JPH0428006Y2 - - Google Patents
Info
- Publication number
- JPH0428006Y2 JPH0428006Y2 JP11503786U JP11503786U JPH0428006Y2 JP H0428006 Y2 JPH0428006 Y2 JP H0428006Y2 JP 11503786 U JP11503786 U JP 11503786U JP 11503786 U JP11503786 U JP 11503786U JP H0428006 Y2 JPH0428006 Y2 JP H0428006Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- receiving sensor
- light receiving
- measured
- scanning means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は、例えば被測定物体の立体形状を測定
するに当つて、物体表面に任意に設定した点の位
置あるいは線分の形状を検知することができるよ
うに改良されたビーム光測距装置に関する。[Detailed description of the invention] (Industrial application field) This invention detects the position of a point arbitrarily set on the object surface or the shape of a line segment when measuring the three-dimensional shape of an object to be measured, for example. The present invention relates to a beam light distance measuring device that has been improved so as to be able to.
(従来の技術およびその問題点)
ビーム光を被測定物体に照射し、その反射光を
受光して被測定物体各部の距離を測定する装置が
ある。ビーム光で被測定物体全体を走査すれば物
体各部の位置、つまり物体の立体形状を測定する
ことができる。第4図に従来のビーム光測距装置
の基本的な構成を示す。第4図に示す例では、ビ
ーム光発振器にはレーザ管を用い、被測定物体は
自動車の車体である。走査手段は上下に転向しな
がら回転するミラー21とミラー角度検出機構2
2から構成されている。レーザ管1から発射され
たビーム光11は走査手段のミラー21に反射し
て車体91全体に照射される。ミラー角度検出機
構22はビーム光の照射角度をデータ処理回路4
へ送出する。照射されたビームの入射光11は、
車体の表面で乱反射を起し、乱反射光12の一部
は受光センサ3へ入る。受光センサ3はその信号
をデータ処理回路4へ送る。データ処理回路4は
角度検出機構22から与えられたビーム光の照射
角度から車体各部の位置を算出し、車体の立体形
状を検知する。この装置による物体の形状測定
は、精度が高く、接触子を物体に直接接触させて
行うものではないから複雑な形状の物体にも適用
できる上に操作は簡単で迅速に行える。このよう
な理由で、この装置は上に挙げた自動車の車体や
航空機の機体などに広く用いられている。その
際、物体の形状だけでなく、物体の表面に想定し
た任意の点の位置あるいは任意の線分の形などを
検知したいという要望がある。例えば、もし車体
を任意の断面で切断したときの断面形状を測定す
ることができれば、その断面の寸法検査に利用す
ることができるし、逆に、車体の断面形状を図面
に写し取ることもできる。任意の点あるいは線分
からの反射光と他の部分からの反射光とを識別す
ることができればそのようなことが可能になる。
しかし、従来の装置にはこのような識別能はな
い。(Prior Art and its Problems) There is an apparatus that irradiates a measured object with a beam of light and receives the reflected light to measure distances to various parts of the measured object. By scanning the entire object to be measured with the beam light, the position of each part of the object, that is, the three-dimensional shape of the object can be measured. FIG. 4 shows the basic configuration of a conventional beam light distance measuring device. In the example shown in FIG. 4, a laser tube is used as the beam light oscillator, and the object to be measured is the body of an automobile. The scanning means includes a mirror 21 that rotates while turning up and down and a mirror angle detection mechanism 2.
It is composed of 2. The beam light 11 emitted from the laser tube 1 is reflected by the mirror 21 of the scanning means and is irradiated onto the entire vehicle body 91. The mirror angle detection mechanism 22 detects the irradiation angle of the beam light using the data processing circuit 4.
Send to. The incident light 11 of the irradiated beam is
Diffuse reflection occurs on the surface of the vehicle body, and part of the diffusely reflected light 12 enters the light receiving sensor 3. The light receiving sensor 3 sends the signal to the data processing circuit 4. The data processing circuit 4 calculates the position of each part of the vehicle body from the irradiation angle of the beam light given from the angle detection mechanism 22, and detects the three-dimensional shape of the vehicle body. The measurement of the shape of an object using this device is highly accurate, and because it is not performed by directly contacting the object with a contactor, it can be applied to objects with complex shapes, and the operation is simple and quick. For these reasons, this device is widely used in the car bodies and aircraft bodies mentioned above. At that time, there is a desire to detect not only the shape of the object, but also the position of an arbitrary point on the surface of the object or the shape of an arbitrary line segment. For example, if the cross-sectional shape of a car body can be measured at an arbitrary cross-section, it can be used to inspect the dimensions of that cross-section, or conversely, the cross-sectional shape of the car body can be copied onto a drawing. This becomes possible if it is possible to distinguish between reflected light from an arbitrary point or line segment and reflected light from other parts.
However, conventional devices do not have such discrimination ability.
本考案の目的は、上に述べたような要望に答え
る改良されたビーム光測距装置を提供することに
ある。 An object of the present invention is to provide an improved optical beam distance measuring device that meets the above-mentioned needs.
(問題点を解決するための手段)
本考案のビーム光測距装置は、第1図に示すよ
うに、ビーム光を被測定物体に照射してその反射
光を受光し、被測定物体各部の距離を測定する装
置であつて、ビーム光発振器と、このビーム光で
被測定物体を走査するための走査手段と、反射光
を受光するための受光センサと、走査手段および
受光センサからの信号を処理して距離を算出する
データ処理回路から基本的に構成されるビーム光
測距装置において、前記受光センサを第1の受光
センサとし、ビーム光の反射器具と、第2の受光
センサと、第1および第2の受光センサからの信
号を入力し出力をデータ処理回路へ送る判定回路
とを加え、反射器具は被測定物体の任意の個所に
配置してあるとともに反射光が第2の受光センサ
にだけ入射するような向きに取り付けてあり、判
定回路は第2の受光センサにだけビーム光が入射
したとき信号をデータ処理回路へ送り、データ処
理回路は判定回路の出力信号と走査手段からの信
号を処理し前記反射器具の位置を算出することを
特徴とする。(Means for Solving the Problems) As shown in Fig. 1, the beam light distance measuring device of the present invention irradiates the object to be measured with a beam light and receives the reflected light, and measures each part of the object to be measured. A device for measuring distance, which includes a beam light oscillator, a scanning means for scanning an object to be measured with the beam light, a light receiving sensor for receiving reflected light, and a signal from the scanning means and the light receiving sensor. In a beam light distance measuring device basically composed of a data processing circuit that processes and calculates a distance, the light receiving sensor is a first light receiving sensor, a beam light reflecting device, a second light receiving sensor, and a beam light receiving sensor. A determination circuit that inputs signals from the first and second light receiving sensors and sends the output to a data processing circuit is added, and the reflecting device is placed at an arbitrary location on the object to be measured, and the reflected light is transmitted to the second light receiving sensor. The determination circuit sends a signal to the data processing circuit when the beam light is incident only on the second light receiving sensor, and the data processing circuit receives the output signal of the determination circuit and the scanning means. The method is characterized in that the position of the reflecting device is calculated by processing the signal.
(実施例)
本考案のビーム光測距装置の働きを第2図に示
した実施例を参照しながら説明する。本実施例で
は、第1の反射器具の他に第2の反射器具として
ハーフミラーを用いる本考案の第2の態様を選択
した。被測定物体は自動車の車体である。その
他、ビーム光発振器、走査手段、受光センサ、デ
ータ処理回路などの構成要素は上に述べた第4図
のものと同じである。判定回路7には第1、第2
の受光センサからの信号を入力とするAND回路
を用いた。AND条件は、反射光が第1のセンサ
には入射せず第2のセンサにだけ入射するときに
成立するようにした。第1の反射器具5は、第3
図に示すような、2枚の鏡を互いの反射面が90°
になるよう組み合わせたものを用いた。車体91
を左右に等分する中央線92に沿つて、この反射
器具5を7個適当な間隔で取り付けた。これらは
すべて反射光の光軸が回転ミラー21の中心を通
るように傾けてセツトした。(Embodiment) The operation of the optical beam distance measuring device of the present invention will be explained with reference to the embodiment shown in FIG. In this embodiment, the second aspect of the present invention is selected, in which a half mirror is used as the second reflecting device in addition to the first reflecting device. The object to be measured is the body of a car. Other components such as a beam light oscillator, scanning means, light receiving sensor, and data processing circuit are the same as those in FIG. 4 described above. The judgment circuit 7 has a first and a second
An AND circuit was used that inputs the signal from the light receiving sensor. The AND condition was made to be satisfied when the reflected light does not enter the first sensor but only enters the second sensor. The first reflector 5 is the third
As shown in the figure, hold two mirrors so that their reflective surfaces are 90° to each other.
A combination of these was used. car body 91
Seven reflectors 5 were installed at appropriate intervals along a center line 92 that equally divided left and right. All of these were tilted and set so that the optical axis of the reflected light passed through the center of the rotating mirror 21.
レーザ管1から発射されたビーム光11は光軸
上にあるハーフミラー61を透過して回転ミラー
21に入射する。回転ミラー21は回転しながら
上下に首を振ることによりビーム光を車体91の
全体に照射する。反射器具5を取り付けていない
部分へ照射されたビーム光11はそこで乱反射を
起し、乱反射光12の一部は第1の受光センサ3
1へ入射する。データ処理回路4は第1の受光セ
ンサからの信号とミラー角度検出機構22から与
えられたビーム光の照射角度から車体91の立体
形状を算出する。一方、乱反射光12は回転ミラ
ー21とハーフミラー61を経由して第2の受光
センサ32へも入射する。つまり、第1と第2の
両センサへ反射光12が入射するから、この場合
判定回路7のAND条件は成り立たない。次に、
ビーム光11が車体91の上に配置された第1の
反射器具5へ入射したときは、乱反射は起らず反
射ビーム光13は破線で示した経路をたどつて第
2の受光センサ32へ入射し、第1の受光センサ
31へは入射しない。このように、この場合は
AND条件が満たされるから判定回路7からデー
タ処理回路4へ信号が送出される。データ処理回
路4は、上と同様に、その時のビーム光11の照
射角度から第1の反射器具5の位置を算出する。
このようにして、車体91の立体形状91Aが測
定され、その立体形状を等分する中央線92上に
並んだ反射器具5の位置がプロツトできた。 A light beam 11 emitted from the laser tube 1 passes through a half mirror 61 located on the optical axis and enters the rotating mirror 21 . The rotating mirror 21 irradiates the entire vehicle body 91 with a beam of light by swinging its head up and down while rotating. The beam light 11 irradiated to the part where the reflector 5 is not attached causes diffuse reflection there, and a part of the diffuse reflection light 12 is reflected by the first light receiving sensor 3.
1. The data processing circuit 4 calculates the three-dimensional shape of the vehicle body 91 from the signal from the first light receiving sensor and the irradiation angle of the beam light given from the mirror angle detection mechanism 22. On the other hand, the diffusely reflected light 12 also enters the second light receiving sensor 32 via the rotating mirror 21 and the half mirror 61. That is, since the reflected light 12 is incident on both the first and second sensors, the AND condition of the determination circuit 7 does not hold in this case. next,
When the light beam 11 enters the first reflector 5 disposed on the vehicle body 91, diffuse reflection does not occur and the reflected light beam 13 follows the path indicated by the broken line to the second light receiving sensor 32. and does not enter the first light receiving sensor 31. Thus, in this case
Since the AND condition is satisfied, a signal is sent from the determination circuit 7 to the data processing circuit 4. Similarly to the above, the data processing circuit 4 calculates the position of the first reflecting device 5 from the irradiation angle of the beam light 11 at that time.
In this way, the three-dimensional shape 91A of the vehicle body 91 was measured, and the positions of the reflectors 5 lined up on the center line 92 that equally divided the three-dimensional shape could be plotted.
第1の反射器具からの反射光は直接第2の受光
センサへ導いてもよいが、必要に応じて第2の反
射器具を設け、これに中継させてもよい。第2の
反射器具として、上に挙げた実施例のように、ハ
ーフミラーを用いれば入射ビーム光の光軸上に置
くことができる。 The reflected light from the first reflecting device may be directly guided to the second light receiving sensor, but if necessary, a second reflecting device may be provided and the light may be relayed thereto. If a half mirror is used as the second reflecting device, as in the above embodiment, it can be placed on the optical axis of the incident beam.
第1の反射器具はなるべく小さい方がよいが、
反射面の面積はビーム光の光束の広がりより小さ
くてはならない。ビーム光が被測定物体へ洩れる
と乱反射が起るからである。反射器具を第3図の
ように構成すれば、鏡面の全反射を利用できるか
ら高い反射率が得られる。鏡面を入射光に対して
直角にすれば反射率は落ちるが非常に小型にでき
る。 It is better for the first reflector to be as small as possible,
The area of the reflective surface must not be smaller than the spread of the beam of light. This is because diffuse reflection occurs when the beam light leaks to the object to be measured. If the reflector is constructed as shown in FIG. 3, high reflectance can be obtained because total reflection of the mirror surface can be utilized. If the mirror surface is made perpendicular to the incident light, the reflectance will drop, but it can be made very compact.
(考案の効果)
本考案のビーム光測距装置は、被測定物体の立
体形状を測定するとともに、被測定物体表面の任
意の点の位置あるいは任意の線分の形を検知でき
る。(Effects of the Invention) The optical beam distance measuring device of the present invention can measure the three-dimensional shape of an object to be measured, and can also detect the position of any point on the surface of the object to be measured or the shape of any line segment.
第1図は本考案の装置の主要な構成を示す概念
図である。第2図は本考案の装置の一実施例の構
成を示す概念図である。第3図は反射器具の一例
を示す側面図である。第4図は第2図と同じ被測
定物体に適用した従来の装置の構成を示す概念図
である。
1……レーザ管、11……入射光、12……乱
反射光、13……反射光、21……回転ミラー、
22……ミラー角度検出機構、3……受光セン
サ、31……第1受光センサ、32……第2受光
センサ、4……データ処理回路、5……第1反射
器具、61……ハーフミラー、7……判定回路、
被測定物体、91……車体、91A……車体の立
体形状、92……車体の中央線。
FIG. 1 is a conceptual diagram showing the main configuration of the device of the present invention. FIG. 2 is a conceptual diagram showing the configuration of one embodiment of the device of the present invention. FIG. 3 is a side view showing an example of a reflective device. FIG. 4 is a conceptual diagram showing the configuration of a conventional apparatus applied to the same object to be measured as in FIG. 2. 1... Laser tube, 11... Incident light, 12... Diffuse reflected light, 13... Reflected light, 21... Rotating mirror,
22... Mirror angle detection mechanism, 3... Light receiving sensor, 31... First light receiving sensor, 32... Second light receiving sensor, 4... Data processing circuit, 5... First reflecting instrument, 61... Half mirror , 7...determination circuit,
Object to be measured, 91... Vehicle body, 91A... Three-dimensional shape of vehicle body, 92... Center line of vehicle body.
Claims (1)
を受光し、前記被測定物体各部の距離を測定す
る装置であつて、前記ビーム光を発生する発振
器と、この発振器の出力の前記ビーム光の方向
を制御して前記被測定物体を走査する走査手段
と、前記反射光を受光する受光センサと、前記
走査手段および前記受光センサからの信号を処
理して距離を算出するデータ処理回路とを有す
るビーム光測距装置において、前記受光センサ
を第1の受光センサとし、ビーム光の反射器具
と、第2の受光センサと、前記第1および第2
の受光センサからの信号を入力し出力を前記デ
ータ処理回路へ送る判定回路とを加え、前記反
射器具は前記被測定物体の一部に固定してある
とともに前記反射光が前記第2の受光センサに
だけ入射するような向きに取り付けてあり、前
記判定回路は前記第2の受光センサにだけビー
ム光が入射したとき信号を前記データ処理回路
へ送り、このデータ処理回路は前記判定回路の
出力信号と前記走査手段からの信号を基に前記
反射は器具の位置を算出することを特徴とする
ビーム光測距装置。 (2) 前記反射器具を第1の反射器具とし、この第
1の反射器具の反射光を中継反射して第2の受
光センサへ導く第2の反射器具を設けた実用新
案登録請求の範囲第1項に記載のビーム光測距
装置。 (3) 第2の反射器具がハーフミラーであつて、こ
れをビーム光発振器と走査手段の間の光軸上
に、光の透過側をビーム光の入射側に向けて配
置した実用新案登録請求の範囲第2項に記載の
ビーム光測距装置。[Claims for Utility Model Registration] (1) An oscillator that generates the beam light, which is a device that irradiates an object to be measured with a beam of light, receives the reflected light, and measures the distance of each part of the object to be measured. a scanning means for scanning the object to be measured by controlling the direction of the beam light output from the oscillator; a light receiving sensor for receiving the reflected light; and a scanning means for processing signals from the scanning means and the light receiving sensor. In the beam light distance measuring device, the light receiving sensor is a first light receiving sensor, and a beam light reflecting device, a second light receiving sensor, and the first and second light receiving sensors are provided.
a determination circuit that inputs a signal from the second light receiving sensor and sends an output to the data processing circuit; The determination circuit sends a signal to the data processing circuit when the beam light is incident only on the second light receiving sensor, and the data processing circuit receives the output signal of the determination circuit. and a beam light distance measuring device characterized in that the position of the reflected instrument is calculated based on the signal from the scanning means. (2) Utility model registration claim No. 1, in which the reflecting device is a first reflecting device, and a second reflecting device is provided which relays and reflects the reflected light of the first reflecting device and guides it to a second light receiving sensor. The optical beam distance measuring device according to item 1. (3) A request for registration of a utility model in which the second reflecting device is a half mirror, which is arranged on the optical axis between the beam light oscillator and the scanning means, with the light transmitting side facing the beam light incident side. The optical beam distance measuring device according to item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11503786U JPH0428006Y2 (en) | 1986-07-25 | 1986-07-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11503786U JPH0428006Y2 (en) | 1986-07-25 | 1986-07-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6321807U JPS6321807U (en) | 1988-02-13 |
JPH0428006Y2 true JPH0428006Y2 (en) | 1992-07-07 |
Family
ID=30998321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11503786U Expired JPH0428006Y2 (en) | 1986-07-25 | 1986-07-25 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0428006Y2 (en) |
-
1986
- 1986-07-25 JP JP11503786U patent/JPH0428006Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6321807U (en) | 1988-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1068635A (en) | Optical position detector | |
JPH11271448A (en) | Calibration device for laser range finder and laser distance measuring apparatus equipped with it | |
JPH0428006Y2 (en) | ||
US4866287A (en) | Optical surface waviness measuring apparatus | |
JPS642901B2 (en) | ||
JPH07260439A (en) | Method and apparatus for measuring inside | |
JP2784481B2 (en) | 2D position and direction measurement device for moving objects | |
JP4934244B2 (en) | Device for detecting the position of parts | |
JP2000258144A (en) | Flatness and thickness measurement device for wafer | |
JPH0721409B2 (en) | Optical distance detector | |
JP3192461B2 (en) | Optical measuring device | |
JPS6159455B2 (en) | ||
JPH09189545A (en) | Distance measuring device | |
JP2536821Y2 (en) | 3D position measuring device | |
JP2783252B2 (en) | Angle difference measuring device between two surfaces | |
JPH10111107A (en) | Distance measuring method and distance measuring device | |
JP2924754B2 (en) | Optical differential velocity meter | |
JPH0551864B2 (en) | ||
JPS62126313A (en) | Method for detecting propelling position of self-propelling robot | |
JPH04106732U (en) | interferometer | |
JPS626111A (en) | Surface roughness meter by reflected light | |
JPS63252204A (en) | Distance and angle-of-inclination measuring device | |
JPH0342531A (en) | Infrared measuring instrument | |
JPH03130639A (en) | Optical-axis aligning method for mtf measuring apparatus | |
JPH0357914A (en) | Optical probe |