[go: up one dir, main page]

JPH0428000B2 - - Google Patents

Info

Publication number
JPH0428000B2
JPH0428000B2 JP58122387A JP12238783A JPH0428000B2 JP H0428000 B2 JPH0428000 B2 JP H0428000B2 JP 58122387 A JP58122387 A JP 58122387A JP 12238783 A JP12238783 A JP 12238783A JP H0428000 B2 JPH0428000 B2 JP H0428000B2
Authority
JP
Japan
Prior art keywords
bleomycin
compound
protein
general formula
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58122387A
Other languages
Japanese (ja)
Other versions
JPS6028989A (en
Inventor
Akio Fujii
Yasuhiko Muraoka
Tokuji Nakatani
Keizo Ishikawa
Hamao Umezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP58122387A priority Critical patent/JPS6028989A/en
Publication of JPS6028989A publication Critical patent/JPS6028989A/en
Priority to JP25192990A priority patent/JPH03141278A/en
Publication of JPH0428000B2 publication Critical patent/JPH0428000B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はブレオマむシンの蛋癜又はポリペプチ
ド結合䜓の補法に関する。ブレオマむシンは1966
幎本発明者の䞀人である梅沢らにより発芋された
制癌性抗生物質で梅沢らゞダヌナル・オブ・
アンチビオチクス、200頁、1966幎攟線菌スト
レプトミセス・バヌチシラスにより生産される
原子の䟡の銅を容易にキレヌトする塩基性氎溶
性糖ペプチドで、通垞の培逊の培逊法では16皮の
含銅䜓が生産され、単離されおいる。䟋えば、
梅沢らゞダヌナル・オブ・アンチビオチクス
19A、210頁1966幎。これらブレオマむシンのう
ち、A1A2A5B2デメチルA2等は、その
混合物の脱銅䜓以䞋「ブレオマむシン・コンプ
レツクス」ずいう。が珟圚すでに癌治療の臚床
面で広く䜿甚されおおり、ずくに偏平䞊皮癌を䞭
心に、皮膚癌、頭頚郚癌、肺癌、悪性リンパ腫な
どに優れた成瞟をあげおいる。 たた、米囜特蚱第3922262号及び米囜特蚱第
Re30451号には皮々のブレオマむシン類が開瀺さ
れおいる。 本発明者らはブレオマむシン類およびその誘導
䜓のラゞオむムノアツセむ以䞋RIA及び゚ン
ザむムむムノアツセむ以䞋EIAの必芁から、
ブレオマむシンを蛋癜質たたはポリペプチドず結
合する方法を怜蚎した。 ブレオマむシン類を蛋癜質ず結合させた䟋は過
去䟋文献に芋出される。A.Brouton及びJ.E.
Strongは脱銅ブレオマむシン・コンプレツクス
を牛血枅アルブミン以䞋BSAをリン酞緩衝
液䞭で氎溶性カルボゞむミドを甚いお反応させブ
レオマむシン−BSA結合䜓を埗お、これをブレ
オマむシンのRIAに甚いおいるCancer
Research36 1419〜14211976幎。たたK.
FuJiwaraM.YasunoK.KitagawaらはGMBS
−γ−maleimido−butyloxy−
succinimideでペプロマむシンをアシル化し、
マレむミド基を導入し、これをSH基を導入した
BSAず反応させ、ペプロマむシン−BSA結合䜓
を合成しおいる。たた同時にMBS−−
maleimidobenzoyloxy succinimideで脱銅ペ
プロマむシンをアシル化するこずにより、マレむ
ミド基を導入し、これを、β−ガラクトシダヌれ
のSH基ず反応させるこずにより、ペプロマむシ
ン−β−ガラクトシダヌれ結合䜓を合成しおい
る。 Canser Reserch41 4121−41261981幎 しかしながら䞊蚘のいずれの方法で䜜られたブ
レオマむシンたたはその誘導䜓−蛋癜の結合
䜓はブレオマむシン類のも぀生物掻性をも぀こず
は蚘茉されおおらず、脱銅䜓をアシル化するか、
アミド結合を生成する反応条件にさらしおいるの
で、圓然埗られた結合䜓は、ブレオマむシンの掻
性発珟に必須であるゞアミノプロピオン酞アミド
郚分の䞀玚アミノ基が結合反応に䜿われブレオマ
むシンの生物掻性を倱぀おいるず考えられる。 たた、䞊蚘結合方法で埗られた結合䜓はブレオ
マむシン、ペプロマむシンの末端アミン郚分が遊
離であるので、これらを甚いお䜜られた抗血枅は
ブレオマむシン、ペプロマむシンの末端アミンを
も認識し、䞡者を区別するず考えられる。したが
぀お、䞊蚘方法ではブレオマむシン、ペプロマむ
シンの倫々に぀いお、別の抗血枅を調補しなけれ
ばならないず考えられる。 そこで本発明者らブレオマむシンの掻性を保持
し、か぀皮々のブレオマむシン類を認識する抗血
枅を䜜りうるブレオマむシンの蛋癜たたはペプチ
ド結合䜓の補法に぀いお皮々怜蚎した結果、末端
に遊離䞀玚又は二玚アミノ基を有するブレオマむ
シン誘導䜓の掻性郚䜍を銅錯䜓ずしお保護したの
ち、末端アミノ基にカルボン酞又はその反応性誘
導䜓を有する基を導入しお埗られるブレオマむシ
ンを蛋癜たたはペプチドず瞮合させるこずによ
り、ブレオマむシン−蛋癜たたはペプチド結合䜓
が埗られるこずを芋い出した。 即ち本発明は䞋蚘䞀般匏〔〕 〔BX〕−NH−−NR2-oCH2Yo 〔〕 〔匏䞭〔BX〕は次匏 で衚わせる含銅䜓の堎合はキレヌト銅を省略
ブレオマむシン酞のカルボキシル基から氎酞基を
陀いた残基を瀺し、はアミノ基を぀なぐ結合鎖
を瀺し、䜎玚アルキレン、又は原子を介しお結
合したアルキレン、たずえば −CH2n−NCH3−CH2n′−−CH2n−
NH−CH2n′−
The present invention relates to a method for producing protein or polypeptide conjugates of bleomycin. Bleomycin in 1966
An anticancer antibiotic discovered by Umezawa et al., one of the inventors of the invention, in 2010 (Umezawa et al.: Journal of
Antibiotics, p. 200, 1966) 1 produced by the actinomycete Streptomyces verticillus.
It is a basic water-soluble glycopeptide that easily chelates divalent copper atoms, and 16 types of copper-containing bodies have been produced and isolated using conventional culture methods. (for example,
Umezawa et al.: Journal of Antibiotics
19A, p. 210 1966). Among these bleomycins, A1, A2, A5, B2, demethyl A2, etc. are already widely used in the clinical field of cancer treatment in the copper-free form of their mixture (hereinafter referred to as "bleomycin complex"). In particular, it has achieved excellent results in treating squamous cell carcinoma, skin cancer, head and neck cancer, lung cancer, and malignant lymphoma. Also, U.S. Patent No. 3922262 and U.S. Patent No.
Re30451 discloses various bleomycins. Due to the need for radioimmunoassay (hereinafter referred to as RIA) and enzyme immunoassay (hereinafter referred to as EIA) for bleomycins and their derivatives, the present inventors
We investigated methods of binding bleomycin to proteins or polypeptides. Three previous examples of binding bleomycins to proteins have been found in the literature. A.Brouton & J.E.
Strong reacted decoppered bleomycin complex with bovine serum albumin (BSA) using water-soluble carbodiimide in a phosphate buffer to obtain a bleomycin-BSA conjugate, which was used for RIA of bleomycin ( Cancer
Research 36 1419-1421, 1976). Also K.
FuJiwara, M. Yasuno, K. Kitagawa et al. GMBS
(N-γ-(maleimido-butyloxy)-
acylate pepromycin with succinimide),
A maleimide group was introduced and then an SH group was introduced.
A peplomycin-BSA conjugate is synthesized by reacting with BSA. At the same time, MBS (N-m-
A maleimide group is introduced by acylating copperless pepromycin with (maleimidobenzoyloxy succinimide), and this is reacted with the SH group of β-galactosidase to synthesize a pepromycin-β-galactosidase conjugate. (Canser Research 41 4121-4126, 1981) However, it has not been reported that bleomycin (or its derivatives)-protein conjugates made by any of the above methods have the biological activity of bleomycins, and Acylate the copper body or
Since the conjugate is exposed to reaction conditions that generate an amide bond, the primary amino group of the diaminopropionic acid amide moiety, which is essential for the expression of bleomycin activity, is used in the bonding reaction and the biological activity of bleomycin is lost. It is thought that it is on. In addition, in the conjugate obtained by the above binding method, the terminal amine moiety of bleomycin and pepromycin is free, so the antiserum made using these also recognizes the terminal amine of bleomycin and pepromycin, and it is difficult to distinguish between the two. Conceivable. Therefore, in the above method, it is considered necessary to prepare separate antisera for each of bleomycin and pepromycin. Therefore, the present inventors investigated various methods for producing bleomycin protein or peptide conjugates that retain the activity of bleomycin and can produce antiserum that recognizes various bleomycins. After protecting the active site of the bleomycin derivative as a copper complex, the bleomycin obtained by introducing a group having a carboxylic acid or a reactive derivative thereof into the terminal amino group is condensed with a protein or peptide to form a bleomycin-protein or peptide. It has been found that a conjugate can be obtained. That is, the present invention is based on the following general formula [] [BX]-NH-A-NR 2-o (CH 2 Y) o [] [where [BX] is the following formula It can be expressed as (in the case of copper-containing substances, chelate copper is omitted)
Represents a residue obtained by removing the hydroxyl group from the carboxyl group of bleomycin acid, A represents a bonding chain connecting an amino group, and lower alkylene or alkylene bonded via an N atom, such as -(CH 2 ) n -NCH 3 - (CH 2 ) n ′−, −(CH 2 ) n −
NH−(CH 2 ) n ′−,

【匏】 、及びm′は〜奜たしくは、たたは
の敎数を瀺し、は氎玠、又はアルキル基、
又はプニルで眮換されたアルキル基、䟋えば−
CH3
[Formula] (m and m' are integers of 2 to 6, preferably 3 or 4), R is hydrogen, or an alkyl group,
or an alkyl group substituted with phenyl, e.g.
CH3 ,

【匏】 を瀺し、は又はであり、はカルボキシル
基又はその反応性誘導䜓を瀺す。〕で衚わされる
新芏ブレオマむシン誘導䜓に蛋癜たたはポリペプ
チドを結合させるこずを特城ずするブレオマむシ
ン類の蛋癜たたはポリペプチド結合䜓の補造に関
するものである。 本発明で埗られるブレオマむシンの蛋癜又はポ
リペプチド結合䜓は反応の方法又は蛋癜の皮類な
どにより、蛋癜分子に察しお、結合するブレオ
マむシンの数は皮々異なるが、䞀般的には〜数
十個の範囲である。本発明で䜿甚される䞀般匏
〔〕のブレオマむシン誘導䜓は含銅䜓および脱
銅䜓のいずれでも䜿甚できる。 䞊蚘の䞀般匏〔〕のブレオマむシン誘導䜓ず
蛋癜又はポリペプチドずの瞮合は、通垞ペプチド
の瞮合に䜿甚される方法が䜿甚でき、䟋えばが
カルボキシル基である堎合には、通垞䜿甚される
瞮合剀の存圚䞋に蛋癜たたはポリペプチドを瞮合
するか、たたは、が反応性誘導䜓のずきはその
たた、必芁ならば瞮合剀を加えお、蛋癜たたはポ
リペプチドず瞮合させればよい。 䞊蚘䞀般匏〔〕で衚わされる化合物のうち、
補造䞊の容易なこずから奜たしいものずしおは
が−CH23−−CH23−NCH3−CH23−−
CH23−NH−CH23−−CH23−NH−
CH24−が氎玠又は、−プニル゚チル
である化合物があげられる。䞊蚘䞀般匏〔〕に
おけるで瀺されるカルボキシル基の反応性誘導
䜓は、蛋癜たたはポリペプチドのアミノ基ず反応
しうるものであれば特に制限はないが、通垞ペプ
チド結合の圢成に䜿甚される掻性゚ステル誘導䜓
が䜿甚される。 䞀般匏〔〕の化合物のうち代衚的なものずし
おは第䞀衚の化合物が挙げられる。なお衚䞭は
からカルボニルを陀いた基を瀺す。
[Formula], n is 1 or 2, and Y represents a carboxyl group or a reactive derivative thereof. The present invention relates to the production of a protein or polypeptide conjugate of bleomycins, which is characterized by binding a protein or polypeptide to a novel bleomycin derivative represented by the following. In the protein or polypeptide conjugate of bleomycin obtained in the present invention, the number of bleomycins bound to one protein molecule varies depending on the reaction method or the type of protein, but generally 1 to several tens of bleomycins are bound to one protein molecule. is within the range of The bleomycin derivative of the general formula [] used in the present invention can be used in either a copper-containing form or a copper-free form. For the condensation of the bleomycin derivative of the above general formula [] with a protein or polypeptide, a method normally used for peptide condensation can be used. For example, when Y is a carboxyl group, a commonly used condensing agent can be used. The protein or polypeptide may be condensed in the presence of Y, or if Y is a reactive derivative, it may be condensed with the protein or polypeptide as is, with the addition of a condensing agent if necessary. Among the compounds represented by the above general formula [],
A is preferable because it is easy to manufacture.
is −(CH 2 ) 3 −, −(CH 2 ) 3 −NCH 3 −(CH 2 ) 3 −, −
(CH 2 ) 3 −NH− (CH 2 ) 3 −, −(CH 2 ) 3 −NH−
Examples include compounds in which ( CH2 ) 4- ,R is hydrogen or 1-phenylethyl. The reactive derivative of the carboxyl group represented by Y in the above general formula [] is not particularly limited as long as it can react with the amino group of a protein or polypeptide, but active esters that are usually used to form peptide bonds Derivatives are used. Representative compounds of the general formula [] include the compounds shown in Table 1. In addition, in the table, X represents a group obtained by removing carbonyl from Y.

【衚】 䞊蚘䞀般匏〔〕で瀺される化合物は次のよう
に補造するこずが出来る。 䞀般匏〔〕 〔BX〕−NH−−NH− 〔〕 〔匏䞭〔BX〕は前蚘に同じ。〕で瀺さ
れるブレオマむシン誘導䜓に、カルボニル化合物
ずしお、OHC−COOH又はその塩を還元的に瞮
合するこずにより、前蚘䞀般匏〔〕においお
がカルボキシル基である化合物を埗るこずが出来
る。 瞮合に甚いる還元剀ずしおは、シアノ氎玠化ホ
り玠ナトリりムなどの氎玠化ホり玠化合物などが
あげられる。たたパラゞりム炭玠などの觊媒をも
ちいお接觊還元をおこな぀おもよい。カルボニル
化合物は、がの堎合、〜1.5モルを甚いれ
ば䞻ずしおの誘導䜓、モル以䞊甚いれば
の誘導䜓が䞻ずしお埗られる。が以倖
の堎合は、モル以䞊甚いれば良い。 反応は溶媒ずしお、メタノヌル、氎、ゞメチル
ホルムアミド、アセトニトリル、それらの混合液
が甚いられる。又、これらに、䟋えば酢酞ナトリ
りム、酢酞カリりム、リン酞ナトリりムなどの塩
及び、酢酞を単独に、又は適圓な割合で混合しお
甚いおも良い。 枩床は、〜50℃が良い。 以䞊のようにしお埗られた誘導䜓を単離するに
は、氎玠化ホり玠化合物を甚いた堎合には、塩酞
で反応液のPHをに合わせ宀枩で〜10分撹拌し
過剰の還元剀を分解したのち䞭和し、メタノヌル
を枛圧で溜去した埌、過剰のアルデヒド、ケトン
を゚ヌテル又はブタノヌルで抜出陀去し、続いお
次の脱塩操䜜を行な぀た。即ち吞着暹脂たずえば
アンバヌラむト XAD−ロヌム・アンド・ハ
ヌス瀟補を蒞留氎を甚いお充填したカラムに泚
入しお、目的物を吞着する。蒞留氎で塩類を掗い
流した埌、酞性の含氎メタノヌル、たずえば1/50
芏定塩酞氎溶液−メタノヌル4vで
溶出し、青色のブレオマむシン誘導䜓の分画を集
め必芁ならば、陰むオン亀換暹脂、ダり゚ツクス
44OH型ザ・ダり・ケミカル瀟補で䞭和
したのち枛圧䞋で濃瞮しお凍結也燥するず、誘導
䜓の青色粗粉末がえられる。 さらに玔床をあげるため぀ぎの操䜜を行なう。 䞊蚘の粉末を蒞留氎に溶解し、あらかじめPH
6.81/20モルリン酞−リン酞ナトリりム緩衝液
で平衡化したCMセフアデツクス −25Na
型フアルマシア、フアむンケミカル瀟補を充
填したカラムに泚入し吞着する。䞊蚘の緩衝液に
連続的に塩化ナトリりムを加えるこずによりナト
リりム濃床を1.0モルたで埐々に䞊昇させる盎線
濃床公配法により溶出する。がカルボキシル基
の堎合は、このクロマトグラフむヌで、の
誘導䜓が最も速く、぀いでの誘導䜓が溶出
し、未反応の原料が最埌に溶出する性質があるの
で、玫倖線吞収モニタヌを甚いるこずにより分離
するこずが可胜である。もし目的物の分画に䞍玔
物の混入が認められれば、䞊蚘クロマトグラフむ
ヌを再床行なうか、PH6.8の緩衝液のかわりにPH
4.5の1/20モル酢酞−酢酞ナトリりム緩衝液を甚
いお、クロマトグラフむヌを再床行ない、完党陀
去をはかればよい。 このようにしお埗られた目的物の分画を、先に
甚いたアンバヌラむト XAD−脱塩法で脱塩
したのち、凍結也燥するず、ブレオマむシン誘導
䜓の含銅䜓が青色の無定粉末で埗られる。 以䞊に説明した方法により補造されるブレオマ
むシン誘導䜓を芏定塩酞氎䞭で、105℃、20時
間加氎分解にかけるず、BLM類に共通する分解
生成物〔−トレオニン、β−アミノ−β−
−アミノ−−カルボキシ−−メチル−ピリミ
ゞン−−むルプロピオン酞、−アミノ−
−オキシ−−メチル−−ペンタン酞、β−オ
キシ−−ヒスチゞン、β−アミノ−−アラニ
ン、2′−−アミノ゚チル−4′−ビチアゟ
ヌル−−カルボン酞〕及び䞀般匏〔〕の原料
ブレオマむシンに察応したカルボキシル基を含む
䞀般匏〔〕で衚わされるアミン NH2−−NR2-oCH2COOHo 〔〕 〔匏䞭は前蚘に同じ。〕 が怜出された。又アンバヌリスト 15を甚いたメ
タノリシスでは、ブレオマむシンず同じ−グロ
ヌス、−−カルバモむル−−マンノヌスの
メチルグリコシドがガスクロマトグラフむヌで怜
出された。 以䞊の事実は本発明の方法によ぀お補造された
ブレオマむシン誘導䜓が前蚘匏〔〕で衚わされ
る化孊構造を有するこずを裏づけおいる。 たた、䞀般匏〔〕においおがカルボキシル
基の反応性誘導䜓である化合物は䟋えば次の様に
しお補造するこずが出来る。 䞀般匏〔〕においおがカルボキシル基であ
る化合物ず䞀般匏〔〕 HX 〔〕 〔匏䞭は前蚘に同じ〕で瀺される化合物を瞮
合剀で瞮合するこずにより補造できる。 瞮合剀ずしおは、ゞシクロヘキシルカルボゞむ
ミド、−゚チル−−−ゞメチルアミノプ
ロピルカルボゞむミド、−シクロヘキシル−
−−モルホリノ゚チルカルボゞむミド、
ゞむ゜プロピルカルボゞむミド、ゞプニルホス
ホルアゞデむトDPPA、ゞ゚チルホスホロシ
アニデむトDEPCなどがあげられる。 䞀般匏〔〕で瀺される化合物ずしおは、−
ニトロプノヌル、−ゞニトロプノヌ
ル、ペンタクロロプノヌル、2.4.5−トリクロ
ロプノヌル、ペンタフルオロプノヌル、−
ヒドロキシスクシンむミド、−ヒドロキシ−
−ノルボルネン−2.3−ゞカルボキシむミド等が
あげられる。 この瞮合に甚いられる溶媒は、反応に圱響をあ
たえないものであれば䜕でも良いが、通垞䞀般匏
〔〕及び〔〕で瀺される原料化合物を溶解す
る極性溶媒がよく、氎、ゞメチルホルムアミド、
ゞメチルアセトアミド、アセトニトリル、それら
の混合溶媒である。䞀般匏〔〕の化合物に察し
お、䞀般匏〔〕の化合物及び瞮合剀の割合は
0.5〜20圓量、奜たしくは〜10圓量である。 このようにしお埗られた瞮合物が望む掻性゚ス
テルであるこずは、IR吞収スペクトルで1780
1740cm-1付近に吞収垯を瀺すこず埌にのべるよう
に蛋癜ず結合物を䜜るこず、冷アルカリ氎で加氎
分解するず容易にもずのカルボキシル基をも぀化
合物にもどるこずから明らかである。 このようにしお埗られた䞀般匏〔〕の化合物
は、がカルボキシル基の反応性誘導䜓である堎
合には、単に䞭性又は埮アルカリ性の緩衝液䞭で
蛋癜又はポリペプチドず反応させるこずにより、
がカルボキシル基である化合物の堎合には、通
垞䜿甚しうる瞮合剀たずえば前蚘瞮合剀、奜たし
くは−゚チル−−−ゞメチルアミノプロ
ピルカルボゞむミド塩酞塩を甚いお、蛋癜又は
ポリペプチドず反応させるこずによりブレオマむ
シン−蛋癜又はポリペプチド結合䜓を埗るこずが
できる。反応枩床は通垞−5゜〜60℃このたしくは
℃〜30℃である。 本発明においお蛋癜又はポリペプチドず䞀般匏
〔〕の化合物の割合は、特に制限はないが、通
垞蛋癜又はポリペプチドに察しお䞀般匏〔〕の
化合物を過剰に甚いるのが奜たしく、䞀般匏
〔〕の化合物の量を倚くするこずにより蛋癜又
はポリペプチドに結合するブレオマむシンの量を
倚くするこずが出来る。䞊蚘の蛋癜又はポリペプ
チドずしおは、アルブミン、グロブリン、酵玠、
及びポリリゞンなどが挙げられる。䞊蚘反応液か
ら目的物であるブレオマむシン−蛋癜又はポリペ
プチド結合䜓を単離するには、通垞蛋癜又はポリ
ペプチドの粟補に甚いられる方法、たずえばゲル
濟過、限倖濟過、塩析、透析等の方法がすべお甚
いられる。 䞀䟋をあげるず、䞊蚘掻性゚ステル含銅䜓
を甚いお調補したブレオマむシン−BSA結合䜓
は、反応液を必芁なら限倖濟過しお濃瞮しPH7.5
のリン酞緩衝液で平衡化したSephadex G50の
カラムに泚入しお、クロマトグラフむヌを行なう
ず、青色の぀の分画に分れる。先に溶出される
分子量の倧きい青色物質が目的物含銅䜓であ
り、埌から溶出する青色分画には、原料の掻性゚
ステル及びその加氎分解物が含たれる。目的分画
を氎に察しお透析したのち凍結也燥するずブレオ
マむシン−BSA結合䜓含銅䜓が青色粉末ず
しお埗られる。このものはEIARIAに甚いる抗
血枅を䜜成するための免疫甚抗原ずしお有甚であ
る。 生成物の構造ゲルクロマトグラフむヌにおいお
目的物の分子量範囲にあるこず、ブレオマむシン
−銅錯䜓に由来する青色を瀺すこず、6Nå¡©é…ž110
℃、18時間の加氎分解により蛋癜又はポリペプチ
ド由来の通垞アミノ酞ず同時にブレオマむシン由
来の䞊蚘の特異アミノ酞であるβ−ヒドロキシス
チゞン等が怜出されるこずから、蛋癜又はポリペ
プチド及びブレオマむシンの䞡構造を持぀おいる
こずが確かめられる。さらに驚くべきこずは本物
質、䟋えば、−−−プニル゚チルア
ミノプロピルアミノブレオマむシン−BSA結
合䜓含銅䜓はHeLaS3现胞の増殖を阻害し
た。そのID50倀は57Όmlであ぀た。この事実
は、蛋癜郚分に癌に特異性をも぀キダリダヌを遞
んでやれば、ブレオマむシンを遞択的に癌組織に
運び、癌现胞をたたくこずが出来るず考えられ
る。 たた䞀般匏〔〕の化合物のうち掻性゚ステル
であるものは、䞭性か぀宀枩以䞋ずいう緩和な条
件で蛋癜ず結合出来るので、蛋癜ずしお酵玠を甚
いた堎合に酵玠掻性の消倱も少ないため、この方
法で調補されたブレオマむシン−酵玠結合䜓は、
EIAにおける暙識抗原ずしお䜿甚出来る。結合さ
せる酵玠は掻性に関䞎しないアミノ基を有するも
のであれば良く、パヌオキシダヌれ、β−−ガ
ラクトシダヌれ、アルカリフオスフアタヌれ、グ
ルコヌスオキシダヌれ、リゟチヌムなどがある。 次に本発明を実斜䟋により具䜓的に説明する。 実斜䟋  䞀般匏〔〕で衚わされる化合物の合成 む −−−プニル゚チルアミノ
プロピルアミノブレオマむシン塩酞塩含
銅䜓500mgを50mlのメタノヌルに溶解しグ
リオキシル酞ナトリりム氎和物66mgを添加
し、぀いで20mgのシアノ氎玠化ホり玠ナトリ
りムを添加した。40℃、20時間反応した埌、
芏定塩酞氎溶液で反応埌のPHを1.0に䞋げ、
10分間攟眮しお反応を䞊めた。芏定氎酞化
ナトリりムで䞭和したのち、枛圧䞋でメタノ
ヌルを溜去し、残枣に蒞留氎を加えお10mlず
した。これをあらかじめPH6.81/20モルリ
ン酞緩衝液で平衡化したCMセフアデツクス
−25Na型フアルマシア、フアむン
ケミカル瀟補を充填したカラム100ml容
に泚入し吞着した。䞊蚘の緩衝液に連続的に
塩化ナトリりムを加えるこずによりナトリり
ム濃床を1.0モルたで埐々に䞊昇させる盎線
濃床募配法により溶出し0.1〜0.15モル前埌
で溶出する青色の分画50mlを集め、予め蒞留
氎で充填したアンバヌラむト XAD−ロ
ヌム・アンド・ハヌス瀟補のカラムに
100ml容に泚入しお、目的物を吞着した。
蒞留氎150mlでカラムをあら぀た埌、1/50
塩酞氎溶液−メタノヌル4vで
溶出した。青色の分画を集め、陰むオン亀換
暹脂、ダり゚ツクス 44OH型ザ・ダ
り・ケミカル瀟補で䞭和したのち、枛圧䞋
で濃瞮しお凍結也燥するこずにより化合物番
号の化合物の青色粉末270mgを埗た。 本品の融点は210〜212℃分解で、蒞留
氎で枬定した玫倖吞収極倧は292ΌE1
cmは118.7であ぀た。臭化カリ錠剀法
で枬定した赀倖吞収倧波数cm-1は3400
172016401550146013701330
1130110010601010980920760で
あ぀た。 その他の理化孊的性状は第衚に瀺した通
りである。 ロ −〔−メチル−−−アミノプロピ
ルアミノ〕プロピルアミノブレオマむシン
塩酞塩含銅䜓を100mlの0.1N酢酞
カリメタノヌル溶液−0.1N酢酞メタノヌル
溶液1vに溶解し、グリオキシ
ル酞57mgを添加し、぀いで26mgのシアノ氎玠
化ホり玠ナトリりムを添加した。40℃24時間
反応した埌、芏定塩酞氎溶液で反応液のPH
を1.0に䞋げ、10分間攟眮しお反応を止めた。
芏定氎酞化ナトリりムで䞭和したのち、枛
圧䞋でメタノヌルを溜去し、残枣に蒞留氎を
加えお20mlずした。これをあらかじめPH6.8
1/20モルリン酞緩衝液で平衡化したCMセフ
アデツクス −25Na型フアルマシ
ア、フアむンケミカル瀟補を充填したカラ
ム100ml容に泚入し吞着した。䞊蚘の緩
衝液に連続的に塩化ナトリりムを加えるこず
によりナトリりム濃床を1.0モルたで埐々に
䞊昇させる盎線濃床募配法により溶出し0.3
モル前埌で溶出する青色の分画120mlを集め、
予め蒞留氎で充填したアンバヌラむト
XAD−ロヌム・アンド・ハヌス瀟補の
カラム100ml容の泚入しお、目的物を吞
着した。蒞留氎150mlでカラムをあら぀た埌、
1/50塩酞氎溶液−メタノヌル4v
で溶出した。青色の分画を集め、陰むオ
ン亀換暹脂、ダり゚ツクス 44OH型
ザ・ダり・ケミカル瀟補で䞭和したのち、
枛圧䞋で濃瞮しお凍結也燥するこずにより化
合物No.の化合物の青色粉末630mgを埗た。 本品の融点は207℃分解で、蒞留氎で
枬定した玫倖吞収極倧は292ΌE1
cmは100であ぀た。臭化カリ錠剀法で枬定し
た赀倖吞収極倧波数cm-1は34002950
173016401580156014601400
138013301140110010701020990
930であ぀た。 その他の理化孊的性状は第衚に瀺した通
りである。 䞊蚘の反応で−〔−メチル−−−
アミノプロピルアミノ〕プロピルアミノブ
レオマむシン塩酞塩含銅䜓グリオ
キシル酞140mg、シアノ氎玠化ホり玠ナトリ
りム52mgを甚いた結果、510mgの化合物No.
の化合物衚が埗られた。 本品の融点は202〜204℃分解、蒞留氎
で枬定した玫倖吞収極倧は292Ό、E1
cmは107.3であ぀た。臭化カリ錠剀法で枬
定した赀倖吞収極倧波数cm-1は3430
295017201640155014601390
137013201250109011301050
1010990であ぀た。 その他の理化孊的性状は第衚に瀺した通
りである。
[Table] The compound represented by the above general formula [] can be produced as follows. General formula [] [BX]-NH-A-NH-R [] [In the formula, [BX], A, and R are the same as above. ] By reductively condensing OHC-COOH or a salt thereof as a carbonyl compound to the bleomycin derivative represented by
It is possible to obtain a compound in which is a carboxyl group. Examples of the reducing agent used in the condensation include borohydride compounds such as sodium cyanoborohydride. Catalytic reduction may also be carried out using a catalyst such as palladium on carbon. When R is H in the carbonyl compound, if 1 to 1.5 mol is used, a derivative with n=1 is mainly obtained, and when 3 mol or more is used, a derivative with n=2 is mainly obtained. When R is other than H, it may be used in an amount of 1 mole or more. The reaction uses methanol, water, dimethylformamide, acetonitrile, and a mixture thereof as a solvent. Additionally, salts such as sodium acetate, potassium acetate, and sodium phosphate, and acetic acid may be used alone or in a mixture at an appropriate ratio. The temperature is preferably 0 to 50°C. To isolate the derivative obtained as above, when using a borohydride compound, adjust the pH of the reaction solution to 1 with hydrochloric acid, stir at room temperature for 5 to 10 minutes, and remove excess reducing agent. After decomposition and neutralization, methanol was distilled off under reduced pressure, and excess aldehyde and ketone were extracted and removed with ether or butanol, followed by the next desalting operation. That is, an adsorption resin such as Amberlite XAD-2 (manufactured by Rohm and Haas) is injected into a column filled with distilled water to adsorb the target substance. After washing away the salts with distilled water, add acidic water-containing methanol, e.g. 1/50
Elute with a normal aqueous hydrochloric acid solution-methanol (1:4 v/v), collect the blue bleomycin derivative fraction, and if necessary, use an anion exchange resin or Dowex.
44 (OH type; manufactured by The Dow Chemical Company), concentrated under reduced pressure, and freeze-dried to obtain a blue coarse powder of the derivative. To further increase the purity, perform the following operation. Dissolve the above powder in distilled water and adjust the pH beforehand.
CM Sephadex C-25 (Na+
The sample is injected into a column filled with Pharmacia (manufactured by Fine Chemical Co.) and adsorbed. Elution is performed by a linear concentration distribution method in which the sodium concentration is gradually increased to 1.0M by continuously adding sodium chloride to the above buffer solution. When Y is a carboxyl group, in this chromatography, the derivative with n=2 elutes fastest, followed by the derivative with n=1, and the unreacted raw material elutes last, so an ultraviolet absorption monitor is used. It is possible to separate by using . If impurities are found in the fraction of the target product, either repeat the above chromatography or use a PH6.8 buffer instead of the PH6.8 buffer.
Complete removal can be achieved by repeating chromatography using 4.5 1/20 molar acetic acid-sodium acetate buffer. The thus obtained fraction of the target product was desalted using the Amberlite XAD-2 desalting method used previously, and then freeze-dried to obtain the copper-containing substance of the bleomycin derivative as a blue amorphous powder. It will be done. When the bleomycin derivative produced by the method described above is hydrolyzed in 6N hydrochloric acid at 105°C for 20 hours, decomposition products common to BLMs [L-threonine, β-amino-β-(4
-amino-6-carboxy-5-methyl-pyrimidin-2-yl)propionic acid, 4-amino-3
-oxy-2-methyl-n-pentanoic acid, β-oxy-L-histidine, β-amino-L-alanine, 2'-(2-aminoethyl)-2,4'-bithiazole-4-carboxylic acid] and an amine represented by the general formula [] containing a carboxyl group corresponding to the raw material bleomycin of the general formula [] NH 2 -A-NR 2-o (CH 2 COOH) o [[]] [wherein A and R are the same as above] . ] was detected. Furthermore, in methanolysis using Amberlyst 15, the same L-gulose and 3-0-carbamoyl-D-mannose methyl glycosides as bleomycin were detected by gas chromatography. The above facts support that the bleomycin derivative produced by the method of the present invention has the chemical structure represented by the above formula []. Further, a compound in which Y is a reactive derivative of a carboxyl group in the general formula [] can be produced, for example, as follows. It can be produced by condensing a compound represented by the general formula [] in which Y is a carboxyl group with a compound represented by the general formula [] HX [] [wherein X is the same as above] using a condensing agent. As the condensing agent, dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, 1-cyclohexyl-
3-(2-morpholinoethyl)carbodiimide,
Examples include diisopropylcarbodiimide, diphenylphosphorazidate (DPPA), and diethylphosphorocyanidate (DEPC). As a compound represented by the general formula [], p-
Nitrophenol, o, p-dinitrophenol, pentachlorophenol, 2.4.5-trichlorophenol, pentafluorophenol, N-
Hydroxysuccinimide, N-hydroxy-5
-Norbornene-2,3-dicarboximide and the like. The solvent used in this condensation may be any solvent as long as it does not affect the reaction, but polar solvents that dissolve the raw material compounds represented by the general formulas [] and [] are usually preferred, such as water, dimethylformamide,
Dimethylacetamide, acetonitrile, and a mixed solvent thereof. The ratio of the compound of general formula [] and the condensing agent to the compound of general formula [] is
It is 0.5 to 20 equivalents, preferably 1 to 10 equivalents. The condensate obtained in this way is the desired active ester, as shown by the IR absorption spectrum of 1780,
This is clear from the fact that it shows an absorption band around 1740 cm -1 and then forms a bond with protein, and that it easily returns to its original compound with a carboxyl group when hydrolyzed with cold alkaline water. When Y is a reactive derivative of a carboxyl group, the compound of the general formula [] thus obtained can be prepared by simply reacting with a protein or polypeptide in a neutral or slightly alkaline buffer.
In the case of a compound in which Y is a carboxyl group, the protein or polypeptide is treated with a commonly used condensing agent, such as the above-mentioned condensing agent, preferably 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. A bleomycin-protein or polypeptide conjugate can be obtained by the reaction. The reaction temperature is usually -5° to 60°C, preferably 0°C to 30°C. In the present invention, the ratio of the protein or polypeptide to the compound of the general formula [] is not particularly limited, but it is usually preferable to use the compound of the general formula [] in excess of the protein or polypeptide. By increasing the amount of the compound, the amount of bleomycin bound to the protein or polypeptide can be increased. The above proteins or polypeptides include albumin, globulin, enzyme,
and polylysine. To isolate the target bleomycin-protein or polypeptide conjugate from the above reaction solution, methods commonly used for protein or polypeptide purification are used, such as gel filtration, ultrafiltration, salting out, and dialysis. are all used. To give an example, the above active ester (copper-containing body)
The bleomycin-BSA conjugate prepared using
When injected into a Sephadex G50 column equilibrated with a phosphate buffer and subjected to chromatography, it separates into two blue fractions. The blue substance with a large molecular weight that is eluted first is the target substance (copper-containing substance), and the blue fraction that is eluted later contains the active ester of the raw material and its hydrolyzate. When the desired fraction is dialyzed against water and then freeze-dried, a bleomycin-BSA conjugate (copper-containing compound) is obtained as a blue powder. This product is useful as an antigen for immunization to create antiserum for use in EIA and RIA. Product structure Gel chromatography shows that the molecular weight is within the target product's molecular weight range, that it shows a blue color derived from the bleomycin-copper complex, that 6N hydrochloric acid 110
℃ for 18 hours, the above-mentioned specific amino acids derived from bleomycin, such as β-hydroxystidine, are detected at the same time as normal amino acids derived from proteins or polypeptides. I can confirm that I have it. More surprisingly, the present substance, for example, 3-((S)-1-phenylethylamino)propylaminobleomycin-BSA conjugate (copper-containing body) inhibited the proliferation of HeLaS 3 cells. Its ID 50 value was 57 ÎŒg/ml. This fact suggests that if a carrier is selected that has cancer specificity in its protein portion, it will be possible to selectively transport bleomycin to cancer tissues and attack cancer cells. In addition, active ester compounds of the general formula [] can bind to proteins under mild conditions of being neutral and below room temperature, so when an enzyme is used as the protein, there is less loss of enzyme activity, so this method The bleomycin-enzyme conjugate prepared by
It can be used as a labeled antigen in EIA. The enzyme to be bound may be any enzyme having an amino group that is not involved in the activity, and examples thereof include peroxidase, β-D-galactosidase, alkaline phosphatase, glucose oxidase, and lysozyme. Next, the present invention will be specifically explained using examples. Example 1) Synthesis of compound represented by general formula [] a) -((S)-1-phenylethylamino)
500 mg of propylaminobleomycin dihydrochloride (copper-containing substance) was dissolved in 50 ml of methanol, 66 mg of sodium glyoxylate hydrate was added, and then 20 mg of sodium cyanoborohydride was added. After reacting at 40℃ for 20 hours,
Lower the pH after the reaction to 1.0 with a 6N aqueous hydrochloric acid solution,
The reaction was increased by leaving it for 10 minutes. After neutralizing with 1N sodium hydroxide, methanol was distilled off under reduced pressure, and distilled water was added to the residue to make 10 ml. A column (100 ml) filled with CM Sephadex C-25 (Na+ type: Pharmacia, manufactured by Fine Chemical Co., Ltd.) equilibrated with 1/20 molar phosphate buffer at pH 6.8 in advance.
was injected into and adsorbed. Elute by the linear concentration gradient method in which the sodium concentration is gradually increased to 1.0 mol by continuously adding sodium chloride to the above buffer solution, collect 50 ml of the blue fraction that elutes at around 0.1 to 0.15 mol, and pre-prepare with distilled water. (100 ml volume) was injected into a column of Amberlite XAD-2 (manufactured by Rohm and Haas) packed with 100 ml of Amberlite, and the target substance was adsorbed.
After cleaning the column with 150ml of distilled water, 1/50M
Elution was performed with an aqueous hydrochloric acid solution-methanol (1; 4 v/v). The blue fractions were collected and neutralized with an anion exchange resin, Dowex 44 (OH type: manufactured by The Dow Chemical Company), and then concentrated under reduced pressure and freeze-dried to obtain the blue color of Compound No. 1. 270 mg of powder was obtained. The melting point of this product is 210-212℃ (decomposition), and the maximum ultraviolet absorption measured with distilled water is 292mÎŒ, E1
%/1cm was 118.7. The infrared absorption large wavenumber (cm -1 ) measured by the potassium bromide tablet method is 3400,
1720, 1640, 1550, 1460, 1370, 1330,
They were 1130, 1100, 1060, 1010, 980, 920, 760. Other physical and chemical properties are shown in Table 2. b) - [N-Methyl-N-(3-aminopropyl)amino]propylaminobleomycin trihydrochloride (copper-containing compound) 1g was added to 100ml of 0.1N acetic acid potassium methanol solution - 0.1N acetic acid methanol solution (2:1v/ v) and added 57 mg of glyoxylic acid followed by 26 mg of sodium cyanoborohydride. After reacting at 40℃ for 24 hours, the pH of the reaction solution was adjusted with 6N hydrochloric acid aqueous solution.
was lowered to 1.0 and left for 10 minutes to stop the reaction.
After neutralizing with 1N sodium hydroxide, methanol was distilled off under reduced pressure, and distilled water was added to the residue to make 20 ml. This is done in advance at PH6.8,
It was injected into a column (100 ml volume) packed with CM Sephadex C-25 (Na+ type: Pharmacia, manufactured by Fine Chemical Co., Ltd.) equilibrated with 1/20 molar phosphate buffer and adsorbed. Elution was performed using a linear concentration gradient method in which the sodium concentration was gradually increased to 1.0M by continuously adding sodium chloride to the above buffer solution.
Collect 120ml of the blue fraction that elutes around the molar range,
Amberlite pre-filled with distilled water
The target product was adsorbed by injecting it into a column (100 ml) of XAD-2 (manufactured by Rohm and Haas). After cleaning the column with 150ml of distilled water,
1/50M hydrochloric acid aqueous solution - methanol (1:4v/
v). Collect the blue fraction and use an anion exchange resin, Dowex 44 (OH type;
After neutralizing with Dow Chemical Co.),
By concentrating and freeze-drying under reduced pressure, 630 mg of blue powder of Compound No. 5 was obtained. The melting point of this product is 207℃ (decomposition), and the maximum ultraviolet absorption measured with distilled water is 292mÎŒ, E1%/1
cm was 100. The maximum infrared absorption wavenumber (cm -1 ) measured by the potassium bromide tablet method was 3400, 2950,
1730, 1640, 1580, 1560, 1460, 1400,
1380, 1330, 1140, 1100, 1070, 1020, 990,
It was 930. Other physical and chemical properties are shown in Table 2. In the above reaction, 3-[N-methyl-N-(3-
Using 1 g of glyoxylic acid, 140 mg of glyoxylic acid, and 52 mg of sodium cyanoborohydride, 510 mg of compound No. 6 was obtained.
The following compounds (Table 1) were obtained. The melting point of this product is 202-204℃ (decomposed), the maximum ultraviolet absorption measured in distilled water is 292mÎŒ, E1%/
1 cm was 107.3. The maximum infrared absorption wavenumber (cm -1 ) measured by the potassium bromide tablet method is 3430,
2950, 1720, 1640, 1550, 1460, 1390,
1370, 1320, 1250, 1090, 1130, 1050,
It was 1010,990. Other physical and chemical properties are shown in Table 2.

【衚】 ハ むで埗られた化合物No.の化合物50mg
をmlのゞメチルホルムアミドに溶解し、
−ヒドロキシコハク酞むミド36mgを添加し、
぀いでゞシクロヘキシルカルボゞむミド31mg
を添加した。宀枩20時間撹拌し反応した埌、
20mlのアセトンを加え生じた沈柱を濟取し
た。沈柱をアセトンで掗぀た埌也燥し、氎に
溶解、䞍溶物をろ別埌、ろ液を凍結也燥する
こずにより、化合物No.の化合物衚の
青色粉末46mgを埗た。臭化カリ錠剀法で枬定
した本品の赀倖吞収極倧波数cm-1は
34002950182017801730、1640
155014601370124012101100
10601010920880810であ぀た。 その他の理化孊的性状は第衚に瀺した通
りである。 䞊蚘の方法で−ヒドロキシコハク酞むミ
ドのかわりに、−ニトロプノヌル又は
−ヒドロキシ−ノルボルネン−−ゞ
カルボキシむミドを甚いお反応するこずによ
り、倫々化合物No.の化合物、化合物No.の
化合物を合成した。 これらの理化孊的性状は第衚に瀺した通
りである。 ニ ロで埗られた化合物No.の化合物30mg
をmlのゞメチルホルムアミドず0.05mlの蒞
留氎の混合液に溶解し、−ヒドロキシ−
−ノルボルネン−−ゞカルボキシむミ
ド33mgを添加し、぀いでゞシクロヘキシルカ
ルボゞむミド19mgを添加した。宀枩15時間撹
拌し反応した埌、20mlのアセトンを加え生じ
た沈柱を濟取した。沈柱をアセトンで掗぀た
埌也燥し、氎に溶解、䞍溶物をろ別埌ろ液を
凍結也燥するこずにより化合物No.の化合物
の青色粉末30mgを埗た。臭化カリ錠剀法で枬
定した本品の赀倖吞収極倧波数cm-1は
343029501780174017201650
158015601460138013201240
1140110010601010であ぀た。 その他の理化孊的性状は第衚に瀺した通
りである。 䞊蚘の方法で、−ヒドロキシ−ノルボ
ルネン−−ゞカルボキシむミドのかわ
りに、−ヒドロキシコハク酞むミドを甚い
お反応するこずにより、化合物No.の化合物
を合成した。 これらの理化孊的性状は第衚に瀺した通
りである。 又、さらに、䞊蚘の方法においお、化合物
No.の化合物のかわりに化合物No.の化合物
を甚いお、−ヒドロキシコハク酞むミド、
−ヒドロキシ−ノルボルネン−−
ゞカルボキシむミドの倫々ず反応させるこず
により倫々化合物No.10の化合物を埗た。 これらの理化孊的性状は第衚に瀺した通
りである。 衚  化合物番号 薄局クロマトグラフむヌRf倀  0.46  0.15  0.45  0.89  0.86  0.82 10 0.81 シリカゲル60F254シラナむズドメ
ルク瀟、20酢酞アンモン−メタノヌル
5050v䜆し、化合物では
 内に20酢酞アンモン−メタノヌル
7030vでの倀を瀺す。  ブレオマむシンの蛋癜結合䜓の合成 む 牛血枅アルブミンBSA53mgを2.5ml
の0.05Mリン酞緩衝液PH7.5に溶解し前
蚘ロで埗た化合物を198mgブレオ
マむシンBSAモル比175添加し
た。宀枩䞀倜反応埌、あらかじめ䞊蚘の緩衝
液で平衡化した150ml容のセフアデツクス
−50を充填したカラムに泚入し、同じ緩衝
液でクロマトグラフむヌを行ない、溶出液を
2.5mlづ぀分画した。ブレオマむシン銅によ
る青色バンドが、分画18〜24ず分画48〜65に
倫々溶出された。分画18〜24は同時に蛋癜に
由来する280nmの吞収を瀺したこずから、結
合䜓の生成が認められた。分画18〜24を氎に
察しお䞀倜透析埌凍結也燥し、43mgのブレオ
マむシン−BSA結合䜓の青色粉末を埗た。 このものの280nmにおけるE1cmは
23.9であ぀た。BSA及びブレオマむシンの
280nmにおける倫々のE1倀、6.6105.6を
甚いお結合数を蚈算するず、BSA1分子圓り
ブレオマむシン8.4分子が結合しおいた。 又、BSA53mgに察しお、化合物を32mg
ブレオマむシンBSAモル比25甚
いお反応を行なわせ40mgの結合䜓を埗た。こ
のものの280nmにおけるE1cmは12.61
であり、BSA1分子あたり、2.6分子のブレオ
マむシンを結合しおいた。 ロ −むず同様にしお、BSA23mgず化
合物を23mg反応させ、粟補した結果、21mg
の結合䜓を埗た。このものの280nmにおける
E1cmは3.31を瀺し、むず同様な蚈算
により、BSA1分子あたり15.1分子のブレオ
マむシンを結合しおいた。
[Table] 50 mg of compound No. 1 obtained in c) b)
was dissolved in 1 ml of dimethylformamide, and N
- adding 36 mg of hydroxysuccinimide;
Then dicyclohexylcarbodiimide 31mg
was added. After stirring and reacting at room temperature for 20 hours,
20 ml of acetone was added and the resulting precipitate was collected by filtration. The precipitate was washed with acetone, dried, dissolved in water, insoluble materials were filtered off, and the filtrate was freeze-dried to obtain 46 mg of blue powder of Compound No. 2 (Table 1). The maximum infrared absorption wavenumber (cm -1 ) of this product measured using the potassium bromide tablet method is
3400, 2950, 1820, 1780, 1730, 1640,
1550, 1460, 1370, 1240, 1210, 1100,
They were 1060, 1010, 920, 880, 810. Other physical and chemical properties are shown in Table 3. In the above method, instead of N-hydroxysuccinimide, p-nitrophenol or N
-Hydroxy5-norbornene-2,3-dicarboximide was used to synthesize Compound No. 3 and Compound No. 4, respectively. Their physical and chemical properties are shown in Table 3. d) 30 mg of compound No. 5 obtained in b)
was dissolved in a mixture of 1 ml of dimethylformamide and 0.05 ml of distilled water, and N-hydroxy-5
33 mg of -norbornene-2,3-dicarboximide was added, followed by 19 mg of dicyclohexylcarbodiimide. After stirring and reacting at room temperature for 15 hours, 20 ml of acetone was added and the resulting precipitate was collected by filtration. The precipitate was washed with acetone, dried, dissolved in water, filtered to remove insoluble matter, and the resulting solution was freeze-dried to obtain 30 mg of a blue powder of Compound No. 9. The maximum infrared absorption wavenumber (cm -1 ) of this product measured using the potassium bromide tablet method is
3430, 2950, 1780, 1740, 1720, 1650,
1580, 1560, 1460, 1380, 1320, 1240,
They were 1140, 1100, 1060, 1010. Other physical and chemical properties are shown in Table 3. Compound No. 7 was synthesized by the above method using N-hydroxysuccinimide instead of N-hydroxy 5-norbornene-2,3-dicarboximide. Their physical and chemical properties are shown in Table 3. Furthermore, in the above method, the compound
Using compound No. 6 instead of compound No. 5, N-hydroxysuccinimide,
N-hydroxy 5-norbornene-2,3-
Compound Nos. 8 and 10 were obtained by reacting with each dicarboximide. Their physical and chemical properties are shown in Table 3. Table 3 Compound number Thin layer chromatography Rf value *1 2 0.46 3 0.15 4 0.45 7 0.89 8 0.86 9 0.82 10 0.81 *1: Silica gel 60F254, Silanized (Merck & Co.), 20% ammonium acetate-methanol (50:50v/ (v%) However, for compound 6), the value in parentheses is shown in 20% ammonium acetate-methanol (70:30v/v%). 2) Synthesis of protein conjugate of bleomycin a) 2.5ml of 53mg of bovine serum albumin (BSA)
198 mg of Compound 2 obtained in 1) B) above (bleomycin/BSA molar ratio = 1:175) was added, dissolved in 0.05M phosphate buffer (PH7.5). After reacting overnight at room temperature, add 150 ml of Sephadex, which has been equilibrated with the above buffer.
Inject into a column packed with G-50, perform chromatography with the same buffer, and collect the eluate.
It was fractionated into 2.5 ml portions. Blue bands due to copper bleomycin were eluted in fractions 18-24 and 48-65, respectively. Fractions 18 to 24 simultaneously exhibited protein-derived absorption at 280 nm, indicating the formation of a conjugate. Fractions 18 to 24 were dialyzed against water overnight and then lyophilized to obtain 43 mg of a blue powder of bleomycin-BSA conjugate. E1%/1cm of this material at 280nm is
It was 23.9. BSA, and bleomycin
When the number of bonds was calculated using the respective E1% values at 280 nm, 6.6 and 105.6, 8.4 molecules of bleomycin were bound per 1 molecule of BSA. Also, 32mg of compound 2 for 53mg of BSA
(Bleomycin/BSA molar ratio = 1:25) was used to carry out the reaction, and 40 mg of the conjugate was obtained. E1%/1cm of this product at 280nm is 12.61
2.6 molecules of bleomycin were bound per molecule of BSA. b) In the same manner as in 2)-a), 23 mg of BSA was reacted with 23 mg of compound 9, and as a result of purification, 21 mg
The conjugate was obtained. At 280nm of this
E1%/1cm was 3.31, and according to the same calculation as in a), 15.1 molecules of bleomycin were bound per molecule of BSA.

Claims (1)

【特蚱請求の範囲】  䞀般匏 〔BX〕−NH−−NR2-o−CH2Yo 〔匏䞭〔BX〕はブレオマむシン酞のカルボキ
シル基から氎酞基を陀いた残基を瀺し、は䜎玚
アルキレン又は窒玠原子を介しお結合したアルキ
レンを、は又はアルキル又はプニルで眮換
されたアルキルを、はカルボキシル基たたはそ
の反応性誘導䜓を瀺し、はたたはである〕 で衚されるブレオマむシン誘導䜓ず蛋癜たたはポ
リペプチドを瞮合させるこずを特城ずするブレオ
マむシンの蛋癜たたはポリペプチド結合䜓の補造
方法。
[Claims] 1 General formula [BX] -NH-A-NR 2-o -(CH 2 Y) o [In the formula, [BX] represents a residue obtained by removing the hydroxyl group from the carboxyl group of bleomycin acid, A is a lower alkylene or an alkylene bonded through a nitrogen atom, R is H or an alkyl substituted with alkyl or phenyl, Y is a carboxyl group or a reactive derivative thereof, and n is 1 or 2. A method for producing a bleomycin protein or polypeptide conjugate, which comprises condensing the represented bleomycin derivative with a protein or polypeptide.
JP58122387A 1983-07-07 1983-07-07 Novel method for producing bonded product of bleomycin and protein or polypeptide Granted JPS6028989A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58122387A JPS6028989A (en) 1983-07-07 1983-07-07 Novel method for producing bonded product of bleomycin and protein or polypeptide
JP25192990A JPH03141278A (en) 1983-07-07 1990-09-25 Bleomycin derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122387A JPS6028989A (en) 1983-07-07 1983-07-07 Novel method for producing bonded product of bleomycin and protein or polypeptide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25192990A Division JPH03141278A (en) 1983-07-07 1990-09-25 Bleomycin derivative

Publications (2)

Publication Number Publication Date
JPS6028989A JPS6028989A (en) 1985-02-14
JPH0428000B2 true JPH0428000B2 (en) 1992-05-13

Family

ID=14834536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122387A Granted JPS6028989A (en) 1983-07-07 1983-07-07 Novel method for producing bonded product of bleomycin and protein or polypeptide

Country Status (1)

Country Link
JP (1) JPS6028989A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239488B (en) * 2019-07-18 2022-09-20 䞊海医药工䞚研究院 Purification method of copper chelate of bleomycin compound

Also Published As

Publication number Publication date
JPS6028989A (en) 1985-02-14

Similar Documents

Publication Publication Date Title
US4046722A (en) Immunological materials
DE69730352T2 (en) METHOD FOR PRODUCING A MEDICAMENT COMPLEX
DE69730332T2 (en) Alkyldextran-polyalcohol drug complexes
JP2930965B2 (en) Complex of vinca derivative having fatty chain at C-3 position
US5869466A (en) Vitamin B12 mediated oral delivery systems for GCSF
US4950738A (en) Amine derivatives of anthracycline antibiotics
CA2134348C (en) Polysaccharide derivatives and drug carriers
US4376765A (en) Medicaments, their preparation and compositions containing same
JPH05501726A (en) Novel linker for bioactive agents
AU1954988A (en) Amine derivatives of anthracycline antibiotics and antibody conjugates thereof
WO1999061061A1 (en) Drug composites
US20030166513A1 (en) Dds compound and process for the preparation thereof
EP0325270A2 (en) Anticancer conjugates
JPH049771B2 (en)
HUT72750A (en) Method for preparing thioether conjugates
US20030103934A1 (en) Drugs having long-term retention in target tissue
JPH0428000B2 (en)
JPS62167800A (en) Ribosome deactivated glycoprotein modified by oxidation of oxide unit and formation of schiff base and in vivo lasting immunotoxin
JPS6172799A (en) Glycopeptides and manufacture
JPH046716B2 (en)
JPH0427999B2 (en)
JPH0651643B2 (en) Cell-killing modified immunoglobulin and method for producing the same
JPS62246599A (en) Novel composite of vinblastine and its derivative and its production and pharmocological composition
JPS59161395A (en) Bleomycin-concanavalin A conjugate
WO1987004171A1 (en) Process for preparing antibody complex