[go: up one dir, main page]

JPH04278101A - Exhaust heat recovery boiler - Google Patents

Exhaust heat recovery boiler

Info

Publication number
JPH04278101A
JPH04278101A JP6378991A JP6378991A JPH04278101A JP H04278101 A JPH04278101 A JP H04278101A JP 6378991 A JP6378991 A JP 6378991A JP 6378991 A JP6378991 A JP 6378991A JP H04278101 A JPH04278101 A JP H04278101A
Authority
JP
Japan
Prior art keywords
pressure
low
drain
condenser
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6378991A
Other languages
Japanese (ja)
Other versions
JP2971597B2 (en
Inventor
Toshinori Shigenaka
利則 重中
Hajime Furubayashi
肇 古林
Tetsuo Mimura
三村 哲雄
Kimiya Sakamoto
公哉 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6378991A priority Critical patent/JP2971597B2/en
Publication of JPH04278101A publication Critical patent/JPH04278101A/en
Application granted granted Critical
Publication of JP2971597B2 publication Critical patent/JP2971597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To mitigate an abnormal rise of the steam pressure in a low pressure drum which is generated in the hot banking of an exhaust heat recovery boiler. CONSTITUTION:A condenser drain piping 26 and a drain tank drain piping 28 are provided between a condenser 26 and drain tank 27 from a low pressure main steam pipe 14, and one of a condenser drain valve and a drain tank drain valve 30 is opened or closed based on the difference between the pressure detection signal 32 and the pressure setting signal 34 from a pressure detection device 31 to make the steam from a low pressure drum 5 escape to the condenser 24 and drain tank 27.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は混圧型排熱回収ボイラに
係り、特にガスタービンの停止時に低圧ドラム内の圧力
上昇を抑制する排熱回収ボイラに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed pressure type waste heat recovery boiler, and more particularly to a waste heat recovery boiler that suppresses a rise in pressure within a low pressure drum when a gas turbine is stopped.

【0002】0002

【従来の技術】急増する電力需要に応えるために大容量
の火力発電所が建設されているが、これらのボイラは部
分負荷時においても高い発電効率を得るために変圧運転
を行なうことが要求されている。これは最近の電力需要
の特徴として、原子力発電の伸びと共に、負荷の最大と
最小の差も増大し、火力発電はベースロード用から負荷
調整用へと移行する傾向にある。
[Prior Art] Large-capacity thermal power plants are being constructed to meet the rapidly increasing demand for electricity, but these boilers are required to operate at variable voltage in order to obtain high power generation efficiency even during partial load. ing. This is a feature of recent electricity demand, as nuclear power generation increases, the difference between maximum and minimum loads increases, and thermal power generation tends to shift from base load to load adjustment.

【0003】つまり、火力発電はボイラ負荷を常に全負
荷で運転されるものは少なく、負荷を75%負荷、50
%負荷、25%負荷へと負荷を上げ、下げして運転して
いたり、運転を停止するなど、いわゆる高頻度起動停止
(Daily  StartStop以下単にDSSと
いう)運転を行なつて中間負荷を担い、このDSS運転
によつて電力需要の多い昼間のみ運転し、夜間は運転を
停止して発電効率を向上させるのである。
[0003] In other words, in thermal power generation, there are few cases in which the boiler load is always operated at full load;
% load, 25% load, increasing the load to 25% load, or stopping the operation. DSS operation allows the system to operate only during the day when there is a high demand for electricity, and shuts down at night to improve power generation efficiency.

【0004】例えば高効率発電の一環として、最近複合
発電プラントが注目されている。この複合発電プラント
は、まずガスタービンによる発電を行なうと共に、ガス
タービンから排出される排ガス中の排熱を排熱回収ボイ
ラによつて熱回収し、この排熱回収ボイラで発生した蒸
気によつて蒸気タービンを作動させて発電するものであ
る。
[0004] For example, combined cycle power plants have recently attracted attention as a part of high-efficiency power generation. This combined power generation plant first generates electricity using a gas turbine, then recovers the exhaust heat in the exhaust gas discharged from the gas turbine using an exhaust heat recovery boiler, and uses the steam generated by the exhaust heat recovery boiler to generate electricity. It operates a steam turbine to generate electricity.

【0005】この様に複合発電プラントはガスタービン
による発電と、蒸気タービンによる発電を行なうために
発電効率が高いうえ、ガスタービンの特性である負荷応
答性に優れ、このために急激な電力需要の上昇、下降に
も十分対応でき、負荷追従性にも優れており、DSS運
転を行なうには好都合である。
[0005] As described above, combined power generation plants have high power generation efficiency because they generate power using gas turbines and steam turbines, and they also have excellent load response, which is a characteristic of gas turbines, and are therefore able to cope with sudden demand for electricity. It can sufficiently handle rising and falling movements, has excellent load followability, and is convenient for DSS operation.

【0006】図3は従来の混圧型排熱回収ボイラの概略
系統図である。ガスタービン1から排出される排ガス通
路2の下流側から上流側へと向けて低圧節炭器3、低圧
蒸発器4および低圧ドラム5からなる低圧ボイラと、高
圧節炭器6、高圧蒸発器7、高圧ドラム8および過熱器
9からなる高圧ボイラが配置されている。
FIG. 3 is a schematic diagram of a conventional mixed pressure type waste heat recovery boiler. A low-pressure boiler consisting of a low-pressure economizer 3, a low-pressure evaporator 4, and a low-pressure drum 5, from the downstream side to the upstream side of the exhaust gas passage 2 discharged from the gas turbine 1, a high-pressure economizer 6, and a high-pressure evaporator 7. , a high-pressure boiler consisting of a high-pressure drum 8 and a superheater 9 is arranged.

【0007】一方、被加熱流体である給水は低圧給水ポ
ンプ10より給水管11を経て低圧節炭器3に供給され
、所定の温度までに予熱された後、ドラム給水管12を
通り低圧ドラム5に供給される。低圧ドラム5に供給さ
れた給水は、低圧ドラム5の低圧下降管13を経て低圧
蒸発器4、低圧ドラム5の順で自然循環または強制循環
され、その間に加熱されて低圧ドラム5内で水と蒸気に
分離された後、水は再び低圧下降管13、低圧蒸発器4
および低圧ドラム5へと再循環されるが、蒸気は低圧主
蒸気管14より蒸気タービン15へ供給される。
On the other hand, feed water, which is a fluid to be heated, is supplied from a low-pressure water supply pump 10 to a low-pressure economizer 3 via a water supply pipe 11, and after being preheated to a predetermined temperature, it passes through a drum water supply pipe 12 to a low-pressure drum 5. is supplied to The water supplied to the low-pressure drum 5 is naturally or forcedly circulated in the low-pressure evaporator 4 and then the low-pressure drum 5 through the low-pressure downcomer pipe 13 of the low-pressure drum 5, and is heated during this time and becomes water and water in the low-pressure drum 5. After being separated into steam, the water is transferred again to the low pressure downcomer 13 and the low pressure evaporator 4.
The steam is then recirculated to the low pressure drum 5, while the steam is supplied to the steam turbine 15 from the low pressure main steam pipe 14.

【0008】一方、低圧節炭器3の出口で分流された給
水の一部は高圧給水ポンプ16より高圧給水管17を経
て高圧節炭器6に供給され、所定の温度まで予熱された
後、ドラム給水管18を通り高圧ドラム8に供給される
。高圧ドラム8に供給された給水は低圧ボイラと同様に
高圧ドラム8の高圧下降管19を経て高圧蒸発器7、高
圧ドラム8の順で循環し、高圧ドラム8内で分離された
蒸気はドラム蒸気出口管20を経て過熱器9へ送られ、
ここでさらに昇温された後高圧主蒸気管21より蒸気タ
ービン15へ供給される。
On the other hand, a part of the feed water diverted at the outlet of the low-pressure economizer 3 is supplied to the high-pressure economizer 6 from the high-pressure water pump 16 via the high-pressure water supply pipe 17, and is preheated to a predetermined temperature. The water is supplied to the high pressure drum 8 through a drum water supply pipe 18. The feed water supplied to the high pressure drum 8 is circulated in the order of the high pressure evaporator 7 and the high pressure drum 8 via the high pressure downcomer pipe 19 of the high pressure drum 8, similar to the low pressure boiler, and the steam separated in the high pressure drum 8 is drum steam. It is sent to the superheater 9 via the outlet pipe 20,
After being further heated here, the steam is supplied to the steam turbine 15 through the high-pressure main steam pipe 21.

【0009】一方、高圧ドラム8で分離された水は、高
圧下降管19、高圧蒸発器7、高圧ドラム8へと再循環
される。なお、図中の22,23は高圧主蒸気管21、
低圧主蒸気管14の高圧、低圧加減弁、24は復水器、
25は排ガスダンパである。一方、排熱回収ボイラのホ
ツトバンキング時においては、排ガスダンパ25が閉じ
られるために、排ガス通路2内には排ガスGが充満し、
この滞留している排ガスGによつて低圧ボイラの給水が
加熱され、低圧ドラム5の蒸気圧力が異常に上昇する。
On the other hand, the water separated in the high-pressure drum 8 is recycled to the high-pressure downcomer 19, the high-pressure evaporator 7, and the high-pressure drum 8. In addition, 22 and 23 in the figure are the high pressure main steam pipe 21,
High pressure and low pressure regulating valves of the low pressure main steam pipe 14, 24 a condenser,
25 is an exhaust gas damper. On the other hand, during hot banking of the exhaust heat recovery boiler, the exhaust gas damper 25 is closed, so the exhaust gas passage 2 is filled with exhaust gas G.
This accumulated exhaust gas G heats the feed water of the low pressure boiler, and the steam pressure in the low pressure drum 5 increases abnormally.

【0010】0010

【発明が解決しようとする課題】従来技術の排熱回収ボ
イラのホツトバンキング時においては、ボイラ排ガス通
路内に滞留している高温排ガスからの熱伝達によつて、
低圧ドラム系内に保有する給水のエンタルピが上昇し、
その結果低圧ドラムの蒸気圧力が時間の経過とともに上
昇する欠点があつた。
[Problem to be Solved by the Invention] During hot banking of a conventional waste heat recovery boiler, heat transfer from high temperature exhaust gas staying in the boiler exhaust gas passage causes
The enthalpy of the feed water held in the low-pressure drum system increases,
As a result, there was a drawback that the steam pressure in the low-pressure drum increased over time.

【0011】図4は低圧ドラムの蒸気圧力変化を示すも
ので、縦軸に低圧ドラムの蒸気圧力を示し、横軸に時間
を示した特性曲線図である。つまり、図3の排ガスダン
パ25を閉じてホツトバンキングに入るために、排ガス
通路2内には排ガスGが閉じ込められる。そのため、排
ガスGによつて低圧ボイラ側が暖められ、図4の曲線A
で示すようにガスタービン1の停止後であつても低圧ド
ラム5の蒸気圧力は上昇する。従つて、DSS運転を行
なう排熱回収ボイラにおいては、このホツトバンキング
中の圧力上昇も考慮して、直線Bで示すように設計圧力
を高い値に設計する必要があり不経済である。
FIG. 4 shows changes in the steam pressure of the low-pressure drum, and is a characteristic curve diagram in which the vertical axis shows the steam pressure of the low-pressure drum and the horizontal axis shows time. That is, the exhaust gas G is trapped in the exhaust gas passage 2 because the exhaust gas damper 25 shown in FIG. 3 is closed to enter hot banking. Therefore, the low pressure boiler side is warmed by the exhaust gas G, and the curve A in Fig. 4
As shown, the steam pressure in the low pressure drum 5 increases even after the gas turbine 1 is stopped. Therefore, in an exhaust heat recovery boiler that performs DSS operation, it is necessary to take into account the pressure increase during hot banking and design the design pressure to a high value as shown by straight line B, which is uneconomical.

【0012】本発明はかかる従来技術の欠点を解消しよ
うとするもので、その目的とするところは、排熱回収ボ
イラのホツトバンキング中に発生する蒸気圧力の異常上
昇を緩和でき、しかも排熱回収ボイラの設計圧力を低く
することにある。
The present invention aims to eliminate the drawbacks of the prior art, and its purpose is to alleviate the abnormal rise in steam pressure that occurs during hot banking of an exhaust heat recovery boiler, and to The aim is to lower the design pressure of the boiler.

【0013】[0013]

【課題を解決するための手段】本発明は前述の目的を達
成するために、低圧主蒸気配管から復水器とドレンタン
クへ復水器ドレン弁を有する復水器ドレン配管とドレン
タンクドレン弁を有するドレンタンク配管と、低圧ドラ
ムに圧力検出器と、この圧力検出器からの圧力検出信号
と圧力設定信号を比較する演算器を設け、ホツトバンキ
ング時の圧力検出信号と圧力設定信号の偏差により復水
器ドレン弁とドレンタンクドレン弁の少なくとも一方を
開、閉するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a condenser drain pipe and a drain tank drain valve having a condenser drain valve from a low pressure main steam pipe to a condenser and a drain tank. A pressure detector is installed on the low-pressure drum, and a calculator is installed to compare the pressure detection signal from the pressure detector with the pressure setting signal. At least one of the condenser drain valve and the drain tank drain valve is opened and closed.

【0014】[0014]

【作用】排熱回収ボイラのホツトバンキング条件下で高
温ガスからの熱伝達によつて低圧のドラム系のエンタル
ピが上昇して、低圧ドラム内の蒸気圧力が上昇した場合
、ドレン弁を開き復水器ドレン配管とドレンタンクドレ
ン配管から低圧ドラム内の蒸気を排気することによつて
達成される。
[Operation] When the enthalpy in the low-pressure drum system increases due to heat transfer from the high-temperature gas under hot banking conditions in the exhaust heat recovery boiler, and the steam pressure in the low-pressure drum increases, the drain valve is opened to condense water. This is accomplished by exhausting the steam in the low-pressure drum from the container drain piping and the drain tank drain piping.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は本発明の実施例に係る排熱回収ボイラの概略
系統図、図2は演算器でのフローチヤートを示す。図1
および図2において、符号1から25までは従来のもの
と同一のものを示す。26は復水器ドレン配管、27は
ドレンタンク、28はドレンタンクドレン配管、29お
よび30は復水器ドレン弁およびドレンタンクドレン弁
、31は圧力検出器、32は圧力検出信号、33は演算
器、34は圧力設定信号、35は制御信号である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic system diagram of an exhaust heat recovery boiler according to an embodiment of the present invention, and FIG. 2 is a flowchart of a computing unit. Figure 1
And in FIG. 2, numerals 1 to 25 indicate the same parts as the conventional one. 26 is a condenser drain pipe, 27 is a drain tank, 28 is a drain tank drain pipe, 29 and 30 are a condenser drain valve and a drain tank drain valve, 31 is a pressure detector, 32 is a pressure detection signal, and 33 is a calculation 34 is a pressure setting signal, and 35 is a control signal.

【0016】この様な構造において、図3に示す従来の
排熱回収ボイラと異なる点は低圧主蒸気管14から復水
器24へ復水器ドレン配管26、低圧主蒸気管14から
ドレンタンク27へドレンタンクドレン配管28を設け
、ホツトバンキング時に発生する蒸気圧力の上昇を復水
器ドレン配管26とドレンタンクドレン配管28から復
水器24やドレンタンク27へ逃がすようにしたもので
ある。
In this structure, the difference from the conventional waste heat recovery boiler shown in FIG. A held tank drain pipe 28 is provided so that an increase in steam pressure generated during hot banking is released from the condenser drain pipe 26 and the drain tank drain pipe 28 to the condenser 24 and the drain tank 27.

【0017】つまり、図1に示すように排熱回収ボイラ
の低圧ドラム5の蒸気圧力を圧力検出器31で圧力検出
信号32として検出し、演算器33に入力する。この圧
力検出信号32は演算器33で圧力設定信号34と比較
され、比較の結果圧力検出信号32が圧力設定信号34
よりも高い場合は、制御信号35によつて復水器ドレン
弁29、ドレンタンクドレン弁30を開いて復水器ドレ
ン配管26、ドレンタンクドレン配管28から復水器2
4、ドレンタンク27へ蒸気を逃すようにしたのである
That is, as shown in FIG. 1, the steam pressure in the low-pressure drum 5 of the waste heat recovery boiler is detected by a pressure detector 31 as a pressure detection signal 32, and is input to a computing unit 33. This pressure detection signal 32 is compared with the pressure setting signal 34 in a calculator 33, and as a result of the comparison, the pressure detection signal 32 is the pressure setting signal 34.
If the temperature is higher than
4. Steam is released to the drain tank 27.

【0018】図2は演算器33でのフローチヤートを示
す。ホツトバンキング時の低圧ドラム5の圧力上昇を圧
力検出器31で検出し、演算器33内において、圧力設
定信号との超過を判断すると、復水器24の真空がもし
確立されている場合は、復水器ドレン配管26の復水器
ドレン弁29に開信号を送り、復水器ドレン配管26か
ら蒸気を逃す。また、もし復水器24の真空が破壊され
ている状態の場合は、ドレンタンクドレン配管28のド
レン配管ドレン弁30を開きドレンタンク27へ蒸気を
逃す。
FIG. 2 shows a flow chart of the arithmetic unit 33. The pressure increase in the low pressure drum 5 during hot banking is detected by the pressure detector 31, and if it is judged in the calculator 33 that it exceeds the pressure setting signal, if the vacuum in the condenser 24 is established, An open signal is sent to the condenser drain valve 29 of the condenser drain pipe 26 to release steam from the condenser drain pipe 26. Further, if the vacuum in the condenser 24 is broken, the drain pipe drain valve 30 of the drain tank drain pipe 28 is opened to release steam to the drain tank 27.

【0019】上記の蒸気放出操作によつて低圧ドラム5
の圧力が圧力設定信号34の下限に達すると、今度は演
算器33から、復水器ドレン弁29、ドレンタンクドレ
ン弁30に対し、弁を閉じる信号が送られる。この様に
復水器24の真空度に対応して復水器24の真空が確立
していれば復水器ドレン配管26より復水器24へ蒸気
を流入させ、もし復水器24の真空が破壊している場合
はドレンタンクドレン配管28からドレンタンク27へ
蒸気を放出するようにしたのである。
By the above steam release operation, the low pressure drum 5
When the pressure reaches the lower limit of the pressure setting signal 34, the calculator 33 sends a signal to the condenser drain valve 29 and the drain tank drain valve 30 to close the valves. In this way, if a vacuum in the condenser 24 is established corresponding to the degree of vacuum in the condenser 24, steam will flow into the condenser 24 from the condenser drain pipe 26; If the drain tank drain piping 28 is broken, steam is released from the drain tank drain pipe 28 to the drain tank 27.

【0020】それは、ガスタービン1の停止時には所内
動力の低減を計るために復水器24の真空を破壊するの
が通例で、この場合復水器24に大気が充満し復水の中
にO2 が溶け込み10000ppbまで溶存酸素(D
O2 )濃度が上昇し、再起動時にはDO2 濃度10
ppbまで脱気する必要があるからである。
[0020] When the gas turbine 1 is stopped, the vacuum in the condenser 24 is usually destroyed in order to reduce the internal power, and in this case, the condenser 24 is filled with atmospheric air and O2 dissolved oxygen (D) up to 10,000 ppb.
O2 ) concentration increases, and DO2 concentration is 10 at restart
This is because it is necessary to degas to ppb.

【0021】この様にホツトバンキング中の蒸気を復水
器24やドレンタンク27へ逃すことによつて、低圧ド
ラム5内の蒸気圧力は図4の曲線Cで示すように低くな
り、設計圧力も図4の直線Dで示すように設計圧力を1
.1倍程度に下げることができるので経済的である。
By releasing the steam during hot banking to the condenser 24 and drain tank 27 in this way, the steam pressure in the low pressure drum 5 is lowered as shown by curve C in FIG. 4, and the design pressure is also lowered. As shown by straight line D in Figure 4, the design pressure is 1
.. It is economical because it can be reduced to about 1 times.

【0022】[0022]

【発明の効果】本発明によれば、排熱回収ボイラのホツ
トバンキング中に発生する蒸気の異常上昇を緩和するこ
とができ、排熱回収ボイラの設計圧力を低くすることが
できる。
According to the present invention, it is possible to alleviate the abnormal rise in steam generated during hotbanking of the exhaust heat recovery boiler, and it is possible to lower the design pressure of the exhaust heat recovery boiler.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る排熱回収ボイラの概略系
統図である。
FIG. 1 is a schematic system diagram of an exhaust heat recovery boiler according to an embodiment of the present invention.

【図2】演算器のフローチヤートである。FIG. 2 is a flowchart of an arithmetic unit.

【図3】従来の排熱回収ボイラの概略系統図である。FIG. 3 is a schematic system diagram of a conventional exhaust heat recovery boiler.

【図4】縦軸に低圧ドラムの蒸気圧力、横軸に時間を示
した特性曲線図である。
FIG. 4 is a characteristic curve diagram in which the vertical axis shows the steam pressure of the low-pressure drum and the horizontal axis shows time.

【符号の説明】[Explanation of symbols]

1  ガスタービン 4  低圧蒸発器 5  低圧ドラム 8  高圧ドラム 14  低圧主蒸気管 15  蒸気タービン 21  高圧主蒸気管 22  高圧加減弁 23  低圧加減弁 24  復水器 26  復水器ドレン配管 27  ドレンタンク 28  ドレンタンクドレン配管 29  復水器ドレン弁 30  ドレンタンクドレン弁 31  圧力検出器 32  圧力検出信号 33  演算器 34  圧力設定信号 1 Gas turbine 4 Low pressure evaporator 5 Low pressure drum 8 High pressure drum 14 Low pressure main steam pipe 15 Steam turbine 21 High pressure main steam pipe 22 High pressure regulating valve 23 Low pressure regulating valve 24 Condenser 26 Condenser drain piping 27 Drain tank 28 Drain tank drain piping 29 Condenser drain valve 30 Drain tank drain valve 31 Pressure detector 32 Pressure detection signal 33 Arithmetic unit 34 Pressure setting signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ガスタービンからの排ガスによつて蒸
気を発生する高圧、低圧ドラムと、この高圧、低圧ドラ
ムの給水を排ガスにより加熱する高圧、低圧蒸発器と、
発生した蒸気を蒸気タービンへ供給する高圧、低圧加減
弁を有する高圧、低圧主蒸気管とを備えた排熱回収ボイ
ラおいて、前記低圧主蒸気管から復水器とドレンタンク
へ、復水器ドレン弁を有する復水器ドレン配管とドレン
タンクドレン弁を有するドレンタンクドレン配管とを設
け、低圧ドラムに圧力検出器を設け、この圧力検出器か
らの圧力検出信号と圧力設定信号を比較する演算器を設
けて、ホツトバンキング時に圧力検出信号と圧力設定信
号との偏差により、復水器ドレン弁とドレンタンクドレ
ン弁の少なくとも一方を開、閉するようにしたことを特
徴とする排熱回収ボイラ。
1. A high-pressure, low-pressure drum that generates steam using exhaust gas from a gas turbine, and a high-pressure, low-pressure evaporator that heats water supplied to the high-pressure, low-pressure drum using the exhaust gas.
In an exhaust heat recovery boiler equipped with high-pressure and low-pressure main steam pipes having high-pressure and low-pressure regulating valves for supplying generated steam to a steam turbine, the low-pressure main steam pipe is connected to a condenser and a drain tank, and a condenser. A calculation in which a condenser drain pipe having a drain valve and a drain tank drain pipe having a drain tank drain valve are provided, a pressure detector is provided in the low pressure drum, and a pressure detection signal from the pressure detector is compared with a pressure setting signal. An exhaust heat recovery boiler characterized in that at least one of a condenser drain valve and a drain tank drain valve is opened or closed depending on a deviation between a pressure detection signal and a pressure setting signal during hot banking. .
JP6378991A 1991-03-06 1991-03-06 Waste heat recovery boiler Expired - Fee Related JP2971597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6378991A JP2971597B2 (en) 1991-03-06 1991-03-06 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6378991A JP2971597B2 (en) 1991-03-06 1991-03-06 Waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH04278101A true JPH04278101A (en) 1992-10-02
JP2971597B2 JP2971597B2 (en) 1999-11-08

Family

ID=13239497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6378991A Expired - Fee Related JP2971597B2 (en) 1991-03-06 1991-03-06 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2971597B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107911A1 (en) * 2013-01-11 2014-07-17 Cai Jingpeng Low-pressure steam recovery superheating control system
JP2020125700A (en) * 2019-02-01 2020-08-20 株式会社東芝 Power generation facility, power generation facility control device, and power generation facility control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107911A1 (en) * 2013-01-11 2014-07-17 Cai Jingpeng Low-pressure steam recovery superheating control system
JP2020125700A (en) * 2019-02-01 2020-08-20 株式会社東芝 Power generation facility, power generation facility control device, and power generation facility control method

Also Published As

Publication number Publication date
JP2971597B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
CN112484073A (en) Steam air preheating system for waste incineration industry and preheating method thereof
CN110056853A (en) Boiler thermodynamic system and its control method
CN112303610A (en) Operation system and method for recovering high-energy water in shutdown and non-shutdown operation mode
CN210118175U (en) Pressurized water reactor nuclear power unit two-loop thermodynamic system self-adaptation steam supply system
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
CN208010412U (en) The bypath system of double reheat Turbo-generator Set
JP2001108201A (en) Multiple pressure waste heat boiler
CN113250770A (en) Thermal power generating unit non-external steam source starting system and method
JPH04278101A (en) Exhaust heat recovery boiler
JPH05248604A (en) Waste heat recovery boiler
JP5656754B2 (en) Power generation facility for waste incinerator and control method thereof
CN114738731A (en) Steam supply system of novel zero-number high-pressure heater of coal-fired unit of drum furnace and operation method
CN207815377U (en) A kind of two-part steam type airheater
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
CN211011382U (en) A waste incineration power generation bypass recovery system
JP5656753B2 (en) Power generation facility for waste incinerator and control method thereof
JP2971629B2 (en) Waste heat recovery boiler
JP2716442B2 (en) Waste heat recovery boiler device
CN206036995U (en) Cooling system is shut down to boiler
JPH0610619A (en) Supply water heating device
JP2000345811A (en) Exhaust heat recovery boiler plant and operating method thereof
JPS6214041B2 (en)
JPS61276601A (en) Exhaust-heat recovery boiler
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JP2637194B2 (en) Combined plant startup bypass system and its operation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees