JPH04290920A - electromagnetic flow meter - Google Patents
electromagnetic flow meterInfo
- Publication number
- JPH04290920A JPH04290920A JP5630691A JP5630691A JPH04290920A JP H04290920 A JPH04290920 A JP H04290920A JP 5630691 A JP5630691 A JP 5630691A JP 5630691 A JP5630691 A JP 5630691A JP H04290920 A JPH04290920 A JP H04290920A
- Authority
- JP
- Japan
- Prior art keywords
- rate
- flow rate
- flow
- electrodes
- rate signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は導電性流体の流量を計測
するもので、上・下水道,薬品,食品,化学物質などの
液体、または、液体と細かい固体の混じったスラリーの
流量を計測する電磁流量計に関する。[Industrial Application Field] The present invention is for measuring the flow rate of conductive fluid, and is used to measure the flow rate of liquids such as water supply/sewage systems, medicines, foods, and chemical substances, or of slurry that is a mixture of liquid and fine solids. Regarding electromagnetic flowmeters.
【0002】0002
【従来の技術】従来の電磁流量計はJIS Z 8
764やJIS B 7554に示すようにフレミ
ングの法則により、流量信号は流体の流れ方向、磁界の
方向と互いに直交する方向に数10μVから数mVの電
圧信号として発生する。流量信号は管内を流れる流体速
度に比例して発生する。[Prior art] Conventional electromagnetic flowmeters comply with JIS Z 8.
As shown in JIS B 764 and JIS B 7554, according to Fleming's law, a flow rate signal is generated as a voltage signal of several tens of μV to several mV in a direction perpendicular to the fluid flow direction and the magnetic field direction. A flow signal is generated proportional to the fluid velocity flowing within the tube.
【0003】現在使用されている電磁流量計は図2に示
すように、磁界を発生させる手段として、配管1の上下
に配置した1対の励磁コイル2に交流電源3で電流を流
している。近年は交流として、矩形波を使用することに
よりゼロ点ドリフトや経時変化を軽減してる。交流を利
用している理由は直流磁界励磁では流体中に発生する流
量信号は直流であるため、流体と電極間に一定方向に流
れる微弱電流で流体と電極界面に電気化学反応が連続的
に発生し、界面状態が変化し、微弱な起電力を生じたり
、界面電気抵抗が増加変動したりする。いずれも、一定
値ではなく、経時的に変化したり、流速で変ったりする
。いずれも流量信号にとってノイズとなる。As shown in FIG. 2, the currently used electromagnetic flowmeter uses an AC power supply 3 to pass current through a pair of excitation coils 2 disposed above and below a pipe 1 as a means for generating a magnetic field. In recent years, zero point drift and changes over time have been reduced by using square waves as alternating current. The reason for using alternating current is that in DC magnetic field excitation, the flow rate signal generated in the fluid is direct current, so electrochemical reactions occur continuously at the fluid and electrode interface due to the weak current flowing in a fixed direction between the fluid and the electrode. However, the interfacial state changes, producing a weak electromotive force or increasing and fluctuating the interfacial electrical resistance. All of these values are not constant values, but change over time or with the flow velocity. Both become noise to the flow rate signal.
【0004】このような問題を解決するため、交流励磁
とすると流量信号も交流となり、電気化学反応も正・逆
反応が交互に生じるため進行せず安定な計測が可能とな
った。[0004] In order to solve this problem, when AC excitation is used, the flow rate signal becomes AC, and the electrochemical reaction does not proceed because forward and reverse reactions occur alternately, making stable measurement possible.
【0005】従来装置では検出器と励磁コイルを励磁す
る励磁電源、流量信号を増幅する増幅器5,規格化され
た流量信号に変換する演算回路6を収納した変換器は離
れた位置に設置されるため、両者間は電力用2芯の励磁
用シールドケーブル16と2芯の流量信号用シールドケ
ーブル15で接続されている。In the conventional device, the detector and the converter containing the excitation power source that excites the excitation coil, the amplifier 5 that amplifies the flow signal, and the arithmetic circuit 6 that converts it into a standardized flow signal are installed at separate locations. Therefore, the two are connected by a two-core excitation shielded cable 16 for power and a two-core shielded cable 15 for flow signal.
【0006】また、流量信号を外部に引出す電極のリー
ド線20は交流磁界中を通って引出されるため、無造作
に配線されるとリード線に微弱な電圧が誘起され、流量
信号に加算され、流量の有無にかかわらず発生するため
、ゼロ点ずれの原因となっていた。したがって、リード
線を引出す方法にいくつかのノウハウが必要であった。
図中の7は流量信号や、励磁回路,出力回路を制御する
CPUであり、8は出力回路である。Furthermore, since the lead wire 20 of the electrode that extracts the flow signal to the outside is led out through an alternating current magnetic field, if it is wired carelessly, a weak voltage will be induced in the lead wire and will be added to the flow signal. This occurred regardless of the presence or absence of a flow rate, which caused zero point deviation. Therefore, some know-how was required for how to draw out the lead wires. In the figure, 7 is a CPU that controls the flow rate signal, the excitation circuit, and the output circuit, and 8 is the output circuit.
【0007】[0007]
【発明が解決しようとする課題】従来の電磁流量計は磁
界を発生させる交流励磁電源に大きな電力を必要とする
ため、熱放散のため変換器が大きく、高価であり、かつ
、励磁用のケーブルが必要であった。また、検出器内の
構造も複雑であった。[Problems to be Solved by the Invention] Conventional electromagnetic flowmeters require a large amount of power for the AC excitation power supply that generates the magnetic field, so the converter is large and expensive due to heat dissipation, and the excitation cable is required. was necessary. Furthermore, the structure inside the detector was complicated.
【0008】本発明では上記問題を解決し小形化,簡素
化すると共に、流量信号をを大きくすることによりゼロ
点ドリフトや耐ノイズ性も向上させるところにある。[0008] The present invention solves the above problems by downsizing and simplifying the device, and also improves zero point drift and noise resistance by increasing the flow rate signal.
【0009】[0009]
【課題を解決するための手段】本発明では磁界発生手段
として、永久磁石を使用する。永久磁石は流量信号を検
出する電極を挾むように磁極を配置する。また永久磁石
は安定化を計るため使用する前に熱減磁して使用する。[Means for Solving the Problems] In the present invention, a permanent magnet is used as the magnetic field generating means. The magnetic poles of the permanent magnet are arranged so as to sandwich the electrodes that detect the flow rate signal. In addition, permanent magnets are thermally demagnetized before use in order to stabilize them.
【0010】別の発明では電極に流量信号電圧と逆極性
の電圧を印加する手段を変換器内に具備するところにあ
る。Another aspect of the invention is to include means within the converter for applying a voltage of opposite polarity to the flow rate signal voltage to the electrodes.
【0011】[0011]
【作用】永久磁石の磁極を電極を挾んで配置し、流れ方
向、両電極を結ぶ軸のいずれとも直交する磁界を発生す
ることにより、JIS Z 8764の解説で述べ
てるように、重み係数の最も大きい位置に磁界の最大値
を発生することができるため、従来の電磁流量計の2〜
5倍の流量信号が得られる。また、使用する永久磁石は
従来のフェライト磁石やアルニコ磁石の3〜5倍のエネ
ルギー積を有する希土類磁石を使用する。希土類磁石と
してはサマリウム−コバルト(SmCo系),セリウム
−コバルト(CeCo系)および、ネオジウム−鉄(N
dFe系)があり、コイル励磁で発生していた磁界の2
〜3倍の磁界強度が得られる。したがって、最終の流量
信号としては従来の約10倍得られる。[Operation] By arranging the magnetic poles of a permanent magnet to sandwich the electrodes and generating a magnetic field perpendicular to both the flow direction and the axis connecting both electrodes, as stated in the explanation of JIS Z 8764, the highest weighting factor can be achieved. Since the maximum value of the magnetic field can be generated at a large position, it is possible to
5 times the flow rate signal is obtained. Furthermore, the permanent magnet used is a rare earth magnet that has an energy product 3 to 5 times that of conventional ferrite magnets or alnico magnets. Rare earth magnets include samarium-cobalt (SmCo series), cerium-cobalt (CeCo series), and neodymium-iron (N
dFe system), and the magnetic field generated by coil excitation is
~3 times the magnetic field strength can be obtained. Therefore, the final flow rate signal can be obtained about 10 times as much as the conventional one.
【0012】また、永久磁石は周囲温度で磁界の強さが
変化する温度影響がある。この対策として、永久磁石を
飽和点まで着磁した後、永久磁石を100〜200℃に
加熱し、着磁量の2〜10%を熱減磁することにより、
熱的にも経時的にも安定な磁界を発生することができる
。Furthermore, permanent magnets are affected by temperature, such that the strength of the magnetic field changes depending on the ambient temperature. As a countermeasure for this, after magnetizing the permanent magnet to the saturation point, the permanent magnet is heated to 100 to 200°C and 2 to 10% of the magnetized amount is thermally demagnetized.
It is possible to generate a magnetic field that is stable both thermally and over time.
【0013】次に、永久磁石の直流励磁では電極部で電
気化学反応が生じる。これを無くするために電極に流量
信号と逆極性の電圧を印加し、流量信号電圧E1で発生
した電気化学反応と電極に印加した逆電圧E2による電
気化学反応が等しくなるようにすれば、電気化学反応が
打消されてなくなる。数1は両電気化学反応が打消され
る条件を示すものである。但し、T1は流量信号サンプ
リング時間、T2は逆電圧印加時間である。[0013] Next, during direct current excitation of a permanent magnet, an electrochemical reaction occurs at the electrode portion. In order to eliminate this, a voltage of opposite polarity to the flow rate signal is applied to the electrode, so that the electrochemical reaction caused by the flow rate signal voltage E1 and the electrochemical reaction caused by the reverse voltage E2 applied to the electrode are equalized. The chemical reaction is canceled out and disappears. Equation 1 shows the conditions under which both electrochemical reactions are canceled out. However, T1 is the flow rate signal sampling time, and T2 is the reverse voltage application time.
【0014】[0014]
【数1】[Math 1]
【0015】実用上は流量信号をサンプリングする時間
が長い方が計測器の安定性が良いが、両時間を等しく選
ぶことにより、化学反応を正逆同条件にでき、かつ変換
器の時間構成も簡単にできる。したがって、T1=T2
とし、E2=2E1の条件が望ましい。In practice, the longer the time for sampling the flow rate signal, the better the stability of the measuring instrument; however, by selecting both times equally, the chemical reaction can be carried out under the same conditions in forward and reverse directions, and the time structure of the converter can also be changed. It's easy to do. Therefore, T1=T2
The condition of E2=2E1 is desirable.
【0016】[0016]
【実施例】以下図面を用いて実施例について説明する。
図1は本発明を示すもので、aは断面図、bは側面図の
部分断面を示す。aにおいて鋼製の配管1の内側には金
属製の電極4の絶縁も兼ねてゴムやテフロン等のライニ
ング9があり、この内側を流体が流れる。配管の外側に
は1対の磁石10があり、磁石の両極が電極を挾むよう
に配置され、配管内に一方向の磁界を作る。1対の磁石
のN極同志,S極同志はそれぞれ強磁性体の接続板11
で継がれ、磁石の固定と外部へ磁界が漏洩することを防
いでいる。最外周にはケース12があり、全体を収納し
ている。bに示す側面図の配管の両側には接続用のフラ
ンジ13がある。永久磁石は断面が円弧状で側面図では
長方形をしている。磁石の中心には電極を引出すための
孔14がある。この形状の永久磁石を電極部分に配置す
ることにより、配管内の電極を結ぶ軸上に沿って磁界分
布を測定すると図3に示すように磁極の近傍で磁界が最
大で、管中心部は磁界が小さくなっている。配管口径を
d1<d2<d3 と変えた場合の磁界分布を一点鎖線
,実線,点線で示している。使用している永久磁石のサ
イズは同じである。この図からも判るように口径が変っ
ても重み係数が大きい部分の磁界に変化が殆どないため
、流速が同じであれば流量信号の大きさに差がない。図
4は本発明の検出器と回路のブロックダイアグラムを示
す。
検出器からの流量信号は流量信号用シールドケーブルで
変換器内の2連の切換スイッチS1 17に入力される
。
S1スイッチがa側に接続されている時は流量信号が増
幅器で増幅され、信号切換スイッチS2 18を経て演
算回路に入力され、ゼロ点、スパンを調整して、CPU
に入力する。[Embodiment] An embodiment will be described below with reference to the drawings. FIG. 1 shows the present invention, in which a is a cross-sectional view and b is a partial cross-section of a side view. In a, there is a lining 9 made of rubber, Teflon, etc. inside the steel pipe 1, which also serves as insulation for the metal electrode 4, and a fluid flows inside this lining 9. There is a pair of magnets 10 on the outside of the pipe, and the poles of the magnets are arranged to sandwich the electrodes, creating a unidirectional magnetic field inside the pipe. The N and S poles of a pair of magnets are each connected to a connecting plate 11 made of ferromagnetic material.
This is used to secure the magnet and prevent the magnetic field from leaking to the outside. There is a case 12 on the outermost periphery, which houses the entire device. There are connecting flanges 13 on both sides of the piping in the side view shown in FIG. A permanent magnet has an arcuate cross section and a rectangular shape in side view. At the center of the magnet is a hole 14 for drawing out the electrode. By placing a permanent magnet with this shape in the electrode part, when measuring the magnetic field distribution along the axis connecting the electrodes in the pipe, as shown in Figure 3, the magnetic field is maximum near the magnetic pole, and the magnetic field is at the center of the pipe. is getting smaller. The magnetic field distribution when the pipe diameter is changed to d1<d2<d3 is shown by a dashed line, a solid line, and a dotted line. The size of the permanent magnets used is the same. As can be seen from this figure, even if the diameter changes, there is almost no change in the magnetic field in the portion where the weighting coefficient is large, so if the flow velocity is the same, there is no difference in the magnitude of the flow rate signal. FIG. 4 shows a block diagram of the detector and circuit of the present invention. The flow rate signal from the detector is input to two changeover switches S1 17 in the converter through a shielded cable for flow rate signals. When the S1 switch is connected to the a side, the flow rate signal is amplified by the amplifier, inputted to the arithmetic circuit via the signal changeover switch S2 18, adjusted the zero point and span, and then sent to the CPU.
Enter.
【0017】通常、永久磁石励磁の流量信号は図5に示
すように流量に応じた直流電圧であり、この信号電圧に
より微弱電流が流体と電極の界面に流れ電気化学反応が
生じる。第2の発明では電気化学反応が生じないように
、切換スイッチS1をb側に切換え、CPUで電圧制御
された逆電圧発生器21から電極に流量信号と逆極性の
電圧を印加する。Normally, the flow rate signal for permanent magnet excitation is a DC voltage corresponding to the flow rate as shown in FIG. 5, and this signal voltage causes a weak current to flow at the interface between the fluid and the electrode, causing an electrochemical reaction. In the second invention, in order to prevent an electrochemical reaction from occurring, the changeover switch S1 is switched to the b side, and a voltage with a polarity opposite to that of the flow rate signal is applied to the electrode from a reverse voltage generator 21 that is voltage-controlled by the CPU.
【0018】逆電圧印加中は切換スイッチS2 が接地
され、演算回路とCPUの入力は0となる。CPUの入
力が0になった時はCPUから逆電圧発生器へ切換スイ
ッチS1 がaからbへ切換る前の平均電圧が発生され
るように信号を出す。図6は各部の信号電圧を経時的に
示したものである。aは切換スイッチS1 を常にa側
にした場合の流量信号変化を経時的に示したものである
。T1〜T6は流量信号を時分割したものであり、それ
ぞれの時間の平均流量信号電圧をE1〜E9で示す。b
はCPUで制御された逆電圧発生器から発生される電圧
を示すものである。cは演算回路の入力電圧を示し、E
1 ,E4 ,E 7の流量信号が増幅器で増幅された
電圧を示す。dは電極の電圧信号を示し、aとbの合成
された信号である。bに示す逆電圧発生器の電圧はCP
Uで時間T1の信号E1を測定し、その次の時間T2は
入力信号がないため、この間は逆電圧発生器の信号E2
がE2=2E1となるような一定電圧が発生するように
CPUから逆電圧発生器に信号を送る。尚、以上の信号
の切換はCPUで制御される2つの切換スイッチS1と
S2で行なわれ、T1とT2,T3とT4,T5とT6
がそれぞれ1組の信号として処理され、以上の例ではT
1=T2=T3・・・・=T6 としている。また、T
1の値は商用電源と同期した時間となるように、50H
z地域では5,10,25,50Hz等が選ばれ、60
Hz地域では3,6,12,30,60Hz等が選ばれ
る。図7は別の実施例を示すもので、逆電圧発生器の部
分の実施例である。図に於いてCPUからのデジタル逆
電圧信号をD/Aコンバータ22で直流信号Eとし、さ
らに縮小増幅器23と分割抵抗R124と分割抵抗R2
25で信号を数2で示すように縮小する。従って、電極
に印加される電圧E2は数2で示される。While the reverse voltage is being applied, the selector switch S2 is grounded, and the inputs to the arithmetic circuit and CPU become 0. When the input to the CPU becomes 0, a signal is sent from the CPU to the reverse voltage generator so that the average voltage before the changeover switch S1 switches from a to b is generated. FIG. 6 shows signal voltages at various parts over time. A shows the change in the flow rate signal over time when the selector switch S1 is always set to the a side. T1 to T6 are obtained by time-dividing the flow rate signal, and the average flow rate signal voltage at each time is indicated by E1 to E9. b
indicates the voltage generated from the reverse voltage generator controlled by the CPU. c indicates the input voltage of the arithmetic circuit, and E
1, E4, and E7 indicate the voltages amplified by the amplifiers. d indicates the voltage signal of the electrode, which is a combined signal of a and b. The voltage of the reverse voltage generator shown in b is CP
The signal E1 at time T1 is measured at U, and since there is no input signal during the next time T2, the signal E2 of the reverse voltage generator is measured during this time.
A signal is sent from the CPU to the reverse voltage generator so that a constant voltage such that E2=2E1 is generated. The switching of the above signals is performed by two changeover switches S1 and S2 controlled by the CPU, T1 and T2, T3 and T4, T5 and T6.
are each processed as a set of signals, and in the above example T
1=T2=T3...=T6. Also, T
The value of 1 is 50H so that the time is synchronized with the commercial power supply.
In the z region, 5, 10, 25, 50Hz etc. are selected, and 60
In the Hz region, 3, 6, 12, 30, 60 Hz, etc. are selected. FIG. 7 shows another embodiment, which is an embodiment of the reverse voltage generator section. In the figure, the digital reverse voltage signal from the CPU is converted into a DC signal E by the D/A converter 22, and is further connected to the reduction amplifier 23, the dividing resistor R124, and the dividing resistor R2.
25, the signal is reduced as shown in Equation 2. Therefore, the voltage E2 applied to the electrode is expressed by Equation 2.
【0019】[0019]
【数2】[Math 2]
【0020】実際の増幅器にはオフセット電圧eがある
ため、数2の詳細な式は数3となる。Since an actual amplifier has an offset voltage e, the detailed expression of Equation 2 becomes Equation 3.
【0021】[0021]
【数3】[Math 3]
【0022】eの値は数mVの値であり、電磁流量計の
流量信号と同等であるため、分割抵抗を使用しない場合
は[0022] The value of e is several mV, which is equivalent to the flow signal of an electromagnetic flowmeter, so if a dividing resistor is not used,
【0023】[0023]
【数4】[Math 4]
【0024】となり、逆電圧の値をE2=2E1の関係
とすることができなくなる。##EQU1## Therefore, it is no longer possible to set the value of the reverse voltage to the relationship E2=2E1.
【0025】分割抵抗を使用することにより、オフセッ
ト電圧もR1/(R1+R2)に減衰させられ、R1/
(R1+R2)≦1/100に選べば、E2に対するオ
フセット電圧の誤差を1%以下に押さえることができる
。By using the dividing resistor, the offset voltage is also attenuated to R1/(R1+R2), and R1/
If (R1+R2)≦1/100 is selected, the error in the offset voltage with respect to E2 can be suppressed to 1% or less.
【0026】尚、逆電圧を印加する方法は従来の永久磁
石を使用した電磁流量計に応用しても、作用の性質上、
その効果は何ら変わることがない。[0026] Even if the method of applying a reverse voltage is applied to a conventional electromagnetic flowmeter using a permanent magnet, due to the nature of the action,
The effect remains unchanged.
【0027】[0027]
【発明の効果】本発明によれば電磁流量計の励磁に希土
類磁石を使用することにより、励磁電源、および、変換
器と検出器を結ぶ励磁用シールドケーブルを無くするこ
とができ、小形化,簡素化することができる。[Effects of the Invention] According to the present invention, by using a rare earth magnet for excitation of an electromagnetic flowmeter, it is possible to eliminate an excitation power supply and an excitation shield cable connecting a converter and a detector, resulting in miniaturization and It can be simplified.
【0028】かつ、重み係数の大きい電極近傍に大きな
磁界を発生でき、流量信号を約10倍大きく得られ、耐
ノイズ性も実現できる。Furthermore, a large magnetic field can be generated in the vicinity of the electrode having a large weighting coefficient, a flow rate signal that is about 10 times larger can be obtained, and noise resistance can also be achieved.
【0029】また、永久磁石を用いた直流励磁で発生す
る電気化学反応による不安定さも取除くことができ、ド
リフトのない安定な計測が可能となった。その効果は工
業上有益である。Furthermore, instability caused by electrochemical reactions caused by direct current excitation using permanent magnets can be removed, making it possible to perform stable measurements without drift. The effect is industrially beneficial.
【図1】本発明を示す検出器の断面図および側面を示す
図である。FIG. 1 is a cross-sectional view and a side view of a detector illustrating the present invention.
【図2】従来装置のブロックダイアグラムを示す図であ
る。FIG. 2 is a diagram showing a block diagram of a conventional device.
【図3】本発明の磁界分布を示す図である。FIG. 3 is a diagram showing the magnetic field distribution of the present invention.
【図4】本発明のブロックダイアグラムを示す図である
。FIG. 4 shows a block diagram of the present invention.
【図5】流量信号を示す図である。FIG. 5 is a diagram showing a flow rate signal.
【図6】流量信号,逆電圧,流量サンプリング信号を示
す図である。FIG. 6 is a diagram showing a flow rate signal, a reverse voltage, and a flow rate sampling signal.
【図7】本発明の1実施例を示すブロックダイアグラム
を示す図である。FIG. 7 is a block diagram illustrating one embodiment of the present invention.
1…配管、2…励磁コイル、3…交流電源、4…電極、
5…増幅器、6…演算回路、7…CPU、8…出力回路
、9…ライニング、10…永久磁石、11…接続板、1
2…ケース、13…フランジ、14…孔、15…流量信
号用シールドケーブル、16…励磁用シールドケーブル
、17…切換スイッチS1 、18…信号切換スイッチ
S2 、20…リード線、21…逆電圧発生器、21…
D/Aコンバータ、23…縮小増幅器、24…分割抵抗
R1 、25…分割抵抗R2 。1... Piping, 2... Excitation coil, 3... AC power supply, 4... Electrode,
5... Amplifier, 6... Arithmetic circuit, 7... CPU, 8... Output circuit, 9... Lining, 10... Permanent magnet, 11... Connection plate, 1
2... Case, 13... Flange, 14... Hole, 15... Flow rate signal shield cable, 16... Excitation shield cable, 17... Changeover switch S1, 18... Signal changeover switch S2, 20... Lead wire, 21... Reverse voltage generation Vessel, 21...
D/A converter, 23... reduction amplifier, 24... dividing resistor R1, 25... dividing resistor R2.
Claims (7)
ングで配管から絶縁された流量信号を検出する1対の電
極と電極を挾んで1対の永久磁石の磁極を配置し、流れ
方向、両電極を結ぶ軸のいずれとも直交する磁界を発生
させたことを特徴とする電磁流量計。Claim 1: The inner surface of the pipe is lined with an insulator, and a pair of electrodes for detecting a flow rate signal isolated from the pipe by the lining, and a pair of magnetic poles of a permanent magnet are placed between the electrodes. An electromagnetic flowmeter characterized by generating a magnetic field perpendicular to both axes connecting electrodes.
類磁石であることを特徴とする電磁流量計。2. The electromagnetic flowmeter according to claim 1, wherein the material of the permanent magnet is a rare earth magnet.
ことを特徴とする電磁流量計。3. The electromagnetic flowmeter according to claim 1, wherein the permanent magnet is thermally demagnetized.
性体の接続板で接続したことを特徴とする電磁流量計。4. The electromagnetic flowmeter according to claim 1, wherein the same poles of the permanent magnets are connected by a ferromagnetic connecting plate.
ングで配管から絶縁された流量信号を検出する1対の電
極と電極を挾んで1対の永久磁石の磁極を配置し、流れ
方向、両電極を結ぶ軸のいずれとも直交する磁界を発生
させると共に、電極に発生する流量信号と逆極性の電圧
を外部から周期的に印加する逆電圧発生器を備えたこと
を特徴とする電磁流量計。5. The inner surface of the pipe is lined with an insulator, and a pair of electrodes for detecting a flow rate signal isolated from the pipe by the lining and a pair of magnetic poles of a permanent magnet are placed between the electrodes, and An electromagnetic flowmeter characterized in that it is equipped with a reverse voltage generator that generates a magnetic field perpendicular to any of the axes connecting the electrodes, and that periodically applies a voltage of opposite polarity to the flow rate signal generated in the electrodes from the outside.
が 逆電圧=流量信号サンプリング時間+逆電圧印加時間/
逆電圧印加時間×流量信号電圧で表わされるを特徴とす
る電磁流量計。6. In claim 5, the reverse voltage applied to the electrode is reverse voltage=flow signal sampling time+reverse voltage application time/
An electromagnetic flowmeter characterized by the expression: reverse voltage application time x flow rate signal voltage.
時間と逆電圧印加時間が等しいことを特徴とする電磁流
量計。7. The electromagnetic flowmeter according to claim 6, wherein the flow rate signal sampling time and the reverse voltage application time are equal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5630691A JPH04290920A (en) | 1991-03-20 | 1991-03-20 | electromagnetic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5630691A JPH04290920A (en) | 1991-03-20 | 1991-03-20 | electromagnetic flow meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04290920A true JPH04290920A (en) | 1992-10-15 |
Family
ID=13023458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5630691A Pending JPH04290920A (en) | 1991-03-20 | 1991-03-20 | electromagnetic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04290920A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010016537A (en) * | 2000-12-19 | 2001-03-05 | 오흥국 | Method and apparatus for measuring power consumption for electro-chemical equipment, and electro-chemical energy consumption power meter using the same |
-
1991
- 1991-03-20 JP JP5630691A patent/JPH04290920A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010016537A (en) * | 2000-12-19 | 2001-03-05 | 오흥국 | Method and apparatus for measuring power consumption for electro-chemical equipment, and electro-chemical energy consumption power meter using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0416866B1 (en) | Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies | |
US6626048B1 (en) | Magnetic flow meter | |
US2733604A (en) | coulter | |
JPH03235067A (en) | Electromagnetic type conductivity meter and method for measuring conductivity | |
JPH10253412A (en) | Method and device for measuring flow velocity of liquid, particularly, water | |
CN114829883A (en) | Method for operating a magnetically inductive flow meter | |
US20200217698A1 (en) | Magnetic flowmeter with media conductivity measurement | |
JPH04295722A (en) | Residual magnetic electromagnetic flowmeter | |
JPH04290920A (en) | electromagnetic flow meter | |
JPH04174324A (en) | Electromagnetic flowmeter | |
US5751535A (en) | Control circuits for an electromagnetic flow meter | |
US3566687A (en) | Electromagnetic flowmeter for metallic fluids | |
JP3337118B2 (en) | Electromagnetic flow meter | |
JP3130729B2 (en) | Electromagnetic flow meter | |
SU821922A1 (en) | Electromagnetic flowmeter | |
JP2001281028A (en) | Electromagnetic flowmeter | |
RU2591277C1 (en) | Magnetic flow meter of liquid metal | |
Poornapushpakala et al. | An analysis on eddy current flowmeter—A review | |
RU2643691C1 (en) | Induction flowmeter of liquid metal | |
RU2241961C2 (en) | Electromagnetic flowmeter | |
RU2239789C1 (en) | Method of measuring flow rate of liquid and electromagnetic transducer for measuring flow rate of liquid | |
WO2018229523A1 (en) | An electromagnetic flowmeter assembly | |
JPH02103418A (en) | Insertion type electromagnetic flowmeter | |
SU1007015A1 (en) | Flow parameter electromagnetic converter | |
Rajhi et al. | Hardware design considerations for smart electromagnetic flowmeter |