[go: up one dir, main page]

JPH04282837A - Forming method for gold protrusion - Google Patents

Forming method for gold protrusion

Info

Publication number
JPH04282837A
JPH04282837A JP6909091A JP6909091A JPH04282837A JP H04282837 A JPH04282837 A JP H04282837A JP 6909091 A JP6909091 A JP 6909091A JP 6909091 A JP6909091 A JP 6909091A JP H04282837 A JPH04282837 A JP H04282837A
Authority
JP
Japan
Prior art keywords
gold
protrusion
opening
shape
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6909091A
Other languages
Japanese (ja)
Inventor
Kazuo Kondo
和夫 近藤
Yoichi Tamura
洋一 田村
Takahiro Okabayashi
岡林 高弘
Yasuo Nakatsuka
康雄 中塚
Yuichi Ikegami
池上 祐一
Tetsuo Yoshizawa
吉沢 徹夫
Toyohide Miyazaki
豊秀 宮崎
Hiroshi Kondo
浩史 近藤
▲榊▼ 隆
Takashi Sakaki
Yoshimi Terayama
寺山 芳実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Nippon Steel Corp
Original Assignee
Canon Inc
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Sumitomo Metal Industries Ltd filed Critical Canon Inc
Priority to JP6909091A priority Critical patent/JPH04282837A/en
Priority to DE69232606T priority patent/DE69232606T2/en
Priority to EP92103028A priority patent/EP0501361B1/en
Publication of JPH04282837A publication Critical patent/JPH04282837A/en
Priority to US08/026,103 priority patent/US5323535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To easily form a gold protrusion formed in an excellent shape having a projection at a center and no lateral extension to a peripheral edge in an opening to be plated by an electric plating method. CONSTITUTION:Reynolds number of liquid flow to be applied to plating solution is set to 50 or more, a current density to be applied between electrodes is 5mA/cm<2> or less, a diameter (d) f an opening 3 is set to 150mum or less, 30-100ppm of Tl or As is applied as an additive to the solution, and a gold protrusion 1 formed in an excellent shape as shown in Fig. (a) is formed.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は電気メッキ法を用いて金
突起を形成する金突起の形成方法に関する。 【0002】 【従来の技術】半導体製品の高集積化に伴って、半導体
素子及びその周辺機器における電気部品間の高密度接続
が要求されている。特に、半導体素子とその周辺機器と
の接続においては、半導体素子の高集積化に伴い、半導
体素子上に形成すべき電極の数が増大し、電極間のピッ
チが減少する傾向にある。 【0003】従来は、金線のワイヤボンディングにて電
極と周辺機器とを個別に接続していたが、個々の接続は
時間がかかる、また電極間のピッチの減少により隣合う
金線の短絡を防止出来ない等の難点があるので、近年で
は、ワイヤボンディングに代わってTAB(Taped
 automatic bonding)が、半導体製
品における電気的接続に用いられている。TAB は、
半導体素子の電極に金メッキによる突起(バンプ)を形
成し、その突起を介して周辺機器と接続する方式である
。 【0004】このようなTAB において接続不良が起
きないように、形成する金突起の形状を一定にする必要
があり、安定した形状の金突起を金メッキにて形成する
方法として従来から種々の方法が提案されている。例え
ば、金突起直下の下地金属層を除去する方法(特開昭6
1─141157号公報)、開孔部中央にレジストを残
す方法(特開昭62─252951号公報)、フォトリ
ソグラフィ工程と金メッキ工程とを繰り返す方法(特開
昭63─175446号公報)等が提案されている。 【0005】 【発明が解決しようとする課題】ところが、上述したよ
うな各形成方法にあっては以下に述べるような問題点が
ある。金突起直下の下地金属層を除去する方法は、除去
工程が煩雑であり、また液相にて除去した場合、エッチ
ング液が残留してこの残留分が金メッキ液と混合して形
状不良が起こりやすい。また、開孔部中央にレジストを
残す方法は、下地金属層との接触面積が少ないので密着
性に乏しく、ボンディング時の突起強度の低下を招きや
すい。更に、フォトリソグラフィ工程と金メッキ工程と
を繰り返す方法は、工程として全体的に長時間を要し、
フォトリソグラフィ工程における位置合わせが困難であ
り、各工程における金メッキの高さ制御が難しい。 【0006】本発明はかかる事情に鑑みてなされたもの
であり、電気金メッキ条件を限定することにより、安定
した形状を有する金突起を容易に形成することができる
金突起の形成方法を提供することを目的とする。 【0007】 【課題を解決するための手段】本発明に係る金突起の形
成方法は、電気メッキにより開孔部に金を成長させて金
突起を形成する金突起の形成方法において、メッキ液に
付与する液流動のレイノルズ数を50以上とし、両電極
間に付与する電流密度を5mA/cm2 以下とし、前
記開孔部の直径を150 μm 以下とし、メッキ液に
添加剤としてTlまたはAsを30〜100 ppm 
加えることを特徴とする。 【0008】 【作用】金メッキ時に付与する液流動のレイノルズ数が
50未満であると、突起中央部にくぼみが生じたり周縁
部への横方向の拡がりが生じて形状不良が発生するので
、本発明にあっては、そのレイノルズ数を50以上とす
る。 また金メッキ時の電流密度が5mA/cm2 より大き
いと突起中央部にくぼみが生じるので、本発明にあって
は、その電流密度を5mA/cm2 以下とする。また
メッキ対象の開孔部の直径が150 μm より大きい
と突起中央部にくぼみが生じるので、本発明にあっては
、その直径を150 μm 以下とする。更に、Tlま
たはAsを添加剤としてメッキ液に加える場合には適度
な量が必要であり、本発明にあっては、30〜100 
ppm の濃度でTlまたはAsを加える。 【0009】 【実施例】以下、本発明の実施例について説明する。所
定パターンのフォトレジストにより形成される開孔部に
、電気メッキにより金を成長させて金突起を形成する。 なお、メッキ実験の再現性を良くするために電極として
回転円板電極(R.D.E.)を使用する。この場合の
液流動のレイノルズ数(NRe)は、下記(1)に示す
式にて表される。 【0010】NRe=Ωr2 /η         
     …(1)Ω:回転数    r:回転半径 
     η:動粘性係数【0011】流動条件を均一
にするために、回転軸中心より8mmの位置に金突起を
形成するようにし、また、金メッキ液は、亜硫酸塩系の
金メッキ液を使用する。 【0012】このようにして形成した金突起の形状を、
走査型電子顕微鏡にて観察する。図1は形成した金突起
の形状を示す断面図である。図において、2はフォトレ
ジストであり、所定パターンのフォトレジスト2により
金メッキの場となる開孔部3が設けられており、開孔部
3に金突起1が形成されている。なお、dは開孔部3の
直径を示す。 【0013】形成された金突起の形状は、図1に示すよ
うに3種類に分類できる。図1(a)は上方に凸形状を
なす理想的な形状であり、以下このような形状をAとい
う。図1(b)は突起中央部にくぼみが生じている不良
形状であり、以下このような形状をBという。図1(c
)は突起周縁部への横方向の拡がりが生じている不良形
状であり、以下このような形状をCという。 【0014】次に、電気金メッキ条件を変えて金突起1
を形成した実験例について具体的に説明する。 【0015】〔レイノルズ数と金突起の形状〕開孔部3
の直径dが10μm,15μm,30μm,50μm,
80μm, 100μm となるようにフォトレジスト
2をパターン化し、各開孔部3に対して、レイノルズ数
(NRe)を0,10, 30, 50, 100, 
200として金突起1を形成した。なお、電流密度は4
mA/cm2 として25C/cm2 の電気量を与え
た。そして、形成された金突起1を走査型電子顕微鏡に
て観察した。この観察結果を下記第1表に示す。 【0016】       【0017】レイノルズ数(NRe)が3
0である場合には、開孔部3の直径dが30μm 以上
では不良形状となる。一方、NReが50以上である場
合には、すべてにおいて理想形状となっている。このよ
うな結果から、金突起1の良形状,不良形状を決定する
NReの境界は50であることがわかる。 【0018】〔電流密度と金突起の形状〕NReを一定
の50とし、25C/cm2 の一定の電気量を与え、
電流密度を1mA/cm2 ,2mA/cm2 ,3m
A/cm2 ,4mA/cm2 ,5 mA/cm2 
,8mA/cm2 と変化させて、金突起1を形成した
。なお、開孔部3の直径dは80μm で一定とした。 この場合の観察結果を下記第2表に示す。 【0019】       【0020】電流密度が6mA/cm2 
以上では、B,C型の不良形状が生じる。従って、電流
密度を5mA/cm2以下とすることが好ましい。 【0021】〔開孔部の直径と金突起の形状〕NReを
一定の50とし、25C/cm2 の一定の電気量を与
え、電流密度を一定の4mA/cm2 とし、開孔部3
の直径dを15μm,30μm,50μm, 100μ
m, 150μm, 200μm と変化させて、金突
起1を形成した。この場合の観察結果を下記第3表に示
す。 【0022】       【0023】開孔部3の直径dを 200
μm 以上とした場合に、不良形状となる。従って、こ
の直径dを 150μm 以下とすることが好ましい。 【0024】〔添加剤と金突起の形状〕NReを一定の
50とし、25C/cm2 の一定の電気量を与え、電
流密度を一定の4mA/cm2 とし、開孔部3の直径
dを80μm で一定とし、メッキ液に加えるTlを0
ppm,10ppm,30ppm,60ppm,90p
pm,100ppm,500ppm,1000ppm 
と変化させて、金突起1を形成した。この場合の観察結
果を下記第4表に示す。 また、NReを一定の50とし、25C/cm2 の一
定の電気量を与え、電流密度を一定の4mA/cm2 
とし、開孔部3の直径dを80μm で一定とし、メッ
キ液に加えるAsを0ppm,10ppm,30ppm
,60ppm,90ppm,100ppm,500pp
m,1000ppm と変化させて、金突起1を形成し
た場合の観察結果を下記第5表に示す。 【0025】 【0026】   第4表,第5表の結果からわかるように、メッキ液
に加える添加剤の量を、30〜100 ppm とする
場合には良好な形状の金突起1が得られる。 【0027】 【発明の効果】以上のように、本発明の金突起の形成方
法では、レイノルズ数を50以上とし、電流密度を5m
A/cm2 以下とし、開孔部の直径を150 μm 
以下とし、メッキ液に添加剤としてTlまたはAsを3
0〜100 ppm 含有させて金突起を形成するので
、突起中央部におけるくぼみまたは突起周縁部への横方
向の拡がりに伴う形状不良を避けることができ、極めて
良好な形状を有する金突起を形成することができる。
Description: FIELD OF THE INVENTION The present invention relates to a method for forming gold protrusions using electroplating. 2. Description of the Related Art As semiconductor products become more highly integrated, high-density connections between electrical components in semiconductor devices and their peripheral devices are required. In particular, in the connection between a semiconductor element and its peripheral equipment, as semiconductor elements become more highly integrated, the number of electrodes to be formed on the semiconductor element increases and the pitch between the electrodes tends to decrease. Conventionally, electrodes and peripheral devices were individually connected by wire bonding using gold wires, but each connection took time, and the reduction in the pitch between the electrodes caused short circuits between adjacent gold wires. In recent years, TAB (Taped) has been used instead of wire bonding.
Automatic bonding is used for electrical connections in semiconductor products. TAB is
This is a method in which protrusions (bumps) are formed by gold plating on the electrodes of the semiconductor element, and connections are made to peripheral devices through the protrusions. [0004] In order to prevent connection failures in such TABs, it is necessary to make the shape of the gold protrusions constant.Therefore, various methods have been used to form gold protrusions with a stable shape by gold plating. Proposed. For example, a method of removing the underlying metal layer directly under the gold protrusion (Japanese Unexamined Patent Publication No. 6
1-141157), a method of leaving a resist in the center of the opening (Japanese Patent Application Laid-Open No. 62-252951), a method of repeating the photolithography process and a gold plating process (Japanese Patent Application Laid-Open No. 63-175446), etc. has been done. [0005] However, each of the above-mentioned forming methods has the following problems. The method of removing the base metal layer directly under the gold protrusion requires a complicated removal process, and if it is removed in a liquid phase, the etching solution remains and this residue mixes with the gold plating solution, resulting in poor shape. . Furthermore, the method of leaving the resist in the center of the opening has a small contact area with the base metal layer, resulting in poor adhesion, which tends to lead to a decrease in the strength of the protrusion during bonding. Furthermore, the method of repeating the photolithography process and the gold plating process requires a long time as a whole,
It is difficult to align in the photolithography process, and it is difficult to control the height of gold plating in each process. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for forming gold protrusions that can easily form gold protrusions having a stable shape by limiting electrolytic gold plating conditions. With the goal. Means for Solving the Problems The method for forming gold protrusions according to the present invention includes forming gold protrusions by growing gold in the openings by electroplating. The Reynolds number of the applied liquid flow is 50 or more, the current density applied between both electrodes is 5 mA/cm2 or less, the diameter of the opening is 150 μm or less, and 30% of Tl or As is added as an additive to the plating solution. ~100 ppm
It is characterized by adding. [Function] If the Reynolds number of the liquid flow applied during gold plating is less than 50, a depression will be formed in the center of the protrusion or it will spread laterally to the periphery, resulting in poor shape. In this case, the Reynolds number shall be 50 or more. Furthermore, if the current density during gold plating is higher than 5 mA/cm2, a depression will be formed at the center of the protrusion, so in the present invention, the current density is set to 5 mA/cm2 or less. Further, if the diameter of the opening to be plated is larger than 150 μm, a depression will be formed at the center of the protrusion, so in the present invention, the diameter is set to 150 μm or less. Furthermore, when Tl or As is added to the plating solution as an additive, an appropriate amount is required, and in the present invention, 30 to 100
Add Tl or As at a concentration of ppm. [Examples] Examples of the present invention will be described below. Gold is grown by electroplating in the openings formed by the photoresist in a predetermined pattern to form gold protrusions. Incidentally, in order to improve the reproducibility of the plating experiment, a rotating disk electrode (R.D.E.) is used as the electrode. The Reynolds number (NRe) of liquid flow in this case is expressed by the formula shown in (1) below. [0010]NRe=Ωr2/η
...(1) Ω: Rotation speed r: Rotation radius
η: coefficient of kinematic viscosity [0011] In order to make the flow conditions uniform, a gold protrusion is formed at a position 8 mm from the center of the rotating shaft, and a sulfite-based gold plating solution is used. [0012] The shape of the gold protrusion thus formed is as follows:
Observe with a scanning electron microscope. FIG. 1 is a cross-sectional view showing the shape of the formed gold protrusion. In the figure, reference numeral 2 denotes a photoresist, and the photoresist 2 in a predetermined pattern is provided with an opening 3 that serves as a gold plating site, and a gold protrusion 1 is formed in the opening 3. Note that d indicates the diameter of the opening 3. The shapes of the formed gold protrusions can be classified into three types as shown in FIG. FIG. 1A shows an ideal shape that is convex upward, and such a shape will be referred to as A hereinafter. FIG. 1(b) shows a defective shape with a depression in the center of the protrusion, and this shape will be referred to as B hereinafter. Figure 1(c)
) is a defective shape in which lateral expansion has occurred toward the periphery of the protrusion, and such a shape is hereinafter referred to as C. Next, gold protrusions 1 were formed by changing the electrolytic gold plating conditions.
An experimental example in which . [Reynolds number and shape of gold protrusion] Opening part 3
The diameter d of is 10 μm, 15 μm, 30 μm, 50 μm,
The photoresist 2 was patterned to have a diameter of 80 μm, 100 μm, and the Reynolds number (NRe) was set to 0, 10, 30, 50, 100,
200, and a gold protrusion 1 was formed. Note that the current density is 4
An amount of electricity of 25 C/cm2 was given as mA/cm2. The formed gold projections 1 were then observed using a scanning electron microscope. The observation results are shown in Table 1 below. [0016] Reynolds number (NRe) is 3
In the case of 0, if the diameter d of the opening 3 is 30 μm or more, the shape is defective. On the other hand, when NRe is 50 or more, the shape is ideal in all cases. From these results, it can be seen that the NRe boundary that determines the good shape and bad shape of the gold protrusion 1 is 50. [Current density and shape of gold protrusion] NRe was set to a constant value of 50, and a constant amount of electricity of 25 C/cm2 was applied.
Current density is 1mA/cm2, 2mA/cm2, 3m
A/cm2, 4mA/cm2, 5mA/cm2
, 8 mA/cm2 to form gold protrusions 1. Note that the diameter d of the opening 3 was kept constant at 80 μm. The observation results in this case are shown in Table 2 below. [0020] Current density is 6 mA/cm2
In this case, defective shapes of B and C types occur. Therefore, it is preferable that the current density is 5 mA/cm2 or less. [Diameter of the hole and shape of the gold protrusion] NRe is set to a constant value of 50, a constant amount of electricity of 25C/cm2 is applied, and the current density is set to a constant value of 4mA/cm2.
The diameter d of is 15μm, 30μm, 50μm, 100μm
Gold protrusions 1 were formed by changing the thickness to m, 150 μm, and 200 μm. The observation results in this case are shown in Table 3 below. [0023] The diameter d of the opening 3 is 200
If it is more than μm, the shape will be defective. Therefore, it is preferable that this diameter d is 150 μm or less. [Additive and shape of gold protrusion] NRe is set at a constant value of 50, a constant amount of electricity is applied at 25 C/cm2, the current density is set at a constant level at 4 mA/cm2, and the diameter d of the opening 3 is set at 80 μm. The Tl added to the plating solution is kept constant and is 0.
ppm, 10ppm, 30ppm, 60ppm, 90p
pm, 100ppm, 500ppm, 1000ppm
The gold protrusion 1 was formed by changing the following. The observation results in this case are shown in Table 4 below. In addition, NRe was set to a constant value of 50, a constant amount of electricity of 25C/cm2 was applied, and the current density was set to a constant value of 4mA/cm2.
The diameter d of the opening 3 is kept constant at 80 μm, and the amount of As added to the plating solution is 0 ppm, 10 ppm, and 30 ppm.
, 60ppm, 90ppm, 100ppm, 500ppm
Table 5 below shows the observation results when gold protrusions 1 were formed by changing the amount of gold to 1,000 ppm. As can be seen from the results in Tables 4 and 5, when the amount of additive added to the plating solution is 30 to 100 ppm, gold protrusions 1 with good shapes can be obtained. Effects of the Invention As described above, in the method for forming gold protrusions of the present invention, the Reynolds number is set to 50 or more, and the current density is set to 5 m
A/cm2 or less, and the diameter of the opening is 150 μm.
As shown below, Tl or As is added to the plating solution as an additive.
Since gold protrusions are formed by containing 0 to 100 ppm, it is possible to avoid shape defects due to depressions at the center of the protrusions or lateral expansion to the periphery of the protrusions, thereby forming gold protrusions with extremely good shapes. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】形成された金突起の形状を示す模式的断面図で
ある。
FIG. 1 is a schematic cross-sectional view showing the shape of a formed gold protrusion.

【符号の説明】[Explanation of symbols]

1  金突起 2  フォトレジスト 3  開孔部 d  開孔部の直径 1 Gold protrusion 2 Photoresist 3 Opening part d Diameter of opening

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電気メッキにより開孔部に金を成長さ
せて金突起を形成する金突起の形成方法において、メッ
キ液に付与する液流動のレイノルズ数を50以上とし、
両電極間に付与する電流密度を5mA/cm2 以下と
し、前記開孔部の直径を150 μm 以下とし、メッ
キ液に添加剤としてTlまたはAsを30〜100 p
pm 加えることを特徴とする金突起の形成方法。
Claim 1. A method for forming a gold protrusion in which gold is grown in an opening by electroplating to form a gold protrusion, wherein the Reynolds number of the liquid flow applied to the plating solution is 50 or more,
The current density applied between both electrodes is 5 mA/cm2 or less, the diameter of the opening is 150 μm or less, and 30 to 100 p of Tl or As is added as an additive to the plating solution.
A method for forming gold protrusions, characterized by adding pm.
JP6909091A 1991-02-25 1991-03-09 Forming method for gold protrusion Pending JPH04282837A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6909091A JPH04282837A (en) 1991-03-09 1991-03-09 Forming method for gold protrusion
DE69232606T DE69232606T2 (en) 1991-02-25 1992-02-24 Electrical connector body and manufacturing method therefor
EP92103028A EP0501361B1 (en) 1991-02-25 1992-02-24 Electrical connecting member and method of manufacturing the same
US08/026,103 US5323535A (en) 1991-02-25 1993-03-01 Electrical connecting member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6909091A JPH04282837A (en) 1991-03-09 1991-03-09 Forming method for gold protrusion

Publications (1)

Publication Number Publication Date
JPH04282837A true JPH04282837A (en) 1992-10-07

Family

ID=13392551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6909091A Pending JPH04282837A (en) 1991-02-25 1991-03-09 Forming method for gold protrusion

Country Status (1)

Country Link
JP (1) JPH04282837A (en)

Similar Documents

Publication Publication Date Title
JP3362545B2 (en) Method for manufacturing semiconductor device
JP6326723B2 (en) Terminal structure and semiconductor device
US20060175686A1 (en) Semiconductor device and fabrication method thereof
KR100428825B1 (en) Semiconductor integrated circuit and fabrication process therefor
JP4368543B2 (en) Plating method and plating apparatus
US9070606B2 (en) Terminal structure and semiconductor device
JP2000049223A (en) Semiconductor device
JPH04282837A (en) Forming method for gold protrusion
KR100581279B1 (en) Composition for removing photoresist and bump forming method of semiconductor device using same
JP2005057264A (en) Packaged electric structure and its manufacturing method
JP3349656B2 (en) Bump and manufacturing method thereof
KR100803004B1 (en) Method for filling through hole
US3801477A (en) Method of depositing electrode leads
US7563703B2 (en) Microelectronic interconnect device comprising localised conductive pins
CN211350631U (en) Structure for reducing undercut of bump
JPS6112047A (en) Manufacture of semiconductor device
JP2011014607A (en) Method of manufacturing semiconductor device
JPH05218047A (en) Manufacture of semiconductor device
JP3735173B2 (en) Method of depositing electroplating in a columnar shape in fine holes
CN111312679B (en) Structure for reducing undercut of bump and manufacturing method thereof
JP3629365B2 (en) Metal bump formation method
JPH03208347A (en) Formation of bump
JPS63119551A (en) Forming method of patterned metal film
JPH0350733A (en) Manufacture of semiconductor device
JPH0786211A (en) Bump formation method