JPH04277023A - Production of heat-resistant porous hollow fiber membrane - Google Patents
Production of heat-resistant porous hollow fiber membraneInfo
- Publication number
- JPH04277023A JPH04277023A JP6248491A JP6248491A JPH04277023A JP H04277023 A JPH04277023 A JP H04277023A JP 6248491 A JP6248491 A JP 6248491A JP 6248491 A JP6248491 A JP 6248491A JP H04277023 A JPH04277023 A JP H04277023A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- polymer
- crosslinkable polymer
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、耐熱性に優れた多孔質
中空糸膜の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing porous hollow fiber membranes having excellent heat resistance.
【0002】0002
【従来の技術】膜素材は多岐にわたっており、ポリアミ
ド、ポリエステル、ポリアクリロニトリル、ポリプロピ
レン、四フッ化エチレン等の合成高分子;セルローズ、
コラーゲン等の天然高分子;ガラス、セラミック等の無
機高分子からなる膜があり、用途により逆浸透膜、限外
濾過膜、精密濾過膜等として適材適所に用いられている
。[Prior Art] There are a wide variety of membrane materials, including synthetic polymers such as polyamide, polyester, polyacrylonitrile, polypropylene, and tetrafluoroethylene; cellulose;
There are membranes made of natural polymers such as collagen; and inorganic polymers such as glass and ceramics, and are used in the right place as reverse osmosis membranes, ultrafiltration membranes, precision filtration membranes, etc. depending on the purpose.
【0003】吸着分離のための活性炭素繊維は、既に数
種のものが知られている。例えば再生セルローズ系繊維
、アクリロニトリル系繊維、フェノール系繊維およびピ
ッチ系繊維を原料とするもの等である。繊維状活性炭は
粒状活性炭に比較して、接触面積が著しく大きく、吸着
や脱着の速度が早い等の形態上の利点が多い。さらに中
空糸にすることにより、吸着、脱着等の煩雑な工程から
開放され、流体を加圧下で中空糸内部を通過させるだけ
で、流体からの分離を可能とし、省エネルギープロセス
を可能とする。中空状活性炭素繊維については、特開昭
48−87121号公報に中空率10〜80%で、比表
面積400m2/g以上の炭素材中にボイドを形成した
、気体や液体中の微量物質を吸着する機能を有する中空
繊維が開示されている。この中空繊維の製法は、フェノ
ールを原料とする繊維のスキン部分を架橋させ、未架橋
のコア部を溶媒で溶出して得た中空繊維を炭素化し、さ
らに水蒸気等の酸化性ガスで賦活処理して多孔質化する
方法である。そのため細孔半径も1〜2nmのミクロ孔
であり、しかも得られる中空繊維の中空部は均一性に欠
け流体抵抗が大きく、透過速度の小さいものである。Several types of activated carbon fibers for adsorption separation are already known. Examples include those made from recycled cellulose fibers, acrylonitrile fibers, phenol fibers, and pitch fibers. Fibrous activated carbon has many advantages over granular activated carbon, such as a significantly larger contact area and faster adsorption and desorption rates. Furthermore, by using hollow fibers, complicated processes such as adsorption and desorption are freed, and the fluid can be separated from the fluid by simply passing it through the hollow fibers under pressure, making an energy-saving process possible. Regarding hollow activated carbon fibers, Japanese Patent Application Laid-Open No. 48-87121 describes that voids are formed in a carbon material with a hollow ratio of 10 to 80% and a specific surface area of 400 m2/g or more to adsorb trace substances in gases and liquids. A hollow fiber is disclosed that has the function of The manufacturing method for this hollow fiber is to crosslink the skin part of a fiber made from phenol, elute the uncrosslinked core part with a solvent, carbonize the obtained hollow fiber, and then activate it with an oxidizing gas such as water vapor. This method makes the material porous. Therefore, the pore radius is micropores of 1 to 2 nm, and the hollow portions of the obtained hollow fibers lack uniformity, have a large fluid resistance, and have a low permeation rate.
【0004】特開昭58−91826号公報には、ピッ
チ系中空炭素繊維が開示されているが、中空内径が10
μm以下と小さく、膜壁への細孔もなく、分離膜を意図
したものではない。[0004] JP-A-58-91826 discloses a pitch-based hollow carbon fiber, but the hollow inner diameter is 10
It is small, less than μm, has no pores in the membrane wall, and is not intended as a separation membrane.
【0005】また、特開昭60−179102号公報お
よび特開昭60−202703号公報には多層構造の炭
素膜が開示されているが、前者の炭素膜は、微多孔質緻
密層を少なくとも一層有し、また少なくとも一層は透過
速度を早めるための大きな細孔を有し、しかも多層構造
全体としての配向係数が0.7と小さいものである。さ
らに後者の炭素膜も、分離能を有する多孔質層と透過速
度を早めるための最大孔直径5μm以上のボイドを有す
るスポンジ構造の多孔質層とからなるものであり、極め
て脆弱な膜構造であり実用に耐えないものである。[0005] Also, Japanese Patent Laid-Open No. 179102/1982 and Japanese Patent Laid-open No. 202703/1987 disclose carbon membranes with a multilayer structure, but the former carbon membrane has at least one microporous dense layer. At least one layer has large pores to increase the permeation rate, and the orientation coefficient of the multilayer structure as a whole is as small as 0.7. Furthermore, the latter carbon membrane also has an extremely fragile membrane structure, consisting of a porous layer that has separation ability and a porous layer with a sponge structure that has voids with a maximum pore diameter of 5 μm or more to accelerate the permeation rate. It is impractical.
【0006】さらに、特開昭61−47827号公報に
は、ポリビニルアルコール系繊維からの炭素化中空繊維
が開示されているが、脱水剤を表層部のみに浸透させ、
乾留工程で不融化し、脱水剤の浸透しなかった中心部分
を溶融除去して中空状とするものであり、しかも、水蒸
気で賦活処理して多孔質中空炭素繊維を製造するもので
ある。Furthermore, Japanese Patent Application Laid-Open No. 61-47827 discloses carbonized hollow fibers made from polyvinyl alcohol fibers;
The core part, which is made infusible during the carbonization process and has not been penetrated by the dehydrating agent, is melted and removed to make it hollow, and it is activated with steam to produce porous hollow carbon fibers.
【0007】また、特開昭63−4812号公報(=E
P252339号)には、孔を有する炭素膜の製法とし
て、予め抽出法で孔を設けた中空糸膜をヒドラジン水溶
液で処理してから耐炎化および炭素化する方法が提案さ
れている。[0007] Also, Japanese Patent Application Laid-Open No. 63-4812 (=E
No. P252339) proposes a method for producing a carbon membrane having pores, in which a hollow fiber membrane in which pores have been previously provided by an extraction method is treated with an aqueous hydrazine solution, and then made flame resistant and carbonized.
【0008】しかしながら、これらの従来技術による活
性炭素繊維や多孔質中空炭素繊維は、その細孔の平均半
径がいずれも1〜5nmと小さいため、分子量が比較的
小さい物質の気相からの吸着や分離には適するが、本発
明が意図する比較的大きい分子量を有する物質の気相や
液相からの吸着分離には適さなかった。また、これらの
繊維はその強度、伸度等の物性が不足し、かつしなやか
さに欠けるものがほとんどであった。[0008] However, the activated carbon fibers and porous hollow carbon fibers according to the prior art have small average radii of pores of 1 to 5 nm, so it is difficult to adsorb substances with relatively small molecular weights from the gas phase. Although it is suitable for separation, it is not suitable for the adsorption separation of a substance having a relatively large molecular weight from the gas phase or liquid phase, which is the intention of the present invention. In addition, most of these fibers lack physical properties such as strength and elongation, and lack flexibility.
【0009】[0009]
【発明が解決しようとする課題】有機高分子材料からの
成膜は加工が容易であり、薄膜化や微細構造の制御に優
れた技術が開発されており、中空糸膜やモジュールの成
型が容易である等の利点があるが、耐熱性、耐薬品性、
耐腐食性等に難点がある。したがって応用分野が限定さ
れたものとなっているのが現状である。一方ガラス、セ
ラミックス等の無機材料からのものは、耐熱性、耐薬品
性には優れているが、中空糸膜への加工が容易でなく、
加工されても中空糸内径が大きく膜厚も厚く剛直で脆弱
なものしか得られず、モジュール等への成型性に難点が
あった。[Problem to be solved by the invention] Films made from organic polymer materials are easy to process, and excellent technologies have been developed for thinning films and controlling microstructures, making it easy to mold hollow fiber membranes and modules. It has advantages such as heat resistance, chemical resistance,
There are drawbacks such as corrosion resistance. Therefore, the current situation is that the field of application is limited. On the other hand, those made from inorganic materials such as glass and ceramics have excellent heat resistance and chemical resistance, but are difficult to process into hollow fiber membranes.
Even if processed, only hollow fibers with large inner diameters, thick membranes, and rigidity could be obtained, making it difficult to form them into modules and the like.
【0010】本発明の目的は、加工性の良好な有機高分
子を用いて中空糸膜に成型し、繊維構造を架橋し熱固定
し、多孔構造化した後に熱酸化することによって、耐熱
性多孔質中空糸膜を製造する方法を提供することにある
。[0010] The object of the present invention is to form a hollow fiber membrane using an organic polymer with good processability, crosslink the fiber structure, heat set it, form a porous structure, and then thermally oxidize it to form a heat-resistant porous membrane. An object of the present invention is to provide a method for manufacturing a quality hollow fiber membrane.
【0011】[0011]
【課題を解決するための手段】すなわち、本発明は、架
橋性重合体(A)40〜80重量%及び非架橋性重合体
(B)20〜60重量%を溶剤(C)に溶解した重合体
溶液を調製する工程、該重合体溶液を中空糸製造用ノズ
ルを用いて紡糸して中空糸膜に賦型する工程、該中空糸
膜を架橋処理液中に浸漬した後0.2kg/cm2G
以上の加圧水蒸気中で加熱して架橋性重合体(A)を架
橋する工程、該中空糸膜から非架橋性重合体(B)を抽
出剤(E)で溶出除去する工程、および該中空糸膜を2
00〜300℃の酸化性雰囲気中で熱酸化し、さらに必
要に応じて不活性ガス雰囲気下、300℃以上で熱処理
する工程を有する耐熱性多孔質中空糸膜の製造方法であ
る。[Means for Solving the Problems] That is, the present invention provides a polymer in which 40 to 80% by weight of a crosslinkable polymer (A) and 20 to 60% by weight of a non-crosslinkable polymer (B) are dissolved in a solvent (C). A step of preparing a combined solution, a step of spinning the polymer solution using a nozzle for producing hollow fibers and shaping it into a hollow fiber membrane, and a step of immersing the hollow fiber membrane in a crosslinking treatment solution at a weight of 0.2 kg/cm2G.
A step of crosslinking the crosslinkable polymer (A) by heating in the above pressurized steam, a step of eluting and removing the non-crosslinkable polymer (B) from the hollow fiber membrane with an extractant (E), and a step of eluting and removing the non-crosslinkable polymer (B) from the hollow fiber membrane. 2 membranes
This is a method for producing a heat-resistant porous hollow fiber membrane, which includes thermal oxidation in an oxidizing atmosphere of 00 to 300°C, and further heat treatment at 300°C or higher in an inert gas atmosphere as necessary.
【0012】0012
【作用】本発明に用いる架橋性重合体(A)は、酸化性
雰囲気中での熱酸化処理および薬液中への浸漬処理によ
って架橋構造を形成することのできる重合体であり、ポ
リアクリロニトリル、ポリビニルクロライド、ポリビニ
ルアルコール、ノボラック型フェノール等を挙げること
ができるが、なかでもポリアクリロニトリルおよびアク
リロニトリル系共重合体(以下、アクリロニトリル系重
合体という。)が、賦型の容易さ、得られる多孔質構造
の安定性等から好ましい。[Action] The crosslinkable polymer (A) used in the present invention is a polymer that can form a crosslinked structure by thermal oxidation treatment in an oxidizing atmosphere and immersion treatment in a chemical solution, and includes polyacrylonitrile, polyvinyl Among these, polyacrylonitrile and acrylonitrile copolymers (hereinafter referred to as acrylonitrile polymers) are preferred due to their ease of shaping and the porous structure that can be obtained. Preferable from the viewpoint of stability etc.
【0013】本発明にいう上記アクリロニトリル系重合
体とは、アクリロニトリル単位が90〜100モル%と
、アクリロニトリルと共重合可能な他の単量体0〜10
モル%とから構成されるアクリロニトリル単独重合体ま
たは共重合体である。共重合可能な単量体の例としては
、アクリル酸、メタクリル酸、イタコン酸およびこれら
の誘導体、例えばメチルアクリレート、エチルアクリレ
ート、ベンジルアクリレート、メチルメタクリレート、
エチルメタクリレート;アクリルアミド、メタクリルア
ミド等のアミド誘導体;酢酸ビニル、塩化ビニル、塩化
ビニリデン等のハロゲン化ビニル単量体;メタクリルス
ルホン酸ソーダ、スチレンスルホン酸ソーダ等のスルホ
ン酸誘導体;等が挙げられるが、必ずしもこれらに限定
されるものではない。アクリロニトリル系重合体として
は、ポリアクリロニトリル、アクリロニトリル−メタク
リル酸共重合体、アクリロニトリル−メチルアクリレー
ト−イタコン酸共重合体、アクリロニトリル−メチルア
クリレート−メタクリル酸共重合体等が特に好ましいも
のである。The above-mentioned acrylonitrile-based polymer according to the present invention includes 90 to 100 mol % of acrylonitrile units and 0 to 10 mol % of other monomers copolymerizable with acrylonitrile.
It is an acrylonitrile homopolymer or copolymer composed of mol%. Examples of copolymerizable monomers include acrylic acid, methacrylic acid, itaconic acid and derivatives thereof, such as methyl acrylate, ethyl acrylate, benzyl acrylate, methyl methacrylate,
Ethyl methacrylate; amide derivatives such as acrylamide and methacrylamide; halogenated vinyl monomers such as vinyl acetate, vinyl chloride, and vinylidene chloride; sulfonic acid derivatives such as sodium methacrylsulfonate and sodium styrene sulfonate; It is not necessarily limited to these. As the acrylonitrile polymer, polyacrylonitrile, acrylonitrile-methacrylic acid copolymer, acrylonitrile-methyl acrylate-itaconic acid copolymer, acrylonitrile-methyl acrylate-methacrylic acid copolymer, etc. are particularly preferred.
【0014】アクリロニトリル系重合体の比粘度で示さ
れる重合度は、重合体0.1gを0.1Nのロダンソー
ダを含むジメチルホルムアミド100mlに溶解し25
℃で測定される比粘度が0.1〜0.4の範囲のものが
好ましく、0.2〜0.3の範囲のものがより好ましい
。この範囲を外れると紡糸操作が困難になったり、また
得られる中空糸膜の性能が劣悪ものになったりする傾向
がある。The degree of polymerization indicated by the specific viscosity of an acrylonitrile polymer is determined by dissolving 0.1 g of the polymer in 100 ml of dimethylformamide containing 0.1 N of rhodan soda.
The specific viscosity measured at °C is preferably in the range of 0.1 to 0.4, more preferably in the range of 0.2 to 0.3. If it is outside this range, the spinning operation tends to become difficult and the performance of the hollow fiber membrane obtained tends to be poor.
【0015】本発明に用いる非架橋性重合体(B)は、
加熱処理または薬液中への浸漬処理によって架橋構造を
形成しないもの、もしくは形成してもその程度が比較的
小さく実質的に無視できるものであり、かつ架橋性重合
体(A)の溶剤に溶解可能なものである。このような非
架橋性重合体(B)の例としては、スチレン、α−メチ
ルスチレン、ビニルトルエン等の芳香族ビニル系単量体
;メチルメタクリレート、エチルメタクリレート、n−
ブチルメタクリレート等のメタクリレート系単量体等の
単独重合体またはこれらの単量体51モル%以上とアク
リロニトリル以外の他の共重合可能な単量体単位49モ
ル%以下とからなる共重合体等が挙げられる。特にスチ
レン系重合体、メチルメタクリレート系重合体が好まし
い。ここで共重合可能な他の単量体の例としてはメチル
メタクリレート、エチルアクリレート、n−ブチルアク
リレート等のアクリレート系単量体;およびアクリル酸
、メタクリル酸等が挙げられる。The non-crosslinkable polymer (B) used in the present invention is:
Those that do not form a crosslinked structure by heat treatment or immersion treatment in a chemical solution, or even if they do, the degree of crosslinking is relatively small and can be practically ignored, and is soluble in the solvent of the crosslinkable polymer (A) It is something. Examples of such non-crosslinkable polymers (B) include aromatic vinyl monomers such as styrene, α-methylstyrene, and vinyltoluene; methyl methacrylate, ethyl methacrylate, n-
Homopolymers such as methacrylate monomers such as butyl methacrylate, or copolymers consisting of 51 mol% or more of these monomers and 49 mol% or less of other copolymerizable monomer units other than acrylonitrile, etc. Can be mentioned. Particularly preferred are styrene polymers and methyl methacrylate polymers. Examples of other monomers that can be copolymerized here include acrylate monomers such as methyl methacrylate, ethyl acrylate, and n-butyl acrylate; and acrylic acid and methacrylic acid.
【0016】非架橋性重合体(B)の比粘度で示される
重合度としては、架橋性重合体(A)との混合重合体溶
液を調製する場合の粘度の調整を容易にするために、比
粘度は0.1〜0.4の範囲のものが好ましく、0.2
〜0.3の範囲のものがより好ましい。The degree of polymerization indicated by the specific viscosity of the non-crosslinkable polymer (B) is as follows, in order to facilitate the adjustment of the viscosity when preparing a mixed polymer solution with the crosslinkable polymer (A). The specific viscosity is preferably in the range of 0.1 to 0.4, and 0.2
A value in the range of ˜0.3 is more preferable.
【0017】本発明に用いる溶剤(C)は、架橋性重合
体(A)、非架橋性重合体(B)および後述の任意成分
として用いられる相溶剤(D)に対して共通の溶媒とな
り得るものである。この溶剤(C)の例としては、ジメ
チルホルムアミド、ジメチルアセトアミド、ジメチルス
ルホキシド等が挙げられる。The solvent (C) used in the present invention can be a common solvent for the crosslinkable polymer (A), the non-crosslinkable polymer (B), and the compatibilizer (D) used as an optional component described below. It is something. Examples of this solvent (C) include dimethylformamide, dimethylacetamide, dimethylsulfoxide, and the like.
【0018】本発明の実施に際して所望により用いられ
る相溶剤(D)は、架橋性重合体(A)および非架橋性
重合体(B)の両者に対して相溶効果を示すものである
。相溶効果を示すものであればオリゴマーのような低分
子ものから高分子のものまで種々のものが用いられる。
具体的には、架橋性重合体(A)と相溶性を有するかま
たは重合体(A)と同一の単量体から構成されるセグメ
ント(a)と、非架橋性重合体(B)と相溶性を有する
かまたは重合体(B)と同一の単量体から構成されるセ
グメント(b)とを同一重合体鎖中に有する重合体、例
えばブロック重合体やグラフト重合体が挙げられる。こ
のようなブロック重合体やグラフト重合体は公知の方法
、例えば特公昭61−39978号公報の記載にしたが
い製造できる。The compatibilizer (D), which is optionally used in carrying out the present invention, exhibits a compatibilizing effect on both the crosslinkable polymer (A) and the non-crosslinkable polymer (B). Various materials can be used, from low molecular weight ones such as oligomers to high molecular weight ones, as long as they exhibit a compatibility effect. Specifically, the segment (a) is compatible with the crosslinkable polymer (A) or is composed of the same monomer as the polymer (A), and the segment (a) is compatible with the non-crosslinkable polymer (B). Examples include polymers that are soluble or have a segment (b) composed of the same monomer as the polymer (B) in the same polymer chain, such as block polymers and graft polymers. Such block polymers and graft polymers can be produced by known methods, for example, as described in Japanese Patent Publication No. 39978/1983.
【0019】本発明に用いる架橋性重合体(A)および
非架橋性重合体(B)は、多くの場合相溶性がよくない
。相溶剤(D)は、架橋性重合体(A)と非架橋性重合
体(B)とを溶剤(C)と共に混合溶解するに際して架
橋性重合体(A)の溶液と非架橋性重合体(B)の溶液
とを均一な小さい分散粒子とし、得られた混合溶液を安
定な状態に保つ作用を有するものである。相溶剤の効果
によって、重合体(A)および(B)は、海−島構造を
形成し、紡糸−延伸によってそれぞれの高分子は繊維軸
方向に配向し、フィブリルはお互いが独立に絡み合い、
網目構造を形成する。したがって、非架橋性重合体(B
)成分を溶出除去しても、架橋性重合体(A)からなる
フィブリル構造はそのまま網目構造として残存し、膜強
度の低下が防がれるとともに、相溶剤(D)は、海−島
成分の分散相の大きさを制御する役割をも果し、最終的
に得られる中空糸膜の細孔の大きさを制御する。The crosslinkable polymer (A) and non-crosslinkable polymer (B) used in the present invention often have poor compatibility. The compatibilizer (D) is used to mix and dissolve the crosslinkable polymer (A) and the non-crosslinkable polymer (B) together with the solvent (C). It has the function of making the solution B) into uniform small dispersed particles and keeping the resulting mixed solution in a stable state. Due to the effect of the compatibilizer, the polymers (A) and (B) form a sea-island structure, and by spinning and drawing, each polymer is oriented in the fiber axis direction, and the fibrils are entangled with each other independently.
Forms a network structure. Therefore, the non-crosslinkable polymer (B
) Even if the components are eluted and removed, the fibril structure made of the crosslinkable polymer (A) remains as it is as a network structure, preventing a decrease in film strength, and the compatibilizer (D) It also plays the role of controlling the size of the dispersed phase and controls the pore size of the hollow fiber membrane finally obtained.
【0020】相溶剤(D)の具体例としては、アクリロ
ニトリル30モル%以上、メチルメタクリレート10モ
ル%以上およびこれらと共重合可能な他の単量体10モ
ル%以下から構成されるブロック共重合体やグラフト共
重合体が挙げられる。Specific examples of the compatibilizer (D) include block copolymers composed of 30 mol% or more of acrylonitrile, 10 mol% or more of methyl methacrylate, and 10 mol% or less of other monomers copolymerizable with these. and graft copolymers.
【0021】本発明において、架橋性重合体(A)、非
架橋性重合体(B)および相溶剤(D)の好ましい混合
割合は、架橋性重合体(A)40〜80重量%、非架橋
性重合体(B)20〜60重量%であり、相溶剤(D)
は0〜10重量%、より好ましくは0〜5重量%[ただ
し(A)成分、(B)成分および(D)成分の合計量が
100重量%]である。In the present invention, the preferred mixing ratio of the crosslinkable polymer (A), the non-crosslinkable polymer (B) and the compatibilizer (D) is 40 to 80% by weight of the crosslinkable polymer (A) and 40 to 80% by weight of the non-crosslinkable polymer (A), The content of the polymer (B) is 20 to 60% by weight, and the compatibilizer (D) is
is 0 to 10% by weight, more preferably 0 to 5% by weight [provided that the total amount of components (A), (B) and (D) is 100% by weight].
【0022】非架橋性重合体(B)の使用量が20重量
%より少ないと、最終的に得られる多孔質中空糸膜の内
壁表面から外壁表面に連通する細孔が得られにくい。ま
た、非架橋性重合体(B)の使用量が多くなるにしたが
って連通孔が増加し細孔容積も増加し、その使用量が6
0重量%を超えると全細孔容積が大きくなり、その結果
最終的に得られる多孔質中空糸膜の強度が低下する。If the amount of the non-crosslinkable polymer (B) used is less than 20% by weight, it will be difficult to obtain pores communicating from the inner wall surface to the outer wall surface of the finally obtained porous hollow fiber membrane. In addition, as the amount of non-crosslinkable polymer (B) used increases, the number of communicating pores increases and the pore volume also increases, and the amount used increases.
If it exceeds 0% by weight, the total pore volume will increase, resulting in a decrease in the strength of the porous hollow fiber membrane finally obtained.
【0023】相溶剤(D)は、その混合量が増加するに
したがって分散粒子の大きさが小さくなり、この結果重
合体溶液の安定性が増加する。そしてこのことは最終的
に得られる多孔質中空糸膜の細孔の半径を小さくし、細
孔の大きさの分布を小さくするのに寄与するが、その混
合量が10重量%を超えるとその添加効果は飽和するた
め10重量%までの混合量で十分である。As the mixing amount of the compatibilizer (D) increases, the size of the dispersed particles decreases, and as a result, the stability of the polymer solution increases. This contributes to reducing the radius of the pores and the distribution of pore sizes in the porous hollow fiber membrane that is finally obtained, but if the mixing amount exceeds 10% by weight, Since the effect of addition is saturated, a mixing amount of up to 10% by weight is sufficient.
【0024】重合体溶液中の重合体[(A)成分、(B
)成分および(D)成分の合計量]の濃度は、10〜3
5重量%、好ましくは15〜30重量%である。混合は
溶解時に同時に行ってもよい。またそれぞれ単独で溶解
し、紡糸直前に公知の駆動部分不要の静的混練素子等を
用いて重合体溶液の混合を行ってもよい。この場合相溶
剤(D)は必ずしも必要ではない。混合の効果は静的混
練素子中のエレメントの個数で制御される。すなわち、
エレメントの数が多くなると最終的に得られる多孔質中
空糸膜の細孔の半径は小さくなる。[0024] The polymer in the polymer solution [component (A), (B)
The concentration of the total amount of component ) and component (D) is 10 to 3.
5% by weight, preferably 15-30% by weight. Mixing may be performed simultaneously during dissolution. Alternatively, each may be dissolved individually and the polymer solution may be mixed immediately before spinning using a known static kneading element that does not require a driving part. In this case, the compatibilizer (D) is not necessarily required. The effectiveness of the mixing is controlled by the number of elements in the static kneading element. That is,
As the number of elements increases, the radius of the pores of the finally obtained porous hollow fiber membrane becomes smaller.
【0025】重合体溶液中の重合体の濃度が10重量%
より少ないと最終的に得られる多孔質中空糸膜の強度特
性が低下するため好ましくない。また35重量%を超え
ると混合溶液の粘度が高くなり、重合体溶液の安定性が
低下し、濾過が困難になる等のトラブルの要因となるた
め好ましくない。[0025] The concentration of the polymer in the polymer solution is 10% by weight.
If the amount is less, the strength characteristics of the porous hollow fiber membrane finally obtained will deteriorate, which is not preferable. Moreover, if it exceeds 35% by weight, the viscosity of the mixed solution increases, the stability of the polymer solution decreases, and it becomes a cause of troubles such as difficulty in filtration, which is not preferable.
【0026】重合体溶液は、例えば環状スリットや鞘芯
型のノズル等の中空糸製造用ノズルを用いて中空糸に紡
糸する。紡糸方式は湿式紡糸、乾湿式紡糸、乾式紡糸の
何れかで紡糸することができるが、湿式紡糸または乾湿
式紡糸が好ましく、特に乾湿式紡糸が好ましい。The polymer solution is spun into hollow fibers using a hollow fiber manufacturing nozzle such as an annular slit or sheath-core type nozzle. The spinning method may be wet spinning, wet-dry spinning, or dry spinning, but wet spinning or wet-dry spinning is preferred, and wet-dry spinning is particularly preferred.
【0027】乾湿式紡糸法で紡糸する場合を例にして説
明すると、例えば鞘芯型ノズルから吐出された重合体溶
液は、一旦、空気中を走行した後、凝固浴中に導かれ凝
固される。凝固剤は、比較的凝固力の緩やかなものが、
相分離も穏やかに進み強靱な膜が得られやすいので好ま
しい。通常は溶剤(C)の水溶液が用いられ、溶剤濃度
40〜85重量%、好ましくは60〜80重量%、80
℃以下、好ましくは70℃以下の温度で凝固することが
好ましい。この範囲を外れると脆弱な中空糸膜が形成さ
れやすい。[0027] To explain the case of spinning using a dry-wet spinning method, for example, a polymer solution discharged from a sheath-core nozzle once travels in the air, and then is introduced into a coagulation bath and coagulated. . Coagulants that have a relatively gentle coagulating power are
This is preferable because phase separation proceeds gently and a tough film is easily obtained. Usually, an aqueous solution of the solvent (C) is used, with a solvent concentration of 40 to 85% by weight, preferably 60 to 80% by weight, 80% by weight, preferably 60 to 80% by weight,
It is preferable to solidify at a temperature of 0.degree. C. or less, preferably 70.degree. C. or less. Outside this range, fragile hollow fiber membranes are likely to be formed.
【0028】次いで、温水または熱水中で洗浄され、延
伸される。延伸は二段以上で実施するのが好ましく、全
延伸倍率3倍以上、好ましくは5倍以上に延伸される。
延伸は繊維の構造の破壊が生じない範囲で高いほど好ま
しいが、全延伸倍率の上限は延伸法、延伸媒体によって
も異なるが、延伸破断が生じる延伸倍率の約8割が目安
となる。[0028] Next, it is washed in warm or hot water and stretched. The stretching is preferably carried out in two or more stages, and the total stretching ratio is 3 times or more, preferably 5 times or more. It is preferable that the stretching is as high as possible without causing destruction of the fiber structure, but the upper limit of the total stretching ratio varies depending on the stretching method and the stretching medium, but the guideline is approximately 80% of the stretching ratio at which stretch breakage occurs.
【0029】次いで、得られた中空糸膜を、通常は水膨
潤状態で、架橋処理液中に浸漬した後、0.2kg/c
m2G (105℃)以上の温度の加圧水蒸気中で加熱
して、中空糸膜中の架橋性重合体(A)の化学架橋処理
および熱固定処理を行う。Next, the obtained hollow fiber membrane is immersed in a crosslinking treatment solution, usually in a water-swollen state, and then 0.2 kg/c
The crosslinkable polymer (A) in the hollow fiber membrane is chemically crosslinked and heat set by heating in pressurized steam at a temperature of m2G (105° C.) or higher.
【0030】架橋処理液としては、架橋性重合体(A)
がアクリル系重合体の場合には、ヒドロキシルアミンや
ヒドラジン等の水溶液が使用できる。ヒドロキシルアミ
ンやヒドラジンを用いてアクリル繊維を変性させること
は公知であり、種々の方法が提案されている。例えばヒ
ドロキシルアミン80%以下の水溶液またはヒドロキシ
ルアミンの無機塩もしくは有機酸塩による処理、ヒドロ
キシルアミンの無機強酸塩とアルカリ性物質の存在下で
の水溶液処理等がある。ヒドラジン処理の例としては、
ヒドラジン80%以下の水溶液処理、ヒドラジンの無機
塩もしくは有機酸塩による処理等を挙げることができる
。何れの反応もその様相は複雑で一律には規定できない
が、架橋反応の目安としてジメチルホルムアミド(以下
、DMFと略記。)に対する架橋性重合体(A)の溶解
度が50重量%以下、好ましくは20重量%以下になる
よう処理することが望ましい。ヒドロキシルアミンまた
はヒドラジン水溶液中に浸漬する場合の処理液濃度は、
浸漬処理時間、絞り量等によっても影響されるので一概
に規定できないが、絞り量を繊維重量に対して80〜1
20%の場合には、処理液濃度は2〜80重量%、好ま
しくは5〜70重量%の範囲である、処理液濃度が2重
量%未満であるとDMFに対する溶解度が大きく架橋反
応の効果が小さい。処理液濃度が80重量%を超えると
架橋性重合体(A)のDMFに対する溶解度は低下する
が、繊維が脆弱になり好ましくない。適当な濃度の処理
液中に浸漬して絞り率を調整された繊維は、0.2kg
/cm2G (105℃)以上の加圧水蒸気中で反応処
理を行う。処理圧力が高い(温度が高い)場合は処理時
間は短時間でよく、処理圧力が低い(温度が低い)場合
には反応処理時間を長くする必要がある。処理圧力は0
.2〜5.0kg/cm2G 好ましくは0.2〜3.
0kg/cm2G である。処理時間は1〜300秒が
好ましく、5〜120秒がより好ましい。処理圧力が0
.2kg/cm2G 未満でかつ処理時間が短いと架橋
処理が充分に行えない。処理圧力が5.0kg/cm2
Gを超え反応処理時間が300秒を超えると、繊維は脆
弱なものとなるので好ましくない。次いで乾燥し、架橋
性重合体(A)と非架橋性重合体(B)とのブレンドか
らなる中空糸膜が得られる。As the crosslinking treatment liquid, the crosslinkable polymer (A)
When is an acrylic polymer, an aqueous solution of hydroxylamine, hydrazine, etc. can be used. It is known to modify acrylic fibers using hydroxylamine or hydrazine, and various methods have been proposed. Examples include treatment with an aqueous solution containing 80% or less hydroxylamine, an inorganic or organic salt of hydroxylamine, and treatment with an aqueous solution in the presence of a strong inorganic acid salt of hydroxylamine and an alkaline substance. An example of hydrazine treatment is
Examples include treatment with an aqueous solution containing 80% or less hydrazine, treatment with an inorganic salt or organic acid salt of hydrazine, and the like. The aspects of each reaction are complex and cannot be uniformly defined, but as a guideline for crosslinking reactions, the solubility of the crosslinkable polymer (A) in dimethylformamide (hereinafter abbreviated as DMF) is 50% by weight or less, preferably 20% by weight or less. It is desirable that the treatment be carried out so that the amount is less than % by weight. The concentration of the treatment solution when immersed in a hydroxylamine or hydrazine aqueous solution is
It is not possible to define it unconditionally as it is affected by the soaking treatment time, the amount of squeezing, etc., but the amount of squeezing should be 80 to 1% of the weight of the fiber.
In the case of 20%, the treatment liquid concentration is in the range of 2 to 80% by weight, preferably 5 to 70% by weight. If the treatment liquid concentration is less than 2% by weight, the solubility in DMF is large and the effect of the crosslinking reaction is small. If the concentration of the treatment liquid exceeds 80% by weight, the solubility of the crosslinkable polymer (A) in DMF will decrease, but the fibers will become brittle, which is not preferable. The fiber weighs 0.2 kg after being immersed in a treatment solution with an appropriate concentration to adjust the squeezing rate.
The reaction treatment is carried out in pressurized steam at a temperature of /cm2G (105°C) or higher. When the processing pressure is high (high temperature), the processing time may be short, and when the processing pressure is low (low temperature), the reaction processing time needs to be lengthened. Processing pressure is 0
.. 2 to 5.0 kg/cm2G, preferably 0.2 to 3.
0 kg/cm2G. The treatment time is preferably 1 to 300 seconds, more preferably 5 to 120 seconds. Processing pressure is 0
.. If the weight is less than 2 kg/cm2G and the treatment time is short, the crosslinking treatment cannot be carried out sufficiently. Processing pressure is 5.0kg/cm2
If G is exceeded and the reaction treatment time exceeds 300 seconds, the fibers become brittle, which is not preferable. Then, it is dried to obtain a hollow fiber membrane consisting of a blend of the crosslinkable polymer (A) and the non-crosslinkable polymer (B).
【0031】中空糸膜の寸法は、ノズル、溶液吐出量、
延伸条件等により調整できるが、内径20μm〜100
0μm、膜厚が内径の1/4〜1/10の範囲のものが
製造しやすい。[0031] The dimensions of the hollow fiber membrane include the nozzle, solution discharge amount,
Although it can be adjusted depending on the stretching conditions, etc., the inner diameter is 20 μm to 100 μm.
It is easy to manufacture a film having a thickness of 0 μm and a film thickness in the range of 1/4 to 1/10 of the inner diameter.
【0032】しかる後、得られた中空糸膜から非架橋性
重合体(B)を溶解することのできる抽出剤(E)で非
架橋性重合体(B)のみを、ソックスレータイプの抽出
器を用いてで溶出除去して多孔質化する。最終的な多孔
質中空糸膜の耐熱性能を向上させ、かつ細孔孔径の孔径
分布をシャープにするためにも、非架橋性重合体(B)
はできるだけ完全に除去することが好ましい。この抽出
剤(E)には、ベンゼン、トルエン、アセトン、メチル
エチルケトン、塩化メチレン、酢酸エステル類、ハロゲ
ン化脂肪族炭化水素等が好ましく使用できる。このよう
にして多孔質化することにより、次の熱酸化工程での酸
化剤の中空糸膜の繊維内部への拡散速度を増加させるこ
とができる。Thereafter, only the non-crosslinkable polymer (B) was extracted from the obtained hollow fiber membrane using an extractant (E) capable of dissolving the non-crosslinkable polymer (B) using a Soxhlet type extractor. It is removed by elution and made porous. In order to improve the heat resistance performance of the final porous hollow fiber membrane and sharpen the pore size distribution, non-crosslinkable polymer (B)
It is preferable to remove it as completely as possible. As the extractant (E), benzene, toluene, acetone, methyl ethyl ketone, methylene chloride, acetic acid esters, halogenated aliphatic hydrocarbons, etc. can be preferably used. By making the fiber porous in this manner, it is possible to increase the diffusion rate of the oxidizing agent into the interior of the fiber of the hollow fiber membrane in the next thermal oxidation step.
【0033】熱酸化処理工程では、中空糸膜を200〜
300℃の温度の酸化性ガス(例えばO2 、O3 、
S、NO、SO2 等を含むガス)雰囲気中、通常は空
気中で熱酸化処理する。なお、熱酸化処理を施す際には
、中空糸膜は長さ方向に収縮が生じないように制御する
ことが望ましい。熱酸化処理工程での過度の収縮は中空
糸膜の機械的強度を低下させるので好ましくない。また
過度の伸長は中空糸膜の切断の要因になるので好ましく
ない。
従って熱酸化工程での伸長は0〜15%の範囲に制御し
て熱酸化処理することが好ましい。熱酸化温度が200
℃より低いと目標とする耐熱性を得るのに長時間を必要
とし、熱酸化温度が300℃を超えると発熱反応による
熱分解が生じ分解ガスに着火して燃焼を生ずる場合があ
る。処理時間は10〜60分、好ましくは20〜30分
である。必要に応じて、300℃以上、好ましくは40
0〜1000℃の温度の不活性ガス(例えばN2 、A
r、He)雰囲気中、通常は窒素ガス中で張力を制御し
つつ耐熱処理する。このとき、溶出剤で完全に溶出され
なかった非架橋性重合体は完全に熱分解して消失する。
架橋性重合体の溶剤可溶部分の一部も熱分解して消失し
、耐熱性多孔質中空糸膜を製造することができる。[0033] In the thermal oxidation treatment step, the hollow fiber membrane is
Oxidizing gas (e.g. O2, O3,
Thermal oxidation treatment is performed in an atmosphere (gas containing S, NO, SO2, etc.), usually in air. Note that when performing the thermal oxidation treatment, it is desirable to control the hollow fiber membrane so that it does not shrink in the length direction. Excessive shrinkage during the thermal oxidation treatment step is undesirable because it reduces the mechanical strength of the hollow fiber membrane. Excessive elongation is also undesirable as it may cause the hollow fiber membrane to break. Therefore, it is preferable to perform the thermal oxidation treatment while controlling the elongation in the range of 0 to 15%. Thermal oxidation temperature is 200
If the thermal oxidation temperature is lower than 300° C., it will take a long time to obtain the target heat resistance, and if the thermal oxidation temperature exceeds 300° C., thermal decomposition will occur due to an exothermic reaction, and the decomposed gas may ignite and cause combustion. The treatment time is 10 to 60 minutes, preferably 20 to 30 minutes. If necessary, 300°C or higher, preferably 40°C
Inert gas (e.g. N2, A
r, He) Heat resistance treatment is performed in an atmosphere, usually nitrogen gas, while controlling the tension. At this time, the non-crosslinkable polymer that was not completely eluted with the eluent completely thermally decomposes and disappears. A part of the solvent-soluble portion of the crosslinkable polymer also thermally decomposes and disappears, making it possible to produce a heat-resistant porous hollow fiber membrane.
【0034】本発明により製造される耐熱性多孔質中空
糸膜の多孔質構造は、スポンジ構造とは異なり、繊維軸
に並行な無数の細孔より構成され、しかもこの細孔が中
空糸膜の内壁表面から外壁表面に連続的につながった細
孔である。これはX線小角の散乱強度や走査型電子顕微
鏡によって観測することができる。かかる特異な多孔質
構造は次のような理由により形成されるものと考えられ
る。すなわち、混合溶液からの紡糸に際して、各重合体
の分散粒子は剪断応力や延伸の作用を受けて、繊維軸に
並行に配列し、それぞれの重合体のフィブリルは互いに
相分離し、絡み合い網目構造を形成する。そして非架橋
性重合体(B)の繊維軸に並行に配列したフィブリルが
溶剤で抽出除去され多孔質構造となる。一方、中空糸膜
に残存する架橋性重合体(A)は、ヒドロキシルアミン
、ヒドラジン等の架橋剤によりフィブリルは強固に架橋
固定され、後の熱酸化処理工程での細孔容積の収縮を防
止する。しかし、架橋性重合体(A)のフィブリル構造
よりなる微細構造もまた繊維軸に並行に細く連なった構
造でありあり、このことが本発明の中空糸膜を強靱なも
のとしている。Unlike a sponge structure, the porous structure of the heat-resistant porous hollow fiber membrane produced by the present invention is composed of countless pores parallel to the fiber axis, and these pores are These are pores that are continuously connected from the inner wall surface to the outer wall surface. This can be observed using small-angle X-ray scattering intensity or a scanning electron microscope. It is thought that such a unique porous structure is formed for the following reasons. That is, during spinning from a mixed solution, the dispersed particles of each polymer are subjected to shear stress and stretching, and are arranged in parallel to the fiber axis, and the fibrils of each polymer phase separate from each other, forming an entangled network structure. Form. Then, the fibrils arranged in parallel to the fiber axis of the non-crosslinkable polymer (B) are extracted and removed with a solvent, resulting in a porous structure. On the other hand, in the crosslinkable polymer (A) remaining in the hollow fiber membrane, the fibrils are firmly crosslinked and fixed by a crosslinking agent such as hydroxylamine or hydrazine, thereby preventing shrinkage of pore volume in the subsequent thermal oxidation treatment step. . However, the microstructure of the crosslinkable polymer (A) consisting of fibrils is also a structure in which thin fibers are connected in parallel to the fiber axis, which makes the hollow fiber membrane of the present invention tough.
【0035】本発明による耐熱性多孔質中空糸膜のもう
一つの特徴は、細孔容積微分曲線から求めた細孔半径の
孔径分布が非常にシャープであり、細孔半径の極大値が
通常10〜1000nmの範囲に存在するため、分離膜
として使用した際に高い分離性能を示す。また、全細孔
容積も通常1〜3cm3/g と大きく、単位膜厚当り
の孔数が多く透水速度を高いものにしている。また、本
発明による中空糸膜は、化学的な安定性も高く、あらゆ
るpH領域および殆どの薬液に対して強い抵抗力を示す
。耐熱性の尺度であるLOI値も通常は40以上と高く
、高温での使用を可能にするモジュールを提供すること
ができる。Another feature of the heat-resistant porous hollow fiber membrane according to the present invention is that the pore size distribution of the pore radius determined from the pore volume differential curve is very sharp, and the maximum value of the pore radius is usually 10. Since it exists in the range of ~1000 nm, it exhibits high separation performance when used as a separation membrane. In addition, the total pore volume is usually as large as 1 to 3 cm3/g, and the number of pores per unit membrane thickness is large, making the water permeation rate high. Furthermore, the hollow fiber membrane according to the present invention has high chemical stability and exhibits strong resistance to all pH ranges and most chemical solutions. The LOI value, which is a measure of heat resistance, is usually as high as 40 or more, making it possible to provide a module that can be used at high temperatures.
【0036】[0036]
【発明の効果】このように優れた特徴を有する本発明に
よる多孔質中空糸膜は、種々の用途、例えば薬品工業分
野におけるパイロジエン、高分子物質等の分離および精
製、化学工業分野におけるガス分離、とりわけ有機ガス
の分離および有機薬品の精製等に用いることができる。
また、食料品工業分野では、酒類、清涼飲料水、醤油、
酢等の清澄に効果的に用いることができる。Effects of the Invention The porous hollow fiber membrane according to the present invention having such excellent characteristics can be used for various purposes, such as separation and purification of pyrodiene, polymeric substances, etc. in the pharmaceutical industry, gas separation in the chemical industry, In particular, it can be used for separation of organic gases and purification of organic chemicals. In addition, in the food industry, alcoholic beverages, soft drinks, soy sauce,
It can be effectively used to clarify vinegar, etc.
【0037】さらに、バイオ工業分野における酵素から
の生成物の精製、蛋白質や酵素等の分離等にも用いるこ
とができる。また、メディカル分野における蛋白質やヴ
ィルス、菌の分離や、高温度での滅菌、殺菌を必要とす
る分野で特に有用である。Furthermore, it can be used for purification of products from enzymes, separation of proteins, enzymes, etc. in the bioindustry field. It is also particularly useful in the medical field, where proteins, viruses, and bacteria are separated, and in fields that require sterilization and sterilization at high temperatures.
【0038】[0038]
【実施例】以下、実施例により本発明を具体的に説明す
る。なお以下の記載中「部」は重量部を示す。また、各
種の物性評価は下記に従った。
1)重合体の比粘度は、重合体0.1gを0.1Nのロ
ダンソーダを含むジメチルホルムアミド100mlに溶
解し25℃で測定した。
2)耐熱性多孔質中空糸膜の細孔分布構造は、CARL
O ERBA社製ポロシメータ200を用いて水銀圧入
法により測定し、細孔半径は円筒換算半径として求めた
。
3)比表面積は、メタノール等温吸着曲線を測定、BE
Tの式を適用して計算した。
4)単繊維強伸度は、テンシロンUTM−II型(東洋
測機(株)製)を用いて、引張速度100%/min
で測定した。
5)限界酸素指数(LOI)は、JIS K 7201
の方法に準じて測定した。試料は、長さ100mmのも
のを約1g束状にて固定した状態で燃焼円筒内に配置し
、次いでその中に酸素と窒素の混合ガスを11.4l/
min の流量で約30秒間流した後、試験片の上端に
点火し試験片が3分以上燃焼するかまたは着火後の燃焼
長さが50mm以上燃え続けるのに必要最低限の酸素流
量とそのときの窒素流量とを測定し、下式に従い求めた
。[Examples] The present invention will be specifically explained below with reference to Examples. Note that "parts" in the following description indicate parts by weight. In addition, various physical property evaluations were performed in accordance with the following. 1) The specific viscosity of the polymer was measured at 25°C by dissolving 0.1 g of the polymer in 100 ml of dimethylformamide containing 0.1N rhodan soda. 2) The pore distribution structure of the heat-resistant porous hollow fiber membrane is CARL
It was measured by the mercury intrusion method using a porosimeter 200 manufactured by ERBA, and the pore radius was determined as the equivalent radius of a cylinder. 3) Specific surface area is measured by methanol isothermal adsorption curve, BE
It was calculated by applying the formula of T. 4) Single fiber strength and elongation were determined using Tensilon UTM-II type (manufactured by Toyo Sokki Co., Ltd.) at a tensile rate of 100%/min.
It was measured with 5) Limiting oxygen index (LOI) is JIS K 7201
It was measured according to the method of The sample was fixed in a bundle of about 1 g with a length of 100 mm and placed in a combustion cylinder, and then a mixed gas of oxygen and nitrogen was poured into the cylinder at 11.4 l/g.
After flowing for about 30 seconds at a flow rate of The nitrogen flow rate was measured and calculated according to the formula below.
【0039】[0039]
【数1】
合成例1:相溶剤(D1 )の調製
シクロヘキサノンパーオキシド(パーオキサH、商品名
、日本油脂(株)製)1部をMMA100部に溶かし、
純水800部と乳化剤としてペレックスOTP(商品名
、日本油脂(株)製)1部を反応釜に加えて、不活性ガ
スで十分に置換した後、40℃に保持し、ロンガリット
0.76部と硫酸水溶液でpH3とした後、重合を開始
した。そのまま攪拌を続け150分で第一段目の乳化重
合を完結させた。次いで第二段目としてこの乳化液にA
N72部を加えた後、温度を70℃に昇温して、再び1
50分攪拌を続けた、さらに芒硝4部を加え30分攪拌
して重合を完了させた。重合体を取り出し、濾過、水洗
および乾燥して重合率65.7%の比粘度0.19のブ
ロック共重合体の相溶剤(D1 )を得た。
合成例2:相溶剤(D2 )の調製
シクロヘキサノンパーオキシド(パーオキサH)1部を
MMA100部に溶かし、純水800部と乳化剤として
ペレックスOTP1部を反応釜に加えて、不活性ガスで
十分に置換した後、40℃に保持し、ロンガリット0.
76部と硫酸水溶液でpH3とした後、重合を開始した
。そのまま攪拌を続け120分で第一段目の乳化重合を
完結させた。次いで第二段目としてこの乳化液にAN6
0部、VAc10部を加えた後、温度を70℃に昇温し
て、再び150分攪拌を続け、さらに芒硝4部を加え3
0分攪拌して重合を完了させた。重合体を取り出し、濾
過、水洗および乾燥して重合率65%の比粘度0.18
、組成AN30モル%/MMA65モル%/VAc5モ
ル%のブロック重合体の相溶剤(D2 )を得た。
実施例1〜4
アクリロニトリル(以下、ANと略記する。)98モル
%、メタクリル酸(以下、MAAと略記する。)2モル
%から構成される比粘度0.24のAN/MAA共重合
体(A1 )60部とメチルメタクリレート(以下、M
MAと略記する。)99%モル%、アクリル酸メチル(
以下、MAと略記する。)1モル%から構成される比粘
度0.21のMMA/MA共重合体である非架橋共重合
体(B1 )35〜40部と、合成例1で調製した相溶
剤(D1 )の混合量を0〜5部とを、表1に示した割
合でこ混合し4種類の重合体溶液を調製した。なお、溶
剤(C)にはジメチルホルムアミド(以下、DMFと略
記する。)を用い、重合体濃度を26重量%とし、混合
溶液は温度60℃に保持して脱泡した。[Equation 1] Synthesis Example 1: Preparation of compatibilizer (D1) 1 part of cyclohexanone peroxide (Peroxa H, trade name, manufactured by NOF Corporation) was dissolved in 100 parts of MMA,
800 parts of pure water and 1 part of Pellex OTP (trade name, manufactured by NOF Corporation) as an emulsifier were added to the reaction vessel, and after sufficient substitution with inert gas, it was kept at 40°C and 0.76 parts of Rongalit was added. After adjusting the pH to 3 with an aqueous sulfuric acid solution, polymerization was started. Stirring was continued to complete the first stage emulsion polymerization in 150 minutes. Then, in the second stage, A is added to this emulsion.
After adding 72 parts of N, the temperature was raised to 70°C and 1 part was added again.
Stirring was continued for 50 minutes, and 4 parts of Glauber's salt was further added and stirred for 30 minutes to complete polymerization. The polymer was taken out, filtered, washed with water and dried to obtain a block copolymer compatibilizer (D1) with a polymerization rate of 65.7% and a specific viscosity of 0.19. Synthesis Example 2: Preparation of compatibilizer (D2) 1 part of cyclohexanone peroxide (Peroxa H) was dissolved in 100 parts of MMA, 800 parts of pure water and 1 part of Pellex OTP as an emulsifier were added to the reaction vessel, and the mixture was sufficiently replaced with inert gas. After that, it was kept at 40°C and Rongalit 0.
After adjusting the pH to 3 with 76 parts and an aqueous sulfuric acid solution, polymerization was started. Stirring was continued to complete the first stage emulsion polymerization in 120 minutes. Then, in the second stage, AN6 was added to this emulsion.
After adding 0 parts and 10 parts of VAc, the temperature was raised to 70°C, stirring was continued for 150 minutes, and 4 parts of Glauber's salt was added.
The polymerization was completed by stirring for 0 minutes. The polymer was taken out, filtered, washed with water, and dried to a specific viscosity of 0.18 with a polymerization rate of 65%.
A block polymer compatibilizer (D2) having a composition of 30 mol % AN/65 mol % MMA/5 mol % VAc was obtained. Examples 1 to 4 An AN/MAA copolymer with a specific viscosity of 0.24 ( A1) 60 parts and methyl methacrylate (hereinafter referred to as M
It is abbreviated as MA. ) 99% mol%, methyl acrylate (
Hereinafter, it will be abbreviated as MA. ) 35 to 40 parts of a non-crosslinked copolymer (B1), which is an MMA/MA copolymer with a specific viscosity of 0.21, consisting of 1 mol% and the mixing amount of the compatibilizer (D1) prepared in Synthesis Example 1. Four types of polymer solutions were prepared by mixing 0 to 5 parts of the following in the proportions shown in Table 1. Note that dimethylformamide (hereinafter abbreviated as DMF) was used as the solvent (C), the polymer concentration was 26% by weight, and the mixed solution was kept at a temperature of 60° C. to defoam.
【0040】外径2.0mmφ、内径 1.5mmφの
鞘部、 1.0mmφの芯部よりなる鞘芯型ノズルを用
い、その鞘部より上記の4種類の重合体溶液を1種類毎
、また芯部よりDMF60重量%水溶液をそれぞれ吐出
し、空気中を10cm走行させた後、DMF70重量%
水溶液、70℃の温度の凝固浴に導き紡糸し、凝固させ
、次いで60℃の温水中で洗浄と3.0倍の延伸を施し
た。
次いで、98℃の熱水中で2倍延伸した。この全延伸倍
率6倍の水膨潤状態の中空糸膜を硫酸ヒドロキシルアミ
ン10重量%、第2燐酸ソーダ10重量%、pH6の水
溶液中に浸漬し、絞り率約90%で取り出し、1.0k
g/cm2G (120℃)の加圧スチーマーに導入し
、架橋反応処理を施した。次いで98℃の熱水中で洗浄
し140℃の乾燥機で乾燥しチーズ染色用の多孔ボビン
にそれぞれ捲き取った。次いでソックスレータイプの抽
出器を用いてアセトンで非架橋性重合体(B1 )を8
〜12時間溶出除去し、多孔質中空糸膜プレカーサーを
得た。これら4種類のプレカーサーを、240℃の空気
雰囲気中で90分酸化処理した。次いで400℃の窒素
ガス雰囲気中で2分間処理し、本発明の耐熱性多孔質中
空糸膜を製造した。A sheath-core type nozzle consisting of a sheath with an outer diameter of 2.0 mmφ, an inner diameter of 1.5 mmφ, and a core with a diameter of 1.0 mm was used, and the above-mentioned four types of polymer solutions were applied one by one through the sheath. A 60% by weight aqueous solution of DMF was discharged from the core, and after traveling 10cm in the air, 70% by weight of DMF was released.
The aqueous solution was introduced into a coagulation bath at a temperature of 70° C. for spinning and coagulation, and then washed in warm water at 60° C. and stretched 3.0 times. Then, it was stretched twice in hot water at 98°C. This hollow fiber membrane in a water-swollen state with a total stretching ratio of 6 times was immersed in an aqueous solution containing 10% by weight of hydroxylamine sulfate and 10% by weight of dibasic sodium phosphate, and was taken out at a squeezing rate of about 90% to 1.0 k
g/cm2G (120°C) and subjected to crosslinking reaction treatment. Next, they were washed in hot water at 98°C, dried in a dryer at 140°C, and wound up into perforated bobbins for cheese dyeing. Then, the non-crosslinkable polymer (B1) was extracted with acetone using a Soxhlet type extractor.
The mixture was eluted and removed for ~12 hours to obtain a porous hollow fiber membrane precursor. These four types of precursors were oxidized for 90 minutes in an air atmosphere at 240°C. The membrane was then treated in a nitrogen gas atmosphere at 400° C. for 2 minutes to produce a heat-resistant porous hollow fiber membrane of the present invention.
【0041】得られた4種類の中空糸膜の内径は350
±10μm、膜厚は40±5μmの範囲であった。これ
らの中空糸膜の評価結果を表1に示した。また、これら
中空糸膜の細孔容積微分曲線を1図に示した。The inner diameter of the four types of hollow fiber membranes obtained was 350
The film thickness was in the range of ±10 μm and 40±5 μm. Table 1 shows the evaluation results of these hollow fiber membranes. Further, the pore volume differential curves of these hollow fiber membranes are shown in Figure 1.
【0042】[0042]
【表1】
表1および図1より、相溶剤であるブロック共重合
体の混合量により細孔半径を制御ができることがわかる
。
すなわち、相溶剤のブレンド量を多くすると細孔の半径
を小さくすることができる。
実施例5〜7、比較例1、2
AN95モル%、MA4モル%、イタコン酸(以下、I
Aと略記する)1モル%から構成される比粘度0.21
のAN/MA/IA共重合体(A2 )と、MMA87
モル%、MA13モル%から構成される比粘度0.19
のMMA/MA共重合体である非架橋性重合体(B2
)と、下記の方法で調製したAN30モル%、MMA6
5モル%、酢酸ビニル(以下、VAcと略記する)5モ
ル%から構成される比粘度0.18のブロック重合体で
ある相溶剤(D2 )とを、表2に示した混合比で、ジ
メチルアセトアミド(以下、DMAcと略記する)に、
重合体濃度24重量%で溶解した。[Table 1] Table 1 and FIG. 1 show that the pore radius can be controlled by changing the amount of the block copolymer as a compatibilizer mixed. That is, by increasing the blending amount of the compatibilizer, the radius of the pores can be made smaller. Examples 5 to 7, Comparative Examples 1 and 2 AN95 mol%, MA 4 mol%, itaconic acid (hereinafter referred to as I
Specific viscosity 0.21 composed of 1 mol% (abbreviated as A)
AN/MA/IA copolymer (A2) and MMA87
Specific viscosity 0.19 composed of mol%, MA13 mol%
A non-crosslinkable polymer (B2) which is an MMA/MA copolymer of
), AN30 mol%, MMA6 prepared by the following method
A compatibilizer (D2), which is a block polymer with a specific viscosity of 0.18, consisting of 5 mol% of vinyl acetate (hereinafter abbreviated as VAc) and 5 mol% of dimethyl Acetamide (hereinafter abbreviated as DMAc),
It was dissolved at a polymer concentration of 24% by weight.
【0043】実施例1と同様のノズル用いて実施例1と
同様に吐出し、空気中を5cm走行させた後、DMAc
72重量%水溶液、温度70℃の凝固浴中に導き紡糸し
、凝固させた。次いで60℃の温水中で洗浄し、2倍の
延伸を施した。さらに98℃の熱水中で3.0倍延伸し
た。一方、比較例2として、熱水中で延伸せず、定長で
通過させる以外は全て実施例5と同じ条件で処理し、水
膨潤状態の中空糸膜を得た。これらの中空糸膜を塩酸ヒ
ドラジン12重量%、トリポリン酸ナトリウム10重量
%pH6の水溶液中に浸漬し、絞り率110%で取り出
し、2.0kg/cm2(134℃)の飽和水蒸気中で
処理し、繊維微細構造の薬液による架橋並びに熱固定を
施した。次いで98℃の熱水中で洗浄し160℃で乾燥
し、多孔ボビンにそれぞれ捲き取った。次いで抽出剤に
メチルエチルケトンを用いて中空繊維膜に混合されてい
る非架橋性重合体のみを溶出し、5種類の耐熱性多孔質
中空糸膜プレカーサーを得た。これらプレカーサーを実
施例1と同じ方法で240℃の温度の空気雰囲気中で1
20分酸化処理した。次いで窒素ガス雰囲気下、400
℃で2分間処理し、本発明の耐熱性多孔質中空糸膜を製
造した。[0043] Using the same nozzle as in Example 1, discharge was carried out in the same manner as in Example 1, and after traveling 5 cm in the air, DMAc
A 72% by weight aqueous solution was introduced into a coagulation bath at a temperature of 70° C. and spun to coagulate. The film was then washed in warm water at 60°C and stretched twice. Furthermore, it was stretched 3.0 times in hot water at 98°C. On the other hand, as Comparative Example 2, a hollow fiber membrane in a water-swollen state was obtained by processing under the same conditions as in Example 5 except that the film was not stretched in hot water and was passed through the film at a constant length. These hollow fiber membranes were immersed in an aqueous solution of 12% by weight of hydrazine hydrochloride and 10% by weight of sodium tripophosphate, pH 6, taken out at a squeezing rate of 110%, and treated in saturated steam at 2.0 kg/cm2 (134°C), The fiber microstructure was cross-linked with a chemical solution and heat-set. Next, they were washed in hot water at 98°C, dried at 160°C, and wound up onto porous bobbins. Next, using methyl ethyl ketone as an extractant, only the non-crosslinkable polymer mixed in the hollow fiber membrane was eluted to obtain five types of heat-resistant porous hollow fiber membrane precursors. These precursors were prepared in the same manner as in Example 1 in an air atmosphere at a temperature of 240°C.
Oxidation treatment was performed for 20 minutes. Then, under a nitrogen gas atmosphere, 400
C. for 2 minutes to produce a heat-resistant porous hollow fiber membrane of the present invention.
【0044】表2に得られた中空糸膜の各種性能を示し
た。Table 2 shows various performances of the hollow fiber membranes obtained.
【0045】[0045]
【表2】
表2の結果より、非架橋性重合体のブレンド量が多くな
ると、全細孔容積が増加することがわかる。比較例1で
は閉孔(中空糸膜表面または中空部のいづれにも連通し
ていない孔)のものであった。比較例2のものは柔軟性
に劣るため使用に耐えないものであった。[Table 2] From the results in Table 2, it can be seen that as the blend amount of the non-crosslinkable polymer increases, the total pore volume increases. Comparative Example 1 had closed pores (pores not communicating with either the hollow fiber membrane surface or the hollow part). The material of Comparative Example 2 was inferior in flexibility and could not be used.
【0046】なお、図2にこれら5種類の中空糸膜の細
孔容積累積分布曲線を図示した。Incidentally, FIG. 2 shows the pore volume cumulative distribution curves of these five types of hollow fiber membranes.
【図1】本発明の製造方法により得られる中空糸膜の細
孔容積微分曲線を示す図である。FIG. 1 is a diagram showing a pore volume differential curve of a hollow fiber membrane obtained by the production method of the present invention.
【図2】本発明の製造方法および比較例により得られた
中空糸膜の細孔容積累積分布曲線を示す図である。FIG. 2 is a diagram showing cumulative pore volume distribution curves of hollow fiber membranes obtained by the production method of the present invention and a comparative example.
Claims (4)
及び非架橋性重合体(B)20〜60重量%を溶剤(C
)に溶解した重合体溶液を調製する工程、該重合体溶液
を中空糸製造用ノズルを用いて紡糸して中空糸膜に賦型
する工程、該中空糸膜を架橋処理液中に浸漬した後0.
2kg/cm2G 以上の加圧水蒸気中で加熱して架橋
性重合体(A)を架橋する工程、該中空糸膜から非架橋
性重合体(B)を抽出剤(E)で溶出除去する工程、お
よび該中空糸膜を200〜300℃の酸化性雰囲気中で
熱酸化し、さらに必要に応じて不活性ガス雰囲気下、3
00℃以上で熱処理する工程を有する耐熱性多孔質中空
糸膜の製造方法。Claim 1: Crosslinkable polymer (A) 40-80% by weight
and 20 to 60% by weight of the non-crosslinkable polymer (B) in a solvent (C
), a step of spinning the polymer solution using a hollow fiber production nozzle to form a hollow fiber membrane, and after immersing the hollow fiber membrane in a crosslinking treatment solution. 0.
A step of crosslinking the crosslinkable polymer (A) by heating in pressurized steam of 2 kg/cm2G or more, a step of eluting and removing the non-crosslinkable polymer (B) from the hollow fiber membrane with an extractant (E), and The hollow fiber membrane is thermally oxidized in an oxidizing atmosphere at 200 to 300°C, and if necessary, oxidized in an inert gas atmosphere for 3
A method for producing a heat-resistant porous hollow fiber membrane, comprising a step of heat treatment at 00°C or higher.
(B)および溶剤(C)に、さらに相溶剤(D)を混合
して重合体溶液を調製する請求項1記載の耐熱性多孔質
中空糸膜の製造方法。2. The heat-resistant polymer solution according to claim 1, wherein the crosslinkable polymer (A), the non-crosslinkable polymer (B) and the solvent (C) are further mixed with a compatibilizer (D) to prepare a polymer solution. A method for producing a porous hollow fiber membrane.
ニトリル、アクリロニトリル−メタクリル酸共重合体、
アクリロニトリル−メチルアクリレート−イタコン酸共
重合体およびアクリロニトリル−メチルアクリレート−
メタクリル酸共重合体からなる群より選ばれた一種以上
である請求項1または2記載の耐熱性多孔質中空糸膜の
製造方法。3. The crosslinkable polymer (A) is polyacrylonitrile, acrylonitrile-methacrylic acid copolymer,
Acrylonitrile-methyl acrylate-itaconic acid copolymer and acrylonitrile-methyl acrylate-
The method for producing a heat-resistant porous hollow fiber membrane according to claim 1 or 2, wherein the membrane is one or more selected from the group consisting of methacrylic acid copolymers.
ル系単量体、脂肪族ビニル系単量体もしくはメタクリレ
ート系単量体の単独重合体またはこれらの単量体51モ
ル%以上とアクリロニトリル以外の他の共重合可能な単
量体49モル%以下とから構成される共重合体である請
求項1、2または3記載の耐熱性多孔質中空糸膜の製造
方法。4. The non-crosslinkable polymer (B) is a homopolymer of an aromatic vinyl monomer, an aliphatic vinyl monomer, or a methacrylate monomer, or contains 51 mol% or more of these monomers. The method for producing a heat-resistant porous hollow fiber membrane according to claim 1, 2 or 3, wherein the copolymer is a copolymer comprising 49 mol% or less of a copolymerizable monomer other than acrylonitrile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6248491A JPH04277023A (en) | 1991-03-05 | 1991-03-05 | Production of heat-resistant porous hollow fiber membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6248491A JPH04277023A (en) | 1991-03-05 | 1991-03-05 | Production of heat-resistant porous hollow fiber membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04277023A true JPH04277023A (en) | 1992-10-02 |
Family
ID=13201503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6248491A Pending JPH04277023A (en) | 1991-03-05 | 1991-03-05 | Production of heat-resistant porous hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04277023A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100835655B1 (en) * | 2006-06-16 | 2008-06-09 | (주)에어레인 | Gas separation membrane production method and gas separation membrane prepared therefrom |
WO2013111857A1 (en) * | 2012-01-27 | 2013-08-01 | 三菱レイヨン株式会社 | Metal adsorption acrylic fiber, non-woven fabric, sheet-like product, and uses thereof as metal adsorbent |
WO2016104797A1 (en) * | 2014-12-26 | 2016-06-30 | 東レ株式会社 | Solvent-resistant separation membrane and method for producing solvent-resistant separation membrane |
WO2019022668A1 (en) * | 2017-07-26 | 2019-01-31 | National University Of Singapore | Polyacrylonitrile membranes, methods and uses thereof |
-
1991
- 1991-03-05 JP JP6248491A patent/JPH04277023A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100835655B1 (en) * | 2006-06-16 | 2008-06-09 | (주)에어레인 | Gas separation membrane production method and gas separation membrane prepared therefrom |
WO2013111857A1 (en) * | 2012-01-27 | 2013-08-01 | 三菱レイヨン株式会社 | Metal adsorption acrylic fiber, non-woven fabric, sheet-like product, and uses thereof as metal adsorbent |
JP5672374B2 (en) * | 2012-01-27 | 2015-02-18 | 三菱レイヨン株式会社 | Acrylic fibers for metal adsorption, non-woven fabrics and sheet-like materials and their use as metal adsorbents |
US9802177B2 (en) | 2012-01-27 | 2017-10-31 | Mitsubishi Chemical Corporation | Metal adsorption acrylic fiber, non-woven fabric, sheet-like product, and uses thereof as metal adsorbent |
WO2016104797A1 (en) * | 2014-12-26 | 2016-06-30 | 東レ株式会社 | Solvent-resistant separation membrane and method for producing solvent-resistant separation membrane |
WO2019022668A1 (en) * | 2017-07-26 | 2019-01-31 | National University Of Singapore | Polyacrylonitrile membranes, methods and uses thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5089135A (en) | Carbon based porous hollow fiber membrane and method for producing same | |
EP0665049B1 (en) | Microporous membrane made of non-crystalline polymers and method of producing the same | |
US5547756A (en) | Porous polypropylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous hollow fiber membranes | |
JPS6335726B2 (en) | ||
WO1995033549A1 (en) | Porous polysulfone membrane and process for producing the same | |
JPH0122003B2 (en) | ||
WO1992009359A1 (en) | Large-pore-diameter porous hollow yarn membrane of polyethylene, production thereof, and hydrophilic porous hollow yarn membrane of polyethylene | |
JPH02302449A (en) | Preparation of microporous film | |
CN115041024A (en) | Preparation method of asymmetric regenerated cellulose virus-removing flat filter membrane and product | |
JPH0274615A (en) | Carbon fiber-based porous hollow fiber membrane and production thereof | |
JPH04277023A (en) | Production of heat-resistant porous hollow fiber membrane | |
JP2867043B2 (en) | Carbon fiber-based porous hollow fiber membrane and method for producing the same | |
JPH04265132A (en) | Manufacturing method of porous hollow fiber membrane | |
EP0394449A1 (en) | Porous hollow carbon fiber film and method of manufacturing the same | |
JPH03284326A (en) | Porous hollow fiber membrane | |
JPS6328406A (en) | Network porous hollow yarn membrane | |
JPH03258330A (en) | Porous hollow fiber membrane | |
JPH02221404A (en) | Porous hollow fiber and production thereof | |
JPS5932562B2 (en) | Hollow fibrous membrane and its manufacturing method | |
JPS6320339A (en) | Production of porous membrane | |
JP2004305953A (en) | Method of manufacturing hollow fiber membrane | |
KR100454153B1 (en) | A hollow fiber membrane made of polyacrylonitrile and a preparation method thereof | |
JPH02160923A (en) | Porous carbon fiber and production thereof | |
JPS62102801A (en) | Selective permeable hollow composite fiber | |
JPH0398625A (en) | Preparation of carbon fiber-based porous hollow fiber membrane |