[go: up one dir, main page]

JPH0428835A - Manufacture of particle dispersed composite - Google Patents

Manufacture of particle dispersed composite

Info

Publication number
JPH0428835A
JPH0428835A JP13557390A JP13557390A JPH0428835A JP H0428835 A JPH0428835 A JP H0428835A JP 13557390 A JP13557390 A JP 13557390A JP 13557390 A JP13557390 A JP 13557390A JP H0428835 A JPH0428835 A JP H0428835A
Authority
JP
Japan
Prior art keywords
molten metal
ceramic particles
composite
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13557390A
Other languages
Japanese (ja)
Inventor
Satoru Ishizuka
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP13557390A priority Critical patent/JPH0428835A/en
Publication of JPH0428835A publication Critical patent/JPH0428835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture a composite by a simple process by pressurizing and infiltrating the molten metal of a low melting allay into the space among preheated ceramic particles having specified particle size, remelting and stirring it and thereafter executing casting. CONSTITUTION:Preheated ceramic particles 1 having 0.1 to 1000mum particle size is housed in a heated die 2, and then, the molten metal 5 of a low melting alloy such as an Al allay is poured therein. Between upper and lower punches 3 and 4, 100 to 10000kg f/cm<2> pressure is applied to infiltrate the molten metal 5 into the space among the ceramic particles 1, by which a composite 6 is manufactured. This composite 6 is again heated and melted, and the obtd. molten metal 7 is housed in a melting furnace 11 provided with a stirring bar 10, is stirred and is thereafter cast by a mold. In this way, its manufacturing cost can be reduced. Furthermore, even ceramic particles having small particle size can easily be compounded.

Description

【発明の詳細な説明】 a、 産業上の利用分野 本発明はAN、 Zn、 Mg、 Sn、 Pb、 B
i等の低融合金材料をマトリ、クスとして、これにSi
C,A l !03SiJ4.C等のセラミックス粒子
を分散させた粒子分散複合材料(1’1MC)の製造方
法に関する。
[Detailed Description of the Invention] a. Industrial Application Field The present invention relates to AN, Zn, Mg, Sn, Pb, B
A low alloy material such as i is used as a matrix, and Si is added to it.
C, Al! 03SiJ4. The present invention relates to a method for manufacturing a particle-dispersed composite material (1'1MC) in which ceramic particles such as C are dispersed.

b、 従来の技術 複合材料に関し、次のような従来技術が知られている。b. Conventional technology Regarding composite materials, the following conventional techniques are known.

たとえば、SiCやCなどの繊維やウィスカーでプリフ
ォームを製作し、これを金型内にセントしたあと、AI
!、合金などの溶湯を注いで、プリフォームに加圧含浸
させることで複合材料(FRM)とする方法である。
For example, after making a preform using fibers and whiskers such as SiC or C, and inserting this into a mold, AI
! This is a method of making a composite material (FRM) by pouring a molten metal such as an alloy into a preform and impregnating it under pressure.

また、SiCやCなどの粒子を、完全溶融または部分溶
融の溶湯に添加し、これに機械的攪拌を与えて複合材料
(M?lC)とするコンポキャスト法がある。
There is also a composite casting method in which particles of SiC, C, etc. are added to a completely or partially melted molten metal, and this is mechanically stirred to form a composite material (M?lC).

さらにSiCやCなどの粒子とA1合金等の粉末とを混
合し、静水圧々縮や熱間押出し、または焼結等によって
複合材料を製造する方法(粉末冶金法)が広くおこなわ
れている。
Furthermore, a method (powder metallurgy) of mixing particles of SiC, C, etc. with powder of A1 alloy, etc. and manufacturing a composite material by hydrostatic compression, hot extrusion, sintering, etc. is widely used.

また、SiCやCなどの粒子とA1合金等の粉末を混合
し、これに熱間で機械的攪拌を与えて、合金粉末中にS
iCやCなどの粒子を練込み、粒子分散複合材料とする
方法(メカニカルアロイング法)がある。
In addition, by mixing particles such as SiC or C with powder such as A1 alloy and giving it hot mechanical stirring, S
There is a method (mechanical alloying method) in which particles such as iC and C are kneaded into a particle-dispersed composite material.

C0発明が解決しようとする課題 SiCやCなどの繊維やウィスカーは高価であり、また
、これらを用いておこなうプリフォームの製作には手間
がかかり、製品コストが高くなるという欠点がある。
Problems to be Solved by the C0 Invention Fibers and whiskers such as SiC and C are expensive, and manufacturing a preform using them is labor-intensive, resulting in high product costs.

また、前記コンポキャスト法においては、溶湯に添加す
る粒子に濡れ性の良いものを用いても、むらなく均一に
分散させるためには、溶湯に対する添加割合は20wt
%が上限であり、これ以上の添加は困難である。
In addition, in the above-mentioned composite casting method, even if particles with good wettability are added to the molten metal, the addition ratio to the molten metal must be 20 wt in order to evenly and uniformly disperse the particles.
% is the upper limit, and it is difficult to add more than this.

さらに粉末冶金に用いる合金粉末は製造が難しく、その
ため高価であり、また複合材料として完成するまでの工
程が多(かかるという欠点がある。
Furthermore, the alloy powder used in powder metallurgy is difficult to manufacture, therefore expensive, and requires many steps to complete as a composite material.

そして押出しの方法で製造するため、単純形状に限られ
てしまうという問題がある。
Since it is manufactured by extrusion, there is a problem in that it is limited to simple shapes.

また、メカニカルアロイング法に用いる合金粉末は、前
述のように高価であり、混合割合も50wt%程度が限
度であり、製品製造には押出し工程が必要で、前記粉末
冶金と同様な問題点がある。
In addition, the alloy powder used in the mechanical alloying method is expensive as mentioned above, the mixing ratio is limited to about 50 wt%, and an extrusion process is required to manufacture the product, which has the same problems as the powder metallurgy. be.

本発明は、前記事情に鑑みてなされたもので、前記問題
点を解消してなる粒子分散複合材料の製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for producing a particle-dispersed composite material that solves the above-mentioned problems.

d、 課題を解決するための手段 前記目的に添い、本発明は、予熱した粒子径0.1〜1
000μ−のセラミックス粒子と、低融合金の溶湯とを
、金型に収容して100〜100100O0/cdの圧
力で加圧してセラミックス粒子間に溶湯を浸入させたあ
と、直ちにこれを再溶解して攪拌を加え、鋳造すること
によって、前記課題を解消した。
d. Means for Solving the Problems In accordance with the above objects, the present invention provides preheated particles with a diameter of 0.1 to 1.
000 μ- ceramic particles and a molten metal of a low alloy metal are placed in a mold and pressurized at a pressure of 100 to 100,100 O0/cd to allow the molten metal to infiltrate between the ceramic particles, and then immediately remelted. The above problem was solved by stirring and casting.

以下、本発明の実施例について図面を参照しながら詳細
に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明においては、複合化用の添加材としてSiC,A
 l tox、 5isNa、  C等のセラミックス
粒子を用いる。粒子径(平均粒子径)は0.1〜100
0μ蒙の範囲のものを用いる0粒子径が0.1μ−未満
のものはコストが高く、また均一な複合化が困難である
。一方、粒子径が1000μ−を越えると複合化は容易
になるが製造した複合材料の伸びや靭性が低くなり好ま
しくない。
In the present invention, SiC, A
Ceramic particles such as 1 tox, 5isNa, and C are used. Particle size (average particle size) is 0.1 to 100
If the zero particle diameter is less than 0.1 μm, the cost is high and it is difficult to form a uniform composite. On the other hand, if the particle size exceeds 1000 .mu.-, the composite material can be easily formed, but the elongation and toughness of the manufactured composite material will be low, which is not preferable.

いま、平均粒子径1μmのSiC粒子を、まず水分の除
去と、添加する溶湯の含浸(後述)を良好にするため、
たとえば800℃前後の温度で過熱する。このセラミッ
クス粒子の加熱温度は600”C〜1000°Cとする
。600℃未満の温度では触れた溶湯を凝固させるおそ
れがあり、また1000℃を越えると、溶湯が凝固する
まで時間がかかり好ましくない。
Now, in order to first remove moisture from SiC particles with an average particle diameter of 1 μm and improve impregnation with the molten metal to be added (described later),
For example, it overheats at a temperature of around 800°C. The heating temperature of the ceramic particles should be 600"C to 1000°C. If the temperature is less than 600°C, there is a risk of solidifying the molten metal that comes into contact with it, and if it exceeds 1000°C, it will take a long time for the molten metal to solidify, which is undesirable. .

また複合化の前に投入する粒子や溶湯が金型と接触し、
その部分が冷却し、凝固してしまわないようにするため
、金型は200℃〜400℃の温度に加熱しておく。
In addition, the particles and molten metal introduced before compounding come into contact with the mold,
The mold is heated to a temperature of 200°C to 400°C to prevent that part from cooling and solidifying.

まず、第1図(a)に示すように、例えば約300°C
ニ加熱しである金型2内に前記セラミックス粒子、すな
わちSiC粒子1を収容する0次に低融合金、たとえば
JIS AC8^^1合金を約750°Cで加熱溶解し
、この溶湯5を第1図伽)に示すようにSiC粒子を収
容した金型2内に注湯する。
First, as shown in FIG. 1(a), for example, at about 300°C
A zero-order low alloy metal, such as JIS AC8^^1 alloy, containing the ceramic particles, that is, SiC particles 1, is heated and melted at about 750°C in a mold 2 which is heated, and this molten metal 5 is heated and melted. As shown in Figure 1), the metal is poured into a mold 2 containing SiC particles.

なお、ここで低融合金とは融点が660℃以下(Alの
融点以下)の合金で、例えばAI!I Zn+ Mg。
Note that the low-alloy metal here refers to an alloy with a melting point of 660°C or lower (lower than the melting point of Al), such as AI! IZn+Mg.

Sn、 Pb、 Bi等を70%以上含む合金をいう。An alloy containing 70% or more of Sn, Pb, Bi, etc.

そして速やかに第1図(C)に示すように上パンチ3と
下パンチ4との間で、100〜1100001c「/c
dの圧力P、この実施例では100100O/cjの圧
力を加え、SiC粒子1の間隙に、溶湯5を浸入させ、
複合材料(MMC) 6を製造する。この場合は一部溶
湯5のままの部分もあり、またSiC粒子1も均一に混
合していない。
Then, as shown in FIG. 1(C), between the upper punch 3 and the lower punch 4, the
A pressure P of d, in this example, 100100 O/cj is applied, and the molten metal 5 is infiltrated into the gaps between the SiC particles 1,
Composite material (MMC) 6 is manufactured. In this case, some portions remain as the molten metal 5, and the SiC particles 1 are not evenly mixed.

なお、前記圧力が100kgf/d未満では、セラミッ
クス粒子同士の空隙に対して溶湯の浸入が充分でなく、
加圧を施しても顕著な効果はえられない。
Note that if the pressure is less than 100 kgf/d, the molten metal will not penetrate sufficiently into the voids between the ceramic particles,
Even if pressure is applied, no significant effect can be obtained.

また圧力が100100O0/ciiを越えると、硬く
なりすぎて後工程の攪拌による粒子の分散に対し、逆効
果となり、良好な分散状態かえられない。
If the pressure exceeds 100,100 O0/cii, the material becomes too hard and has an adverse effect on particle dispersion by stirring in the subsequent step, making it impossible to achieve a good dispersion state.

次に前記段階では、SiC粒子がマトリックス合金中に
まだ均一に分散していないため、これを再び、溶融点、
この実施例では750’C付近の温度に加熱溶解し、こ
の溶湯7を第2図に示すように撹拌棒10を備えた溶解
炉11内テ100〜5000r、p、s (7)回転攪
拌を1〜120分間、この実施例では約30分間にわた
っておこなったあと、鋳型に鋳造すればよい。
Next, in the above step, since the SiC particles are not yet uniformly dispersed in the matrix alloy, the SiC particles are redistributed again at the melting point and
In this example, the molten metal 7 is melted by heating to a temperature around 750'C, and as shown in FIG. After a period of 1 to 120 minutes, approximately 30 minutes in this example, casting into a mold is sufficient.

なお、粒子径が大きい場合は分散性が良好なため、前記
攪拌時間は短く、粒子径が小さくなると長時間の撹拌が
必要となる。また、撹拌棒10の回転数を前記範囲とし
たのは回転が遅いと複合化の効率が悪く、また、速すぎ
ると一端支持の撹拌棒に振れが発生し、溶湯を飛散させ
るからである。
Note that when the particle size is large, the dispersibility is good, so the stirring time is short, and when the particle size is small, long stirring is required. The reason why the rotational speed of the stirring rod 10 is set in the above range is because if the rotation is slow, the efficiency of compounding is poor, and if the rotation is too fast, the stirring rod supported at one end will shake, causing the molten metal to scatter.

以上の方法によって、AC34合金をマトリックスにし
て平均粒子径1μ鋼のSiC粒子を15−t%複合化し
た粒子分散複合材料の金属組織を第3図に示す。図によ
れば白地のAに8A合金中に黒いSiC粒子が均等に分
散していることが判る。
FIG. 3 shows the metallographic structure of a particle-dispersed composite material in which 15-t% of SiC particles of steel with an average particle diameter of 1 μm are composited using AC34 alloy as a matrix by the above method. According to the figure, it can be seen that black SiC particles are evenly dispersed in the 8A alloy on the white background A.

なお、前記実施例においては、第1図(a)及び(b)
に示すように、セラミック粒子を金型に収容してから、
溶湯を注ぐ工程順序をとったが、金型に溶湯を収容して
からセラミックス粒子を添加して加圧するようにしても
よい。
In addition, in the above embodiment, FIGS. 1(a) and (b)
As shown in , the ceramic particles are housed in the mold and then
Although the process sequence is to pour the molten metal, the molten metal may be placed in a mold, and then ceramic particles may be added and pressurized.

また、溶湯に対する前記回転攪拌に代って超音波振動を
与えて、マトリックス合金中にセラミックス粒子を均一
に分散させるようにしてもよい。
Further, instead of the rotational stirring of the molten metal, ultrasonic vibration may be applied to the molten metal to uniformly disperse the ceramic particles in the matrix alloy.

これは溶湯を収容するルツボにアームを介して10〜5
0kHzの超音波振動を伝え、この振動で粒子をより均
一に分散したり、粒子の凝集塊を破壊するようにするも
のである。
This is carried out via an arm to the crucible containing the molten metal.
It transmits ultrasonic vibrations of 0 kHz, and uses these vibrations to disperse particles more uniformly and break up particle agglomerates.

他の実施例として、平均粒径10μ−のA l zoz
粒子を用い、これを800°Cの温度に加熱して金型に
内に収容してあと、750°Cの温度に加熱したJIS
AZ91Cの溶湯をこれに注ぎ100100O/cjの
圧力を加えて複合化し、これを再び750°Cに加熱溶
解し、30分間にわたって攪拌をおこない、均質な複合
材料をえた。
As another example, Al zoz with an average particle size of 10 μ-
Using particles, heated to a temperature of 800°C, housed in a mold, and then heated to a temperature of 750°C.
Molten AZ91C was poured into this and a pressure of 100,100 O/cj was applied to form a composite, which was again heated and melted at 750°C and stirred for 30 minutes to obtain a homogeneous composite material.

e、 発明の効果 本発明の方法によれば、従来の方法に比較して、より単
純な工程を用い、かつ鋳造法によって製造するので従来
の各種方法で製造したものよりも製品コストが低減でき
、また粒径の小さいセラミックス粒子も容易に複合化で
きる。
e. Effects of the Invention According to the method of the present invention, compared to conventional methods, it uses a simpler process and is manufactured by a casting method, so the product cost can be lower than that of products manufactured by various conventional methods. , ceramic particles with small particle sizes can also be easily composited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は、本発明に係る材料の製造要領
の説明図、第2図は継続しておこなう攪拌工程の要領を
説明する図、第3図は本発明の方法で製造した同材料の
金属組織の顕微鏡写真を示す。 SiC粒子、 ・・・金型、 ・・・溶湯、 10・・・撹拌棒、 11・・・溶解炉。 特 許 出 願 人 鈴木自動車工業株式会社 (ほか2名) 第1図 飢2図
Figures 1 (a) to (C) are diagrams for explaining the procedure for producing the material according to the present invention, Figure 2 is a diagram for explaining the procedure for the continuous stirring process, and Figure 3 is for explaining the method for producing the material according to the present invention. A microscopic photograph of the metal structure of the same manufactured material is shown. SiC particles,...mold,...molten metal, 10...stirring bar, 11...melting furnace. Patent applicant Suzuki Automobile Industry Co., Ltd. (and 2 others) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 予熱した粒子径0.1〜1000μmのセラミックス粒
子と、低融合金の溶湯とを、金型に収容して100〜1
0000kgf/cm^2の圧力で加圧してセラミック
ス粒子間に溶湯を浸入させたあと、直ちにこれを再溶解
して攪拌を加え、鋳造することを特徴とする粒子分散複
合材料の製造方法。
Preheated ceramic particles with a particle diameter of 0.1 to 1000 μm and a molten metal of low alloy are placed in a mold and
A method for producing a particle-dispersed composite material, which comprises pressurizing at a pressure of 0,000 kgf/cm^2 to infiltrate molten metal between ceramic particles, immediately remelting it, stirring it, and casting.
JP13557390A 1990-05-25 1990-05-25 Manufacture of particle dispersed composite Pending JPH0428835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13557390A JPH0428835A (en) 1990-05-25 1990-05-25 Manufacture of particle dispersed composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13557390A JPH0428835A (en) 1990-05-25 1990-05-25 Manufacture of particle dispersed composite

Publications (1)

Publication Number Publication Date
JPH0428835A true JPH0428835A (en) 1992-01-31

Family

ID=15154978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13557390A Pending JPH0428835A (en) 1990-05-25 1990-05-25 Manufacture of particle dispersed composite

Country Status (1)

Country Link
JP (1) JPH0428835A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259761A (en) * 1994-02-22 1995-10-09 Carrier Corp Scrolling device and its preparation
JP2004128451A (en) * 2002-07-30 2004-04-22 Toyota Industries Corp Method of manufacturing low expansive material and semiconductor device using it
JP2011137219A (en) * 2009-12-25 2011-07-14 Qinghua Univ Method for making magnesium-based composite material
JP2012001804A (en) * 2010-06-14 2012-01-05 Qinghua Univ Magnesium-based composite material and preparation method thereof, and application thereof in sounding device
US8903115B2 (en) 2010-06-14 2014-12-02 Tsinghua University Enclosure and acoustic device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259761A (en) * 1994-02-22 1995-10-09 Carrier Corp Scrolling device and its preparation
JP2004128451A (en) * 2002-07-30 2004-04-22 Toyota Industries Corp Method of manufacturing low expansive material and semiconductor device using it
JP2011137219A (en) * 2009-12-25 2011-07-14 Qinghua Univ Method for making magnesium-based composite material
JP2012001804A (en) * 2010-06-14 2012-01-05 Qinghua Univ Magnesium-based composite material and preparation method thereof, and application thereof in sounding device
US8734602B2 (en) 2010-06-14 2014-05-27 Tsinghua University Magnesium based composite material and method for making the same
US8903115B2 (en) 2010-06-14 2014-12-02 Tsinghua University Enclosure and acoustic device using the same

Similar Documents

Publication Publication Date Title
WO1992013978A1 (en) High strength, high stiffness magnesium base metal alloy composites
US5460775A (en) Nitrogen-combined aluminum sintered alloys and method of producing the same
JPH0428835A (en) Manufacture of particle dispersed composite
JP4444963B2 (en) Method for producing a metal-substrate composite
JPH10219312A (en) Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material
JP2921030B2 (en) Vane pump vane material and manufacturing method thereof
CN1060979C (en) Pressureless penetration casting method for aluminium-base composite material
KR20100092055A (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
US5149496A (en) Method of making high strength, high stiffness, magnesium base metal alloy composites
JP4045712B2 (en) Method for producing metal matrix composite material
JP2000345254A (en) Aluminum-based composite material and method for producing the same
JP3087913B2 (en) Particle-dispersed composite material and method for producing the same
JPH0578708A (en) Method for producing aluminum-based particle composite alloy
EP0482034B1 (en) Process for production of reinforced composite materials and products thereof
JP2004230394A (en) Rheocast casting
JP3104244B2 (en) Particle-dispersed composite material and method for producing the same
JP4126742B2 (en) Method for producing SiC particles
JPH01283330A (en) Manufacture of aluminum-based composite member
JPH04297535A (en) Particle reinforced composite and its production
JPS6186064A (en) Method for producing metallic composite containing inorganic fibers
JPH01268830A (en) Manufacture of sic dispersion cast composite material
JP2554066B2 (en) Intermetallic compound particle dispersion-reinforced die-cast composite material and method for producing the same
JPH0320453B2 (en)
JP3010714B2 (en) Method for producing particle-dispersed composite material
JP2906277B2 (en) Method for producing high-strength Al lower 3 Ti-based alloy