JPH04278584A - Solid-state image device and manufacture and drive method thereof - Google Patents
Solid-state image device and manufacture and drive method thereofInfo
- Publication number
- JPH04278584A JPH04278584A JP3039997A JP3999791A JPH04278584A JP H04278584 A JPH04278584 A JP H04278584A JP 3039997 A JP3039997 A JP 3039997A JP 3999791 A JP3999791 A JP 3999791A JP H04278584 A JPH04278584 A JP H04278584A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- conversion element
- charge
- solid
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims description 80
- 238000003384 imaging method Methods 0.000 claims description 33
- 238000000926 separation method Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 10
- 230000000779 depleting effect Effects 0.000 claims 1
- 239000007772 electrode material Substances 0.000 claims 1
- 238000002955 isolation Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、ビデオカメラ等に利用
される固体撮像装置とその製造方法およびその駆動方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device used in a video camera, a method of manufacturing the same, and a method of driving the same.
【0002】0002
【従来の技術】電荷結合素子(CCD)に代表される電
荷転送素子を用いた固体撮像装置はその低雑音特性等の
優位性により近年その実用化が著しい。2. Description of the Related Art Solid-state imaging devices using charge transfer devices such as charge-coupled devices (CCDs) have been put into practical use rapidly in recent years due to their superiority in low noise characteristics.
【0003】以下、図面を参照しながら従来の固体撮像
装置の構造について説明する。図5に従来の固体撮像装
置の構成を示す。同図はいわゆるインタライン転送方式
CCDの要部を示したものである。1は光電変換素子、
2は電荷転送手段である垂直CCDの一部を構成する転
送チャンネル、3,4は光電変換素子1と電荷転送手段
の一部を形成する転送チャンネル2との分離部、5,6
,7,8は電荷転送手段の一部を構成する転送電極で、
5,7は下層側転送電極、6,8は上層側転送電極であ
る。矢印9で示すように分離部4と転送電極5が重なっ
た領域が電荷読み出し手段9aであり、光電変換素子1
で発生した電荷はその電荷読み出し手段9aを経て転送
チャンネル2に読み出される。The structure of a conventional solid-state imaging device will be described below with reference to the drawings. FIG. 5 shows the configuration of a conventional solid-state imaging device. This figure shows the main parts of a so-called interline transfer type CCD. 1 is a photoelectric conversion element;
Reference numeral 2 denotes a transfer channel forming a part of a vertical CCD which is a charge transfer means; 3 and 4 are separating parts between the photoelectric conversion element 1 and the transfer channel 2 forming a part of the charge transfer means; 5 and 6;
, 7 and 8 are transfer electrodes forming part of the charge transfer means;
5 and 7 are lower layer transfer electrodes, and 6 and 8 are upper layer transfer electrodes. As shown by the arrow 9, the region where the separating section 4 and the transfer electrode 5 overlap is the charge reading means 9a, and the photoelectric conversion element 1
The charges generated are read out to the transfer channel 2 via the charge reading means 9a.
【0004】0004
【発明が解決しようとする課題】このような従来の固体
撮像装置では、以下のような課題を有していた。[Problems to be Solved by the Invention] Such conventional solid-state imaging devices have had the following problems.
【0005】分離部4は通常の垂直転送期間に印加され
る電圧では光電変換素子1と転送チャンネル2とを電気
的に完全に分離しなければならない。一方電荷読み出し
電圧印加時には光電変換素子1内の電荷を残すことなく
完全に転送チャンネル2に読み出さなければならない。
光電変換素子1と転送チャンネル2は一般にn型であり
、分離部4はp型である。そしてこの両方を満たすため
には、光電変換素子1と転送チャンネル2との間の分離
部4には濃度と幅に適当な関係が必要である。すなわち
幅が狭いと高い濃度が必要であり、濃度が低いと広い幅
が必要である。しかし高濃度にすると、分離部4の幅は
狭くしなければならず、少しの変動に対しても敏感に影
響を受けるため幅の管理が容易ではなくなる。また高濃
度にすると熱履歴により分離部4の幅が広がり、転送チ
ャンネル2や光電変換素子1の領域を侵食してしまうこ
とにより、固体撮像装置の感度や飽和等の素子特性が低
下する。一方低濃度にすると大きな幅が必要になる。
これらはいずれも素子の小型化や多画素化による画素寸
法の縮小化が進むほど影響が大きくなり、画素の縮小化
に大きな影響を与えている。[0005] The isolation section 4 must electrically completely isolate the photoelectric conversion element 1 and the transfer channel 2 under the voltage applied during a normal vertical transfer period. On the other hand, when a charge readout voltage is applied, the charges in the photoelectric conversion element 1 must be completely read out to the transfer channel 2 without leaving them behind. The photoelectric conversion element 1 and the transfer channel 2 are generally n-type, and the separation section 4 is p-type. In order to satisfy both of these requirements, the separation section 4 between the photoelectric conversion element 1 and the transfer channel 2 needs to have an appropriate relationship between concentration and width. That is, a narrow width requires a high concentration, and a low concentration requires a wide width. However, when the concentration is high, the width of the separating section 4 must be narrowed, and it is difficult to manage the width because it is sensitive to even the slightest fluctuation. Further, when the concentration is high, the width of the separation section 4 increases due to thermal history, and the regions of the transfer channel 2 and the photoelectric conversion element 1 are eroded, thereby deteriorating the element characteristics such as sensitivity and saturation of the solid-state imaging device. On the other hand, when the concentration is low, a large width is required. All of these factors become more influential as the pixel dimensions are reduced due to smaller elements and increased number of pixels, and have a large impact on the reduction of pixel size.
【0006】また微細画素の固体撮像装置における感度
を改善する手段として、画素ごとに素子上に直接微細レ
ンズを形成するオンチップレンズ法が最近よく用いられ
ているが、このときの集光効果は光電変換素子1の面積
が同じでもその形状が細長い長方形よりも正方形に近い
方が高くなる。ところが、最近の高解像度固体撮像装置
(水平画素数が多い)では、画素の水平寸法が小さくな
るため、光電変換素子の水平寸法が小さくなり、その形
状は縦長になり、オンチップレンズの効果が得られ難く
なっている。[0006] Also, as a means to improve the sensitivity of solid-state imaging devices with fine pixels, the on-chip lens method, in which a fine lens is formed directly on the element for each pixel, has recently been frequently used. Even if the area of the photoelectric conversion element 1 is the same, the height will be higher if the shape is closer to a square than if it is an elongated rectangle. However, in recent high-resolution solid-state imaging devices (with a large number of horizontal pixels), the horizontal dimension of the pixel becomes smaller, so the horizontal dimension of the photoelectric conversion element becomes smaller and its shape becomes vertically elongated, reducing the effectiveness of the on-chip lens. It's getting harder to get.
【0007】本発明は上記従来の課題を解決するもので
、画素寸法を縮小した固体撮像装置とその製造方法およ
びその駆動方法を提供することを目的とする。The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a solid-state imaging device with reduced pixel dimensions, a method of manufacturing the same, and a method of driving the same.
【0008】[0008]
【課題を解決するための手段】この目的を達成するため
に本発明の固体撮像装置は、隣接した光電変換素子間の
電荷転送手段が設けられていない側部に光電変換素子か
らの電荷読み出し手段を形成した構成を有している。[Means for Solving the Problems] In order to achieve this object, the solid-state imaging device of the present invention has a charge readout means from the photoelectric conversion elements on the side where the charge transfer means between adjacent photoelectric conversion elements is not provided. It has a configuration that forms.
【0009】[0009]
【作用】この構成によって、電荷読み出し手段の距離が
充分に取れるようになるため画素寸法の縮小化が容易に
実現できる。[Operation] With this configuration, a sufficient distance between the charge reading means can be secured, so that the pixel size can be easily reduced.
【0010】0010
【実施例】以下本発明の一実施例について図面を参照し
ながら説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0011】図1に本発明の第1の実施例である固体撮
像装置の構成を示す。図5に示す従来構造と異なるのは
電荷読み出し手段10aが転送チャンネル2側ではなく
光電変換素子1の垂直分離部に設けられていることであ
る。信号電荷は矢印10で示すように垂直分離部を経て
読み出される。この構造によれば、分離部11は読み出
し機能を必要としないので、従来例で述べた電荷読み出
し手段の条件を満たす必要がなく、したがって低濃度で
狭い幅でもよく、画素縮小化が容易となる。FIG. 1 shows the configuration of a solid-state imaging device according to a first embodiment of the present invention. The difference from the conventional structure shown in FIG. 5 is that the charge readout means 10a is provided not on the transfer channel 2 side but on the vertically separated portion of the photoelectric conversion element 1. The signal charges are read out through the vertical separation section as indicated by arrow 10. According to this structure, since the separation section 11 does not require a readout function, it is not necessary to satisfy the conditions for the charge readout means described in the conventional example, and therefore it may have a low concentration and a narrow width, making it easy to reduce the pixel size. .
【0012】また同じ画素寸法でも光電変換素子1の開
口部の幅が大きく取れるようになり、感度を向上させる
ことができる。また光電変換素子1の開口部の形状を正
方形に近づけることができるので、オンチップレンズの
集光効果を向上させ、感度を向上させることができる。Furthermore, even with the same pixel size, the width of the aperture of the photoelectric conversion element 1 can be increased, and the sensitivity can be improved. Furthermore, since the shape of the opening of the photoelectric conversion element 1 can be approximated to a square, the light focusing effect of the on-chip lens can be improved and the sensitivity can be improved.
【0013】またCCD型固体撮像装置は、図1(b)
に示す図1(a)をA1−A2線で切断した断面図のよ
うに、n型基板15の上に形成された低濃度のp−層1
6内に素子が形成されるのが一般的である。この場合転
送チャンネル2はやや濃度の高いp層17内に形成され
る。しかし転送チャンネル2の隙間の中央付近の領域p
−層18は濃度が低いので下層側の電極19に電圧を印
加すると領域p−層18の表面電位も容易に高くなり、
かつ空乏層も深部に広がりやすいため、光電変換素子1
からの電荷も低電圧で読み出せるようになる。なお、2
0は上層側の電極である。[0013] Furthermore, the CCD type solid-state imaging device is shown in FIG. 1(b).
As shown in the cross-sectional view taken along line A1-A2 in FIG. 1(a), a low concentration p- layer 1 formed on an n-type substrate 15
Generally, elements are formed within 6. In this case, the transfer channel 2 is formed in the p-layer 17, which has a slightly higher concentration. However, the area p near the center of the gap in transfer channel 2
Since the - layer 18 has a low concentration, when a voltage is applied to the lower electrode 19, the surface potential of the p-layer 18 easily increases.
In addition, since the depletion layer also tends to spread deep, the photoelectric conversion element 1
It becomes possible to read out the electric charge from the cell at a low voltage. In addition, 2
0 is an electrode on the upper layer side.
【0014】この構造を実現するには、転送チャンネル
2の転送電極と、電荷読み出し手段10aの電極として
用いる隣合う転送チャンネル2の上の転送電極間を接続
する部分を同一材料によって同時に形成する製造方法に
より実現できる。In order to realize this structure, the transfer electrode of the transfer channel 2 and the part connecting between the transfer electrodes on the adjacent transfer channels 2 used as the electrodes of the charge readout means 10a are simultaneously formed of the same material. This can be achieved by using this method.
【0015】次に図2を用いて本発明の第2の実施例を
説明する。図1に示す第1の実施例では転送電極5に読
み出し電圧を印加することによって奇数行目の光電変換
素子1の電荷を読み出し、転送電極7に読み出し電圧を
印加することによって偶数行目の光電変換素子1′の電
荷を読み出す。その後必要に応じて電荷転送手段内で混
合するように転送電極5,6,7,8に電圧を印加する
。これに対し図2に示す第2の実施例では転送電極5に
読み出し電圧を印加することによって奇数行目の光電変
換素子1と偶数行目の光電変換素子1′の電荷を同時に
混合して矢印30,31の方向へ読み出し、転送電極7
に読み出し電圧を印加することによって混合する相手を
変えて偶数行目の光電変換素子1′と奇数行目の光電変
換素子1′の電荷を矢印32,33の方向へ読み出す。
これによって簡単な読み出し電圧と短い時間で読み出し
動作を完了することができる。Next, a second embodiment of the present invention will be explained using FIG. 2. In the first embodiment shown in FIG. 1, the charges of the photoelectric conversion elements 1 in the odd rows are read by applying a read voltage to the transfer electrode 5, and the charges of the photoelectric conversion elements 1 in the even rows are read by applying a read voltage to the transfer electrode 7. The electric charge of the conversion element 1' is read out. Thereafter, a voltage is applied to the transfer electrodes 5, 6, 7, and 8 to mix the charges within the charge transfer means as necessary. On the other hand, in the second embodiment shown in FIG. 2, by applying a readout voltage to the transfer electrode 5, the charges of the photoelectric conversion elements 1 in the odd rows and the photoelectric conversion elements 1' in the even rows are simultaneously mixed, and Read in the direction of 30, 31, transfer electrode 7
By applying a read voltage to , the charges of the photoelectric conversion elements 1' in the even-numbered rows and the photoelectric conversion elements 1' in the odd-numbered rows are read out in the directions of arrows 32 and 33 by changing the mixing partners. Accordingly, the read operation can be completed with a simple read voltage and in a short time.
【0016】次に第1,第2の実施例の動作を実現する
ための素子構造について図3(a),(b)を参照しな
がら説明する。Next, the element structure for realizing the operations of the first and second embodiments will be explained with reference to FIGS. 3(a) and 3(b).
【0017】図3(a)は第1の実施例の動作を実現す
るための素子構造を示すもので、図1(a)をB1−B
2線で切断した断面図である。5は下層の転送電極、8
は上層の転送電極、n−層40は奇数行目の光電変換素
子を形成する不純物層、同じくn−層40′は偶数行目
の光電変換素子を形成する不純物層、p+層41,41
′はn−層40,40′の上に形成された暗電流低減の
ための不純物層、43は二酸化シリコン等の絶縁層であ
る。図3(a)に示すように、n−層40は転送電極5
の端の直下よりも外側にあるが、n−層40′は転送電
極5の端の直下またはその一部にまで入り込んでいるた
め、同一電圧に対してn−層40′の電荷は容易に読み
出されるが、n−層40の電荷は読み出されないことに
なる。このような構造は転送電極5を形成した後、自己
整合法によりn−層40′を形成し、n−層40は転送
電極5と離して形成する方法により実現できる。FIG. 3(a) shows the element structure for realizing the operation of the first embodiment.
It is a sectional view taken along two lines. 5 is the lower layer transfer electrode, 8
is the upper layer transfer electrode, the n- layer 40 is an impurity layer forming the odd-numbered photoelectric conversion elements, the n- layer 40' is an impurity layer forming the even-numbered photoelectric conversion elements, and the p+ layers 41, 41
' is an impurity layer for reducing dark current formed on the n-layers 40, 40', and 43 is an insulating layer such as silicon dioxide. As shown in FIG. 3(a), the n-layer 40 is connected to the transfer electrode 5.
Although the n-layer 40' is located outside of the edge of the transfer electrode 5, the charge on the n-layer 40' is easily reduced for the same voltage because the n-layer 40' penetrates directly under or a part of the edge of the transfer electrode 5. However, the charges on the n-layer 40 will not be read out. Such a structure can be realized by forming the n-layer 40' by a self-alignment method after forming the transfer electrode 5, and forming the n-layer 40 separately from the transfer electrode 5.
【0018】次に第2の実施例について説明する。図3
(b)は第2の実施例の動作を実現するための素子構造
を示すもので、図2をC1−C2線で切断した断面図で
ある。第2の実施例ではn−層40および40′はとも
に転送電極5の直下またはその一部にまで入り込んでい
るため、転送電極5に印加される電圧によって容易にn
−層40および40′の電荷を読み出すことができる。
またこのような構造は転送電極5を形成した後、自己整
合法によって同時にn−層40および40′を形成する
製造法により実現できる。Next, a second embodiment will be explained. Figure 3
(b) shows an element structure for realizing the operation of the second embodiment, and is a sectional view taken along the line C1-C2 in FIG. In the second embodiment, both the n-layers 40 and 40' penetrate directly under the transfer electrode 5 or a part thereof, so that the voltage applied to the transfer electrode 5 easily causes the n-layers 40 and 40' to
- the charges on layers 40 and 40' can be read out; Further, such a structure can be realized by a manufacturing method in which, after forming the transfer electrode 5, the n-layers 40 and 40' are simultaneously formed by a self-alignment method.
【0019】図3(b)に示す第2の実施例のように1
個の光電変換素子に複数個の電荷読み出し手段が形成さ
れた場合、どの電荷読み出し手段で信号電荷を読み出し
ても読み出された直後の光電変換素子の電位状態が等し
くなければいわゆる固定パターン雑音になる。したがっ
て読み出された直後は光電変換素子は完全に空乏化して
いることが必要である。次に第2の実施例における印加
クロックの一例を図4を参照しながら説明する。1 as in the second embodiment shown in FIG. 3(b).
When a plurality of charge readout means are formed in each photoelectric conversion element, no matter which charge readout means is used to read the signal charge, if the potential state of the photoelectric conversion element immediately after being read out is not equal, so-called fixed pattern noise will occur. Become. Therefore, it is necessary that the photoelectric conversion element be completely depleted immediately after being read. Next, an example of the applied clock in the second embodiment will be explained with reference to FIG. 4.
【0020】図4でクロック51,52,53,54は
それぞれ転送電極5,8,7,6に印加するクロックで
ある。期間T160がAフィールド期間、期間T261
がBフィールド期間、期間T362がAフィールド期間
の垂直帰線期間、期間T363がBフィールド期間の垂
直帰線期間、期間T464は奇数行目の光電変換素子1
から電荷を読み出すためのパルスが転送電極5に印加さ
れる期間、期間T565は偶数行目の光電変換素子1′
から電荷を読み出すためのパルスが転送電極7に印加さ
れる期間である。また55で示すクロックは電荷転送手
段中を転送するためにクロックが印加される期間であり
、クロック51,52,53,54がこの期間で同一の
クロックということではない。このようなクロックを用
いることによって1個のパルスのみの印加で2個の光電
変換素子の信号を読み出すことができる。In FIG. 4, clocks 51, 52, 53, and 54 are clocks applied to transfer electrodes 5, 8, 7, and 6, respectively. Period T160 is A field period, period T261
is the B field period, period T362 is the vertical retrace period of the A field period, period T363 is the vertical retrace period of the B field period, period T464 is the photoelectric conversion element 1 of the odd row
The period T565 is a period during which a pulse is applied to the transfer electrode 5 to read the charge from the even-numbered photoelectric conversion element 1'.
This is the period during which a pulse is applied to the transfer electrode 7 to read out charges from the transfer electrode 7. Further, the clock indicated by 55 is a period during which the clock is applied for transferring the charge in the charge transfer means, and the clocks 51, 52, 53, and 54 are not the same clock during this period. By using such a clock, signals from two photoelectric conversion elements can be read out by applying only one pulse.
【0021】なお、以上は、n型基板内に形成されたp
型層に光電変換素子を設けた例について説明したが、p
型基板に光電変換素子を設けた場合も同様の効果がある
ことはいうまでもない。また導電型の極性を逆にして印
加電圧の極性を逆にしても同様の効果があることももち
ろんである。またここでは二次元CCD型固体撮像素子
で説明したが、いわゆる一次元CCD固体撮像素子でも
同様の効果があることは明らかである。[0021] The above is a p-type substrate formed in an n-type substrate.
Although we have explained an example in which a photoelectric conversion element is provided in the mold layer, p
It goes without saying that a similar effect can be obtained when a photoelectric conversion element is provided on the mold substrate. It goes without saying that the same effect can be obtained even if the polarity of the conductivity type is reversed and the polarity of the applied voltage is reversed. Furthermore, although a two-dimensional CCD solid-state imaging device has been described here, it is clear that a so-called one-dimensional CCD solid-state imaging device can also have similar effects.
【0022】[0022]
【発明の効果】以上のように本発明は、隣接した光電変
換素子の間の電荷転送手段が設けられていない側部に光
電変換素子からの電荷読み出し手段を設けることによっ
て、光電変換素子の面積を増し、オンチップレンズの集
光効果を向上させることができ、かつ素子の小型化を実
現できる固体撮像装置を実現できるものである。As described above, the present invention provides charge reading means from the photoelectric conversion elements on the sides where the charge transfer means between adjacent photoelectric conversion elements is not provided, thereby reducing the area of the photoelectric conversion elements. Accordingly, it is possible to realize a solid-state imaging device in which the light-condensing effect of the on-chip lens can be increased, and the device can be miniaturized.
【0023】特に、いわゆるフレーム転送型CCD撮像
装置では、電荷転送部が光電変換部を兼ねており、電荷
転送部からの暗電流のばらつきがそのまま固定パターン
雑音となり、その再生画質を著しく劣化させる。このた
め本発明による暗電流発生の非常に小さい固体撮像装置
を用いることはその画質改善効果が非常に大きい。In particular, in a so-called frame transfer type CCD imaging device, the charge transfer section also serves as a photoelectric conversion section, and variations in dark current from the charge transfer section directly become fixed pattern noise, which significantly deteriorates the reproduced image quality. Therefore, the use of the solid-state imaging device according to the present invention, which generates very little dark current, has a very large effect of improving image quality.
【図1】(a)は本発明の第1の実施例における固体撮
像装置の構成図
(b)は図1(a)をA1−A2線で切断した断面図FIG. 1(a) is a block diagram of a solid-state imaging device according to a first embodiment of the present invention; FIG. 1(b) is a sectional view taken along line A1-A2 in FIG. 1(a);
【
図2】本発明の第2の実施例における固体撮像装置の構
成図[
FIG. 2 is a configuration diagram of a solid-state imaging device according to a second embodiment of the present invention
【図3】(a)は図1(a)をB1−B2線で切断した
断面図
(b)は図2をC1−C2線で切断した断面図[Figure 3] (a) is a cross-sectional view of Figure 1 (a) taken along line B1-B2; (b) is a cross-sectional view of Figure 2 taken along line C1-C2;
【図4】
本発明の第2の実施例における印加クロック図[Figure 4]
Application clock diagram in the second embodiment of the present invention
【図5】
従来の固体撮像装置の構成図[Figure 5]
Configuration diagram of conventional solid-state imaging device
1 光電変換素子 2 転送チャンネル(電荷転送手段)3 分離部 10a 電荷読み出し手段 11 分離部 1 Photoelectric conversion element 2 Transfer channel (charge transfer means) 3 Separation section 10a Charge reading means 11 Separation part
Claims (11)
介して前記光電変換素子に隣接して電荷転送手段が設け
られ、隣接した光電変換素子間の電荷転送手段が設けら
れていない側部に前記光電変換素子からの電荷読み出し
手段を設けたことを特徴とする固体撮像装置。1. A side in which a plurality of photoelectric conversion elements are arranged, a charge transfer means is provided adjacent to the photoelectric conversion elements via a separation part, and a charge transfer means between adjacent photoelectric conversion elements is not provided. What is claimed is: 1. A solid-state imaging device, comprising: a means for reading out charges from the photoelectric conversion element;
複数個の光電変換素子からの電荷読み出し手段であるこ
とを特徴とする請求項1記載の固体撮像装置。2. The solid-state imaging device according to claim 1, wherein one charge reading means is a means for reading charges from a plurality of adjacent photoelectric conversion elements.
複数個の光電変換素子のうちの1個のみの光電変換素子
からの電荷読み出し手段であることを特徴とする請求項
1記載の固体撮像装置。3. The solid-state imaging device according to claim 1, wherein one charge reading means is a charge reading means from only one photoelectric conversion element among a plurality of adjacent photoelectric conversion elements. Device.
しくは電荷読み出し手段を介して前記光電変換素子に隣
接して電荷転送手段が設けられ、1個の光電変換素子に
複数個の電荷読み出し手段が形成されていることを特徴
とする固体撮像装置。4. A plurality of photoelectric conversion elements are arranged, a charge transfer means is provided adjacent to the photoelectric conversion element via a separation section or a charge readout means, and a plurality of charge readout elements are provided to one photoelectric conversion element. A solid-state imaging device characterized in that a means is formed.
変換素子が空乏化されることを特徴とする請求項1また
は4記載の固体撮像装置。5. The solid-state imaging device according to claim 1, wherein the photoelectric conversion element is depleted when reading charges from the photoelectric conversion element.
されており、電荷読み出し手段が電荷転送手段の最下層
の転送電極と同一の電極材料によって形成されているこ
とを特徴とする請求項1または3記載の固体撮像装置。6. A claim characterized in that the transfer electrode of the charge transfer means is formed of a plurality of layers, and the charge readout means is formed of the same electrode material as the transfer electrode of the lowest layer of the charge transfer means. 3. The solid-state imaging device according to item 1 or 3.
光電変換素子に隣接して電荷転送手段を形成し、隣接し
た光電変換素子間の電荷転送手段が設けられていない側
部に光電変換素子からの電荷読み出し手段を形成し、電
荷転送手段の転送電極を複数の層で形成し、電荷読み出
し手段を電荷転送手段の最下層の転送電極と同一の工程
によって同時に形成することを特徴とする固体撮像装置
の製造方法。7. Charge transfer means is formed adjacent to a plurality of photoelectric conversion elements and the photoelectric conversion element via a separation section, and photoelectric conversion means is formed adjacent to the photoelectric conversion element on the side where the charge transfer means is not provided between adjacent photoelectric conversion elements. A charge readout means from the conversion element is formed, a transfer electrode of the charge transfer means is formed in a plurality of layers, and the charge readout means and the transfer electrode of the lowest layer of the charge transfer means are simultaneously formed by the same process. A method for manufacturing a solid-state imaging device.
光電変換素子に隣接して電荷転送手段を形成し、隣接し
た光電変換素子間の電荷転送手段が設けられていない側
部に光電変換素子からの電荷読み出し手段を構成する電
極を形成した後、前記電極と隣接する複数個の光電変換
素子を形成する際に前記電極をマスク材として、または
その電極の形状を決定するマスク材をマスク材として用
いて光電変換素子を形成することを特徴とする固体撮像
装置の製造方法。8. A charge transfer means is formed adjacent to a plurality of photoelectric conversion elements via a separation section, and a photoelectric conversion means is formed adjacent to the photoelectric conversion element on the side where the charge transfer means is not provided between adjacent photoelectric conversion elements. After forming an electrode constituting a charge reading means from a conversion element, the electrode is used as a mask material when forming a plurality of photoelectric conversion elements adjacent to the electrode, or a mask material that determines the shape of the electrode is used. A method of manufacturing a solid-state imaging device, comprising forming a photoelectric conversion element using a mask material.
光電変換素子に隣接して電荷転送手段を形成し、隣接し
た光電変換素子間の電荷転送手段が設けられていない側
部に光電変換素子からの電荷読み出し手段を構成する電
極を形成した後、前記電極と隣接する複数個の光電変換
素子を形成する際に前記電極をマスク材として、または
その電極の形状を決定するマスク材をマスク材として用
いて形成する光電変換素子と、前記電極をマスク材とし
てまたはその電極の形状を決定するマスク材をマスク材
として用いずに形成する光電変換素子とを同時に形成す
ることを特徴とする固体撮像装置の製造方法。9. A charge transfer means is formed adjacent to a plurality of photoelectric conversion elements via a separation section, and a photoelectric conversion means is formed adjacent to the photoelectric conversion element on a side where the charge transfer means is not provided between adjacent photoelectric conversion elements. After forming an electrode constituting a charge reading means from a conversion element, the electrode is used as a mask material when forming a plurality of photoelectric conversion elements adjacent to the electrode, or a mask material that determines the shape of the electrode is used. A photoelectric conversion element formed using the electrode as a mask material and a photoelectric conversion element formed using the electrode as a mask material or without using a mask material that determines the shape of the electrode as a mask material are formed at the same time. A method for manufacturing a solid-state imaging device.
を介して前記光電変換素子に隣接して電荷転送手段が設
けられ、隣接した光電変換素子間の電荷転送手段が設け
られていない側部に光電変換素子からの電荷読み出し手
段が形成されており、複数の電気的に独立した電荷読み
出し手段を備えた固体撮像装置に、一垂直期間内に電荷
読み出し手段のうちの1個だけに電荷読み出し電圧を印
加することを特徴とする固体撮像装置の駆動方法。10. A side where a plurality of photoelectric conversion elements are arranged, a charge transfer means is provided adjacent to the photoelectric conversion elements via a separation part, and a charge transfer means between adjacent photoelectric conversion elements is not provided. A charge readout means from the photoelectric conversion element is formed in a solid-state imaging device equipped with a plurality of electrically independent charge readout means. A method for driving a solid-state imaging device, the method comprising applying a read voltage.
もしくは電荷読み出し手段を介して前記光電変換素子に
隣接して電荷転送手段が設けられ、1個の光電変換素子
に複数個の電荷読み出し手段が形成された固体撮像装置
の光電変換素子から電荷を読み出す際に光電変換素子を
空乏化させることを特徴とする固体撮像装置の駆動方法
。11. A plurality of photoelectric conversion elements are arranged, and a charge transfer means is provided adjacent to the photoelectric conversion element via a separation section or a charge readout means, and a plurality of charge readout elements are provided to one photoelectric conversion element. 1. A method for driving a solid-state imaging device, comprising depleting a photoelectric conversion element when reading charges from the photoelectric conversion element of the solid-state imaging device in which the means is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3039997A JP2853779B2 (en) | 1991-03-06 | 1991-03-06 | Solid-state imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3039997A JP2853779B2 (en) | 1991-03-06 | 1991-03-06 | Solid-state imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04278584A true JPH04278584A (en) | 1992-10-05 |
JP2853779B2 JP2853779B2 (en) | 1999-02-03 |
Family
ID=12568572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3039997A Expired - Fee Related JP2853779B2 (en) | 1991-03-06 | 1991-03-06 | Solid-state imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2853779B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007536108A (en) * | 2004-05-05 | 2007-12-13 | イサベルク・ラピッド・エービー | Stapler |
-
1991
- 1991-03-06 JP JP3039997A patent/JP2853779B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007536108A (en) * | 2004-05-05 | 2007-12-13 | イサベルク・ラピッド・エービー | Stapler |
JP4927713B2 (en) * | 2004-05-05 | 2012-05-09 | イサベルク・ラピッド・エービー | Stapler |
Also Published As
Publication number | Publication date |
---|---|
JP2853779B2 (en) | 1999-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0666914B2 (en) | Solid-state imaging device | |
JPH07120779B2 (en) | Overflow drain structure of solid-state imaging device and manufacturing method thereof | |
JP2007299840A (en) | CCD type solid-state imaging device and manufacturing method thereof | |
US5280186A (en) | CCD image sensor with four phase clocking mechanism | |
US5040038A (en) | Solid-state image sensor | |
JP3317248B2 (en) | Solid-state imaging device | |
US4638361A (en) | Solid state image pickup | |
US7595517B2 (en) | Charge coupled device having diverged channel | |
JPH0831585B2 (en) | Solid-state imaging device | |
JP3052560B2 (en) | Charge transfer imaging device and method of manufacturing the same | |
JPH04278584A (en) | Solid-state image device and manufacture and drive method thereof | |
JP2002043559A (en) | Solid-state imaging device and driving method thereof | |
US5075747A (en) | Charge transfer device with meander channel | |
JP4763424B2 (en) | Driving method of solid-state imaging device | |
US5298777A (en) | CCD image sensor of interlaced scanning type | |
JP2897689B2 (en) | Solid-state imaging device | |
JP2592193B2 (en) | CCD image element | |
KR19980047694A (en) | Solid-state imaging device | |
JPH04181774A (en) | solid state imaging device | |
JP2666684B2 (en) | Charge transfer imaging device and method of manufacturing the same | |
JP2671151B2 (en) | Semiconductor device | |
JP2004088044A (en) | Solid-state-image pickup device and its drive method | |
JPH02159063A (en) | Solid-state image-sensing device | |
JPH045308B2 (en) | ||
JP4457570B2 (en) | Solid-state imaging device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |