[go: up one dir, main page]

JPH0428960A - Freezer device - Google Patents

Freezer device

Info

Publication number
JPH0428960A
JPH0428960A JP13584790A JP13584790A JPH0428960A JP H0428960 A JPH0428960 A JP H0428960A JP 13584790 A JP13584790 A JP 13584790A JP 13584790 A JP13584790 A JP 13584790A JP H0428960 A JPH0428960 A JP H0428960A
Authority
JP
Japan
Prior art keywords
compressor
opening
evaporator
degree
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13584790A
Other languages
Japanese (ja)
Inventor
Masaru Matsumoto
優 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13584790A priority Critical patent/JPH0428960A/en
Publication of JPH0428960A publication Critical patent/JPH0428960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable a capacity of a compressor to be coincided with a load of an evaporator i.e., a freezing load irrespective of a length of a refrigerant pipe ranging from the evaporator to the compressor by a method wherein means for determining a degree of opening of a control valve in response to a load of the compressor is provided and a degree of opening of the control valve determined in response to the refrigerant pressure at an outlet port of the evaporator is corrected. CONSTITUTION:A refrigerant gas pressure at an outlet port of an evaporator 33 detected by a pressure sensor 38 is inputted to a comparing means 41 of a controller 40, compared with a set pressure set in advance in a setting means 42 and then a difference between both values is calculated. This difference is inputted to means for calculating a required degree of opening and then the required degree of opening of a control valve 36 is calculated in accordance with a control rule inputted from a memory means 44. The required degrees of opening are inputted to a degree of opening correction means 66, where a degree of opening determined by a degree of opening determining means 64 is corrected. The corrected degree of opening is outputted to the control valve 36 through an outputting means 45. The control valve 36 shows a corrected degree of opening. Accordingly, the compressor is operated in response to a load of an evaporator, i.e., the capacity of it corresponding to the freezing load irrespective of the length of the refrigerant pipe extending from the evaporator to the compressor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は往復動型圧縮機を搭載した冷凍機、冷水機、空
気調和機、除湿機等の冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to refrigeration equipment such as refrigerators, water coolers, air conditioners, and dehumidifiers equipped with reciprocating compressors.

(従来の技術及びその課6) この種冷凍装置においては、圧縮機から吐出された冷媒
が凝縮器、絞り機構、蒸発器をこの順に流過して上記圧
縮機に循環する。
(Prior Art and Section 6) In this type of refrigeration system, refrigerant discharged from a compressor passes through a condenser, a throttling mechanism, and an evaporator in this order, and is circulated to the compressor.

この冷凍装置においては、圧縮機の能力が冷凍負荷と合
致しない場合には、蒸発器に霜が付着したり、冷媒の蒸
発圧力が低くなり過ぎたりしてその運転効率が悪化する
In this refrigeration system, if the capacity of the compressor does not match the refrigeration load, frost may adhere to the evaporator or the evaporation pressure of the refrigerant may become too low, resulting in deterioration of the operating efficiency.

これに対処するため、インバータを用いて圧縮機の駆動
用電動機に供給される電流の周波数を変更することによ
り圧縮機の回転数、即ち、圧縮機の能力を連続して無段
階に制御することが4MKされたが、これは圧縮機の容
量が大きくなるのに伴ってインバータの価格が嵩むとい
う不具合があった。
In order to deal with this, the number of rotations of the compressor, that is, the capacity of the compressor, can be continuously and steplessly controlled by using an inverter to change the frequency of the current supplied to the drive motor of the compressor. However, this had the problem that the price of the inverter increased as the capacity of the compressor increased.

また、圧縮機に1入される冷媒ガスの温度又は圧力、即
ち、圧縮機の負荷を検知してこれに対応するように圧縮
機の容量を制御すると、蒸発器から圧縮機に至る冷媒配
管の長さが長い場合には、この冷媒配管内を冷媒ガスが
流過する際の流動抵抗により圧縮機の容量を冷凍負荷に
対応させることができないという問題があった。
In addition, if the temperature or pressure of the refrigerant gas input into the compressor, that is, the load on the compressor, is detected and the capacity of the compressor is controlled accordingly, the refrigerant piping from the evaporator to the compressor can be controlled. If the length is long, there is a problem in that the capacity of the compressor cannot be adjusted to the refrigeration load due to flow resistance when the refrigerant gas flows through the refrigerant pipe.

(課題を解決しようとする手段) 本発明は上記課題を解決するために発明されたものであ
って、その要旨とするところは、圧縮機から吐出された
冷媒が凝縮器、絞り機構、蒸発器をこの順に流過して上
記圧縮機に循環する冷凍装置において、制御弁の開度を
制御することによって上記圧縮機の容量を連続して無段
階に変更しうる容量制御機構を設けるとともに上記圧縮
機の負荷に応じて上記制御弁の開度を決定する手段と、
上記蒸発器出口の冷媒圧力に応じて上記決定された制御
弁の開度を補正する手段を備えた制御装置を設けたこと
を特徴とする冷凍装置にある゛。
(Means for Solving the Problems) The present invention was invented to solve the above problems, and its gist is that the refrigerant discharged from the compressor is A refrigeration system in which the compressor is circulated through the compressor in this order is provided with a capacity control mechanism that can continuously and steplessly change the capacity of the compressor by controlling the opening degree of a control valve, and means for determining the opening degree of the control valve according to the load of the machine;
The refrigeration system is characterized in that it includes a control device including means for correcting the determined opening degree of the control valve in accordance with the refrigerant pressure at the outlet of the evaporator.

(作用) 本発明においては、上記構成を具えているため、圧縮機
の負荷に応じて決定された制御弁の開度は蒸発器出口の
冷媒圧力に応じて補正され、従って、圧縮機は蒸発器か
ら圧縮機に至る冷媒配管の長さの如何に拘らず蒸発器の
負荷、即ち、冷凍負荷に対応する容量で運転される。
(Function) Since the present invention has the above configuration, the opening degree of the control valve determined according to the load of the compressor is corrected according to the refrigerant pressure at the outlet of the evaporator. Regardless of the length of the refrigerant piping from the evaporator to the compressor, the evaporator is operated at a capacity corresponding to the evaporator load, that is, the refrigeration load.

(実施例) 本発明の1実施例が第1図ないし第3図に示されている
Embodiment One embodiment of the invention is shown in FIGS. 1-3.

第1図には冷凍装置の系統図が示されている。FIG. 1 shows a system diagram of the refrigeration system.

圧縮機30から吐出された高温・高圧の冷媒ガスは、矢
印で示すように、凝縮器31に入り、ここで凝縮液化し
て高圧の液冷媒となる。この液冷媒はキャピラリチュー
ブ、膨張弁等からなる絞り機構32に入り、ここで絞ら
れることにより断熱膨張して気液二相となる。次いで、
この冷媒は蒸発器33に入り、ここで蒸発気化して低温
のガス冷媒となり、しかる後、圧縮機30に循環する。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 30 enters the condenser 31, as shown by the arrow, where it is condensed and liquefied to become a high-pressure liquid refrigerant. This liquid refrigerant enters a throttling mechanism 32 consisting of a capillary tube, an expansion valve, etc., where it is throttled and adiabatically expanded to become a gas-liquid two-phase. Then,
This refrigerant enters the evaporator 33 where it is evaporated into a low-temperature gas refrigerant and then circulated to the compressor 30.

圧縮機30に内臓された後述する容量可変機構の作動室
と圧縮機30の吸入管34とを連結するバイパス管35
に制御弁36が介装されている。
A bypass pipe 35 that connects a working chamber of a variable capacity mechanism built into the compressor 30, which will be described later, and a suction pipe 34 of the compressor 30.
A control valve 36 is interposed therein.

吸入管34にはこの内部を流れる冷媒の圧力又は温度を
検知するセンサ61と、この冷媒の流速を検知するセン
サ37が取り付けられ、これらセンサ61及び37の出
力はコントローラ40に入力される。また、蒸発器33
の出口には冷媒ガスの圧力を検知する圧力センサ38が
取り付けられ、その出力もコン圧縮機30の駆動用モー
タ39が起動され又は停止されるようになっている。
A sensor 61 that detects the pressure or temperature of the refrigerant flowing inside the suction pipe 34 and a sensor 37 that detects the flow velocity of this refrigerant are attached to the suction pipe 34 , and the outputs of these sensors 61 and 37 are input to the controller 40 . In addition, the evaporator 33
A pressure sensor 38 for detecting the pressure of the refrigerant gas is attached to the outlet of the refrigerant gas, and its output is used to start or stop the drive motor 39 of the compressor 30.

圧縮機30の容量制御機構が第3図に示されている。A capacity control mechanism for compressor 30 is shown in FIG.

第3図において、lはシリンダ、2はピストン、3は弁
板、4はシリンダヘッド、5は吸入キャビティ、6は吸
入弁、7は吐出弁、8は吐出チャンバ、9はアンローダ
シリンダ、10はアン[+−ダピストンである。
In Fig. 3, l is a cylinder, 2 is a piston, 3 is a valve plate, 4 is a cylinder head, 5 is a suction cavity, 6 is a suction valve, 7 is a discharge valve, 8 is a discharge chamber, 9 is an unloader cylinder, 10 is a An[+-dapiston.

アンローダシリンダ9の下端は弁板3に固定され、その
上端はカバー20によって掩蓋されている。
The lower end of the unloader cylinder 9 is fixed to the valve plate 3, and the upper end is covered by a cover 20.

このアンローダシリンダ9内にアンローダピストン10
を封密摺動自在に嵌装することによってアンローダピス
トン10の上方に作動室16が、下方に室19がそれぞ
れ限界されている。そして、この室19は開口18を介
してガス圧縮室12に連通し、作動室16はカバー20
に穿設された絞り穴24を介して吐出チャンバ8に連通
している。また、作動室16は導圧管15、弁板3に穿
設された通路21を介してバイパス管35に連通してい
る。
An unloader piston 10 is placed inside this unloader cylinder 9.
A working chamber 16 is defined above the unloader piston 10, and a chamber 19 is defined below the unloader piston 10 by fitting the unloader piston 10 in a sealed and slidable manner. This chamber 19 communicates with the gas compression chamber 12 through the opening 18, and the working chamber 16 is connected to the cover 20.
It communicates with the discharge chamber 8 through a throttle hole 24 bored in the discharge chamber 8 . Further, the working chamber 16 communicates with a bypass pipe 35 via a pressure guiding pipe 15 and a passage 21 bored in the valve plate 3 .

しかして、ピストン2が復動すると、冷媒ガスが吸入キ
ャビティ5から弁板3に穿設された吸入通路11を通り
、吸入弁6を押し開いてガス圧縮室12内に吸入される
When the piston 2 moves back, the refrigerant gas passes through the suction passage 11 formed in the valve plate 3 from the suction cavity 5, pushes open the suction valve 6, and is sucked into the gas compression chamber 12.

ピストン2が往動すると、ガス圧縮室12内の冷媒ガス
が圧縮されて吐出弁7を押し開き、通路13を通って吐
出チャンバ8内に入り、ここから図示しない吐出管を経
て吐出される。
When the piston 2 moves forward, the refrigerant gas in the gas compression chamber 12 is compressed, pushes the discharge valve 7 open, enters the discharge chamber 8 through the passage 13, and is discharged from there through a discharge pipe (not shown).

一方、室19には開口18を経てガス圧縮室12内のガ
スが流入し、作動室16には絞り穴24を経て吐出チャ
ンバ8内の吐出ガスが流入する。そして、作動室16内
のガスは導圧管15、通路21、制御弁36、バイパス
管35を通って圧縮機30の吸入管34に流出する。こ
のガスの流量制御弁36によって制御することによって
作動室16内の圧力を任意の圧力に設定する。
On the other hand, the gas in the gas compression chamber 12 flows into the chamber 19 through the opening 18, and the discharge gas in the discharge chamber 8 flows into the working chamber 16 through the throttle hole 24. Then, the gas in the working chamber 16 flows out into the suction pipe 34 of the compressor 30 through the pressure guiding pipe 15, the passage 21, the control valve 36, and the bypass pipe 35. The pressure within the working chamber 16 is set to a desired pressure by controlling the gas flow rate control valve 36.

かくして、アンローダピストン10は作動室16内の圧
力と室19に作用するガス圧縮室12内の平均筒内圧力
との差に応じて上下に移動し、室19と開口18とによ
って構成されるトソプクリアランスボリュームが変化し
、これに伴って圧縮機30の容量が連続して無段階に変
化する。
Thus, the unloader piston 10 moves up and down according to the difference between the pressure in the working chamber 16 and the average cylinder pressure in the gas compression chamber 12 acting on the chamber 19, and the unloader piston 10 moves up and down according to the difference between the pressure in the working chamber 16 and the average cylinder pressure in the gas compression chamber 12 acting on the chamber 19. As the clearance volume changes, the capacity of the compressor 30 changes continuously and steplessly.

なお、第3図において、23はアンローダピストン10
の上端に巻装されたシールリング、25はピストン2に
巻装されたピストンリング、26はアンローダシリンダ
9の下端に固着された座金である。
In addition, in FIG. 3, 23 is the unloader piston 10.
A seal ring 25 is wound around the upper end, a piston ring 25 is wound around the piston 2, and a washer 26 is fixed to the lower end of the unloader cylinder 9.

コントローラ40の機能ブロック図が第2図に示されて
いる。
A functional block diagram of controller 40 is shown in FIG.

センサ61によって検出された冷媒温度又は圧力がコン
トローラ40の比較手段62に入力され、ここで設定手
段63に設定された設定値と比較されて両者の偏差が算
出される。この偏差は開度決定手段64に入力され、こ
こで記憶手段から入力された制御ルールに従って制御弁
36の開度が決定される。
The refrigerant temperature or pressure detected by the sensor 61 is input to the comparison means 62 of the controller 40, where it is compared with the set value set in the setting means 63 and the deviation between the two is calculated. This deviation is input to the opening determining means 64, where the opening of the control valve 36 is determined according to the control rule input from the storage means.

なお、記憶手段65には偏差及びその変化率に対応じて
開度を決定する制御ルール(例えば、PID制御、テー
ブル対比制御、ファジー制御など)が記憶されている。
Note that the storage means 65 stores control rules (for example, PID control, table comparison control, fuzzy control, etc.) for determining the opening degree in accordance with the deviation and its rate of change.

決定された開度は開度補正手段66に入力される。The determined opening degree is input to the opening degree correction means 66.

一方、圧力センサ38によって検出された蒸発器33の
出口の冷媒ガス圧力はコントロー)40の比較手段41
に入力され、ここで設定手段42に予め設定されている
設定圧力と比較されて、両者の偏差が算出される。この
偏差は要求開度演算手段43に入力され、ここで記ta
手段44から入力された制御ルールに従って、制御弁3
6の要求開度が算出される。これら要求開度は開度補正
手段66に入力され、ここで関度決定手段64で決定さ
れた開度が補正される。そして、補正された開度は出力
手段45を経て制御弁36に出力され、制御弁36は補
正された開度となる。
On the other hand, the refrigerant gas pressure at the outlet of the evaporator 33 detected by the pressure sensor 38 is determined by the comparison means 41 of the controller 40.
The pressure is inputted to the pressure setting means 42, and compared with the set pressure preset in the setting means 42, and the deviation between the two is calculated. This deviation is input to the required opening calculation means 43, where it is recorded as
The control valve 3 according to the control rule inputted from the means 44
The required opening degree of 6 is calculated. These required opening degrees are input to the opening degree correcting means 66, where the opening degree determined by the relationship determining means 64 is corrected. Then, the corrected opening degree is outputted to the control valve 36 via the output means 45, and the control valve 36 has the corrected opening degree.

他方、センサ37で検出された冷媒の流速はコントロー
ラ40の比較手段47に入力され、ここで設定手段48
から入力された設定値と比較される。圧縮機30の負荷
が減少することによって冷媒の流速が設定値を下回ると
、出力手段49を経て圧縮機30の駆動用モータ39に
運転停止指令が出力され、圧縮機30は停止する。運転
停止後、一定時間が経過したとき又は吸入管54内の冷
媒圧力が所定値を上回った時等はコントローラ40から
の指令によりモータ39が起動され、圧縮機30の運転
が再開される。
On the other hand, the flow rate of the refrigerant detected by the sensor 37 is inputted to the comparison means 47 of the controller 40, where it is input to the setting means 48.
It is compared with the setting value input from. When the flow rate of the refrigerant falls below the set value due to a decrease in the load on the compressor 30, an operation stop command is output to the drive motor 39 of the compressor 30 via the output means 49, and the compressor 30 is stopped. After the operation is stopped, when a certain period of time has elapsed or when the refrigerant pressure in the suction pipe 54 exceeds a predetermined value, the motor 39 is started by a command from the controller 40, and the operation of the compressor 30 is restarted.

上記実施例においては、センサ37によって冷媒の流量
を検知しているが、これに代えて圧縮VS30の回転数
やモータ39に供給される電力等を検知しても良い。
In the above embodiment, the flow rate of the refrigerant is detected by the sensor 37, but the rotation speed of the compression VS 30, the electric power supplied to the motor 39, etc. may be detected instead.

(発明の効果) 本発明においては、圧縮機の負荷に応じて決定された制
御弁の開度を蒸発器出口の冷媒圧力に応じて補正するた
め、蒸発器から圧縮機に至る冷媒配管の長さの如何に拘
らず圧縮機の容量を蒸発器の負荷、即ち、冷凍負荷に合
致させることが可能となる。
(Effects of the Invention) In the present invention, in order to correct the opening degree of the control valve determined according to the load of the compressor according to the refrigerant pressure at the evaporator outlet, the length of the refrigerant piping from the evaporator to the compressor is Regardless of the size, it is possible to match the capacity of the compressor to the load on the evaporator, that is, the refrigeration load.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の1実施例を示し、第1図は系統図、第2
図はコントローラの機能ブロック図、第3図は容量制御
機構の縦断面図である。 圧縮機−・30、凝縮器−・31、絞り機構−32、蒸
発器33、制御弁−36、コントローラー40、開度決
定手亮1図
The drawings show one embodiment of the present invention, FIG. 1 is a system diagram, and FIG. 2 is a system diagram.
The figure is a functional block diagram of the controller, and FIG. 3 is a longitudinal sectional view of the capacity control mechanism. Compressor 30, condenser 31, throttling mechanism 32, evaporator 33, control valve 36, controller 40, opening determining mechanism

Claims (1)

【特許請求の範囲】[Claims] 圧縮機から吐出された冷媒が凝縮器、絞り機構、蒸発器
をこの順に流過して上記圧縮機に循環する冷凍装置にお
いて、制御弁の開度を制御することによって上記圧縮機
の容量を連続して無段階に変更しうる容量制御機構を設
けるとともに上記圧縮機の負荷に応じて上記制御弁の開
度を決定する手段と、上記蒸発器出口の冷媒圧力に応じ
て上記決定された制御弁の開度を補正する手段を備えた
制御装置を設けたことを特徴とする冷凍装置。
In a refrigeration system in which refrigerant discharged from a compressor passes through a condenser, a throttle mechanism, and an evaporator in this order and circulates to the compressor, the capacity of the compressor can be continuously adjusted by controlling the opening degree of a control valve. means for determining the opening degree of the control valve in accordance with the load of the compressor; and means for determining the opening degree of the control valve in accordance with the refrigerant pressure at the outlet of the evaporator; 1. A refrigeration system comprising: a control device having means for correcting the opening degree of the refrigeration system.
JP13584790A 1990-05-25 1990-05-25 Freezer device Pending JPH0428960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13584790A JPH0428960A (en) 1990-05-25 1990-05-25 Freezer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13584790A JPH0428960A (en) 1990-05-25 1990-05-25 Freezer device

Publications (1)

Publication Number Publication Date
JPH0428960A true JPH0428960A (en) 1992-01-31

Family

ID=15161156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13584790A Pending JPH0428960A (en) 1990-05-25 1990-05-25 Freezer device

Country Status (1)

Country Link
JP (1) JPH0428960A (en)

Similar Documents

Publication Publication Date Title
US20070144190A1 (en) Refrigerator
KR950005386B1 (en) Refrigeration cycle device
WO2005052468A1 (en) Refrigerator
JP2012072920A (en) Refrigeration apparatus
US5724821A (en) Compressor oil pressure control method
CN106766421A (en) A kind of control method of the electric expansion valve for air-conditioning system
CN105283331B (en) Air conditioning system for vehicle and the method for controlling the air conditioning system for vehicle
EP2434232A2 (en) Control of a transcritical vapor compression system
JP2003004316A (en) Method for controlling refrigeration unit
JP2002081769A (en) Air conditioner
JPH0428960A (en) Freezer device
JP2006177598A (en) Refrigeration cycle equipment
JPH0428961A (en) Freezer device
JP4301546B2 (en) Refrigeration equipment
JPH0650614A (en) Freezing device
JPH0428965A (en) Freezer device
JPH0428966A (en) Freezer device
JPH01302072A (en) Heat pump type air conditioner
JP2686128B2 (en) Refrigeration equipment
JP4690574B2 (en) Control method and control device for expansion valve in refrigerator
JPH02192544A (en) Freezer device
JPH0428963A (en) Freezer device
JPH0452463A (en) Refrigerator
JP2001116372A (en) Refrigerating cycle controller
JPH02263053A (en) Refrigerating plant