiber connection structure
TWI276854B (en) Optical waveguide
JPH08201644A (en) 4-fiber ferrule for constant polarization optical fiber and optical branching/coupling device formed by using this ferrule
JP2002196181A (en) Optical fiber attached with lens function and its manufacturing method
EP3441805B1 (en) Lens-attached optical fiber and optical coupler
US20050226563A1 (en) Optical fiber component
JPH0429104A (en) Fine optical fiber collimator
JP2896947B2 (en) Optical fiber end structure and method of manufacturing the same
JP2560148B2 (en) Optical fiber terminal with microlens and manufacturing method thereof
JP3274691B2 (en) Manufacturing method of optical fiber terminal with micro lens
JP3135979B2 (en) Optical fiber terminal optical device with micro lens
JP2992093B2 (en) Optical fiber terminal with micro lens
JPH07281054A (en) Optical fiber terminal
JP3132855B2 (en) Optical coupler and coupling method thereof
JP2812469B2 (en) Optical fiber type wavelength filter
JP2006113488A (en) Optical fiber collimator and optical fiber component using it
JP2002311248A (en) Optical delay element and method for manufacturing the same
JP3140114B2 (en) Optical fixed attenuator
JPH04125604A (en) Optical branching device
JPH08262229A (en) Optical fiber type non-reflection terminal