JPH04275874A - Double face lap grinding method used with electrolytic dressing - Google Patents
Double face lap grinding method used with electrolytic dressingInfo
- Publication number
- JPH04275874A JPH04275874A JP3123199A JP12319991A JPH04275874A JP H04275874 A JPH04275874 A JP H04275874A JP 3123199 A JP3123199 A JP 3123199A JP 12319991 A JP12319991 A JP 12319991A JP H04275874 A JPH04275874 A JP H04275874A
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- grindstone
- workpiece
- processing
- dressing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Weting (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】本発明は、電解ドレッシングを用
いた硬脆材料の研削、研磨加工の分野に係わり、特に、
半導体基板に用いられるシリコンウエハの両面を同時に
加工し得る電解ドレッシングを用いた両面ラップ研削加
工方法に関する。[Field of Industrial Application] The present invention relates to the field of grinding and polishing of hard and brittle materials using electrolytic dressing, and in particular,
The present invention relates to a double-sided lap grinding method using electrolytic dressing that can simultaneously process both sides of a silicon wafer used as a semiconductor substrate.
【0002】0002
【従来の技術】半導体ディバイスの基板として用いられ
ているシリコンウエハは多くの加工工程を経て製造され
ている。その加工工程は、シリコン単結晶のロッドをウ
エハ状に切断した後、ほとんど厚さ、寸法、形状、表面
性状、鏡面等の機械研磨(ラッピング)等による除去加
工に費やされている。更に、ディバイスプロセスでは高
温熱処理中のディバイス表面の汚染防止のため、重金属
を結晶歪に捕捉する目的でウエハ加工時に、そのディバ
イス裏面に機械的な数〜数十μmの荒らし処理が行われ
ている。そして最終的に、上記ディバイスの仕上げ加工
には良好な表面粗さ、鏡面、寸法精度を得るための遊離
砥粒を用いたポリッシングが行われている。このように
シリコンウエハの加工は、極めて多くの工程と時間を要
している。2. Description of the Related Art Silicon wafers used as substrates for semiconductor devices are manufactured through many processing steps. The processing process consists of cutting a silicon single crystal rod into wafer shapes and then removing the thickness, size, shape, surface texture, mirror surface, etc. by mechanical polishing (lapping) or the like. Furthermore, in the device process, in order to prevent contamination of the device surface during high-temperature heat treatment, mechanical roughening treatment of several to tens of micrometers is performed on the back surface of the device during wafer processing in order to trap heavy metals in crystal distortion. . Finally, the device is finished by polishing using free abrasive grains to obtain good surface roughness, mirror finish, and dimensional accuracy. Processing of silicon wafers thus requires an extremely large number of steps and time.
【0003】そこで従来、ラッピング、ポリッシングに
おいては、数枚のウエハの両面を同時に加工し得るよう
な第5図に示す両面ラッピング装置が開発されている。
同図に示す両面ラップ装置は、同軸上に回転する大形リ
ング状の上下ラップ定盤51、52に被加工物53を挟
み、この上下定盤と被加工物との間54、55に遊離砥
粒を含む加工液を浸潤して、ここに上定盤の圧力を上方
から加えて両面をラップ研磨するものである。被加工物
53は、それを保持するワークホルダ(またはキャリア
)56によって保持され、ワークホルダとそれを駆動さ
せるギア57によって遊星運動をしながら複数の被加工
物を同時に加工するよう構成されている。Conventionally, for lapping and polishing, a double-sided lapping apparatus shown in FIG. 5 has been developed which can simultaneously process both sides of several wafers. The double-sided lapping device shown in the figure holds a workpiece 53 between large ring-shaped upper and lower lapping surface plates 51 and 52 that rotate coaxially, and a workpiece 53 is sandwiched between the upper and lower surface plates and the workpiece 54 and 55. A machining fluid containing abrasive grains is infiltrated, and pressure from an upper surface plate is applied from above to lap polish both surfaces. The workpiece 53 is held by a work holder (or carrier) 56 that holds it, and is configured to simultaneously process multiple workpieces while making planetary motion by the work holder and a gear 57 that drives it. .
【0004】0004
【発明が解決しようとする課題】しかし、上記従来の両
面ラップ装置では、遊離砥粒を加工面に対し均一に供給
しなければならず、仮に供給されても砥粒の転動による
加工能率の限界が指摘されている。更に、除去能率を稼
ぐために#1200(平均砥粒径約12μm)前後の遊
離砥粒が使われることから、加圧による砥粒の脆性モー
ドの除去機構となり易く所望の加工面粗さが得られず、
多くの工程とバッチ加工が余儀なくされている。[Problems to be Solved by the Invention] However, in the above-mentioned conventional double-sided lapping device, free abrasive grains must be uniformly supplied to the processing surface, and even if they are supplied, the machining efficiency will be reduced due to rolling of the abrasive grains. Limitations have been pointed out. Furthermore, since free abrasive grains of around #1200 (average abrasive grain diameter of approximately 12 μm) are used to increase removal efficiency, the brittle mode of the abrasive grains is easily removed by pressure, and the desired machined surface roughness can be obtained. Unable to do so.
Many steps and batch processing are required.
【0005】上述したような従来の加工方法においては
、十数枚を同時に加工して加工能率を向上してはいるが
、硬脆材料の除去加工における歩留り限界、更に、ウエ
ハの素子表面と裏面との表面性状を変えるための処理工
程の必要性、最終ポリッシング加工による表面鏡面仕上
げ等など、余りにも多くの加工工程を余儀なくされ、ま
た、各工程に移行する際の脱着、搬送、固定、汚染防止
のための設備も必要となっている。つまり、従来法は生
産性、自動化、歩留り、品質管理等の多くの課題があっ
た。In the conventional processing method as described above, processing efficiency is improved by processing ten or more wafers at the same time, but there is a yield limit in the removal processing of hard and brittle materials, and furthermore, there are Too many processing steps are necessary, such as the need for processing steps to change the surface properties of the surface, mirror finishing of the surface by final polishing, etc., and there is also the need for desorption, transportation, fixing, and contamination during each step. Preventive equipment is also needed. In other words, the conventional method has many problems such as productivity, automation, yield, and quality control.
【0006】そこで本発明は、既知の電解インプロセス
ドレッシング(Electrolytic Inpr
ocess Dressing: 以下、Elid
と言う。)研削法(特開平1−188266号)をシリ
コンウエハの加工工程に採用することにより、従来の加
工工程を単純化し、総合生産性を向上させることを目的
とするものである。つまり、本発明は、Elid研削に
よる除去加工方式をシリコンウエハの両面に施し、しか
も、表面と裏面の表面性状をインプロセスで変化させ、
更に、高効率除去加工によつて、上述したラッピング、
裏面ダメージ加工、ポリッシングを一気に行いうる方法
を提供するものである。Therefore, the present invention utilizes the known electrolytic in-process dressing (Electrolytic Inpr dressing).
ocess Dressing: Below, Elid
Say. ) By adopting the grinding method (Japanese Unexamined Patent Publication No. 1-188266) in the silicon wafer processing process, the purpose is to simplify the conventional processing process and improve overall productivity. In other words, the present invention applies a removal processing method using Elid grinding to both sides of a silicon wafer, and also changes the surface properties of the front and back surfaces in-process.
Furthermore, through high-efficiency removal processing, the above-mentioned wrapping,
This provides a method that can perform back surface damage processing and polishing all at once.
【0007】[0007]
【課題を解決するための手段】上記の課題は、本発明に
よる以下の方法を採用することによって解決される。す
なわち、回転軸のまわりに水平に回転する導電性の下側
砥石と上側砥石とを備え、前記下側砥石と上側砥石の回
転軸をずらして前記各砥石の砥石面が重ね合わされるよ
うに対設させ、前記重ね合わせ部の外側に前記各砥石の
砥石面に近接させた電極をそれぞれ備え、前記砥石と前
記電極間に導電性液をそれぞれ供給し、前記砥石と前記
電極との間に電流をそれぞれ供給し、被加工物を前記重
ね合わせ部の間隙に配設されたホルダにより保持して前
記対設した砥石で挟み、これにより各砥石の砥石面を電
解ドレッシングしながら、被加工物の両面を研削加工す
ることを特徴とする電解ドレッシングを用いた両面ラッ
プ研削加工方法を用いることによって達成することがで
きる。Means for Solving the Problems The above problems are solved by employing the following method according to the present invention. That is, a conductive lower whetstone and an upper whetstone are provided that rotate horizontally around a rotation axis, and the rotation axes of the lower whetstone and the upper whetstone are shifted so that the grindstone surfaces of the respective grindstones are aligned. an electrode is provided on the outside of the superimposed portion and close to the grinding wheel surface of each of the grinding wheels, a conductive liquid is supplied between the grinding wheel and the electrode, and an electric current is applied between the grinding wheel and the electrode. The workpiece is held by a holder disposed in the gap between the overlapping parts and sandwiched between the opposed grindstones, and the grindstone surface of each grindstone is electrolytically dressed while the workpiece is This can be achieved by using a double-sided lap grinding method using electrolytic dressing, which is characterized by grinding both sides.
【0008】[0008]
【作用】本発明は、既知のElid研削による研削加工
法を被加工物の両面に行い得る構成とすることにより達
成することができる。例えば、汎用の研削加工機のテー
ブル上に回転駆動機構を備えたもう1台の装置を付設し
、前記加工機の回転軸とテーブル上の回転駆動装置の回
転軸をずらして、ディスク状の鋳鉄ファイバボンドダイ
ヤモンド砥石(以下、CIFB−D砥石と言う。)をそ
れぞれ装着し、各砥石を+極、各砥石に近接して設置し
た電極を−極として、前記各砥石と各電極間に弱導電性
の研削液を供給しながら、電源装置からパルス状直流電
流を供給して、各砥石を電解ドレッシングしながら砥粒
の突出を確保しつつ加工することにより、各種硬脆材の
高除去研削から鏡面研削までを容易に行うことができる
。各砥石の回転方向は、相対的に逆回転が好ましいが、
切り込み量によっては同一方向回転でも可能である。表
面と裏面の表面粗さを変えるには、上下の砥石粒度を変
えれば良く、また砥石粒度が内周と外周とで異なるもの
を用いる場合には、上側砥石を摺動させることにより、
高除去及び鏡面加工を効率良く行える。切り込みは一般
的に上側砥石を下降させて行われるので、被加工物のホ
ルダは、下側砥石に近接して配置し、外部の装置によっ
て把持されているのが好ましい。[Operation] The present invention can be achieved by providing a structure in which the known grinding method by Elid grinding can be applied to both sides of a workpiece. For example, by attaching another device equipped with a rotational drive mechanism to the table of a general-purpose grinding machine and shifting the rotational axis of the grinding machine and the rotational axis of the rotational drive unit on the table, a disc-shaped cast iron Fiber-bond diamond grinding wheels (hereinafter referred to as CIFB-D grinding wheels) are attached respectively, and each grinding wheel is set as a + pole, and the electrode installed close to each grinding wheel is set as a - pole, and weak conductivity is established between each of the grinding wheels and each electrode. By applying a pulsed DC current from the power supply and electrolytically dressing each grinding wheel while supplying abrasive grinding fluid while ensuring the protrusion of the abrasive grains, it is possible to perform high-removal grinding of various hard and brittle materials. Even mirror polishing can be easily performed. It is preferable for the rotation direction of each grindstone to be relatively reverse rotation, but
Rotation in the same direction is also possible depending on the amount of cut. To change the surface roughness of the front and back surfaces, it is sufficient to change the grain size of the upper and lower whetstones, and when using whetstones with different grain sizes for the inner and outer peripheries, by sliding the upper whetstone,
High removal and mirror finishing can be performed efficiently. Since the cutting is generally performed by lowering the upper grinding wheel, it is preferable that the holder of the workpiece be placed close to the lower grinding wheel and gripped by an external device.
【0009】[0009]
【実施例】以下に、本発明の実施例を詳細に説明する。
第1図は、本発明のElid両面ラップ研削を実施する
ための概念図である。下側砥石11と上側砥石12は、
砥石面13、13′が重ね合わされるように対設させ、
その対設した重ね合わせ部には、被加工物14を半固定
するワークホルダ15が下側砥石11に近接して図示し
ない外部の固定具により固定されている。一方、前記重
ね合わせ部の外側には、上下の各砥石を電解ドレッシン
グするための電極16及び給電部17から成るアタッチ
メント(第3図)がそれぞれ設けられている。Elid
電源18は、前記各アタッチメントにパルス電流を供給
するが、各砥石の電解モードを切り替えるスイッチS1
、S2、S3が設けられており、弱導電性の研削液(ク
ーラント)供給口19から供給される研削液を介して砥
石と電極間に供給される電流が随時切り替えられ、各砥
石を電解ドレッシングして砥粒の突出を確保する。EXAMPLES Examples of the present invention will be described in detail below. FIG. 1 is a conceptual diagram for implementing Elid double-sided lap grinding of the present invention. The lower whetstone 11 and the upper whetstone 12 are
The grindstone surfaces 13 and 13' are arranged oppositely so that they are overlapped,
A work holder 15 for semi-fixing the workpiece 14 is fixed to the opposing overlapping portion in close proximity to the lower grindstone 11 by an external fixture (not shown). On the other hand, attachments (FIG. 3) each consisting of an electrode 16 and a power supply section 17 for electrolytically dressing the upper and lower grindstones are provided on the outside of the overlapping portion. Elid
The power supply 18 supplies a pulse current to each attachment, and a switch S1 switches the electrolysis mode of each grindstone.
, S2, and S3 are provided, and the current supplied between the grinding wheel and the electrodes via the grinding fluid supplied from the weakly conductive grinding fluid (coolant) supply port 19 is switched at any time, and each grinding wheel is electrolytically dressed. to ensure the protrusion of the abrasive grains.
【0010】第2図は、上側及び下側の砥石をそれぞれ
砥石面側から見た概念図であり、電解用アタッチメント
の取り付け状態を示す。また第3図は、第1図及び第2
図のアタッチメントの構造を示す概念図であり、銅材料
から成る給電部17は、支持板31から伸びる絶縁棒3
2を介して給電部17が砥石に圧力接触するようにバネ
33によって支持されている。同様に銅材料から成る電
極16は、支持板31から伸びる絶縁棒32´と補強板
34を介して支持され、給電部と絶縁されている。下表
は上記本発明を実施するために使用したシステムの仕様
である。FIG. 2 is a conceptual diagram of the upper and lower grindstones viewed from the grindstone surface side, showing the state in which the electrolytic attachment is attached. Also, Figure 3 is similar to Figures 1 and 2.
3 is a conceptual diagram showing the structure of the attachment shown in the figure.
The power supply section 17 is supported by a spring 33 so as to be in pressure contact with the grindstone via the power supply section 2 . Similarly, the electrode 16 made of a copper material is supported via an insulating rod 32' extending from a support plate 31 and a reinforcing plate 34, and is insulated from the power supply section. The table below shows the specifications of the system used to implement the invention described above.
【0011】[0011]
【表1】[Table 1]
【0012】下側CIFB−D砥石の回転駆動には自作
の回転テーブルを利用し、上側CIFB−D砥石の回転
駆動及び被加工物の切り込みには表中の研削機械を利用
した。前記研削機械の回転軸心と下側砥石の回転軸心間
を90mmずらして自作の回転テーブルを設置して、そ
れぞれの回転軸にCIFB−D砥石と電解用アタッチメ
ント(第3図)を装着した。クーラントは水溶性研削液
を水道水で希釈し、砥石には上下共通の外径φ200m
m、幅77.5mmのCIFB−D砥石ディスクを用い
、上側は、内周#4000/外周#30000、下側は
、内周#1200/外周#4000を用いた。被加工物
は超硬合金(WC)、炭化ケイ素(SiC)、アルミナ
のφ47/44mm、厚さ6.5mmを用いて、主とし
て加工条件と垂直荷重の変化、加工面粗さの実験を行っ
た。A self-made rotary table was used to drive the lower CIFB-D grindstone, and the grinding machine shown in the table was used to drive the upper CIFB-D grindstone and cut into the workpiece. A self-made rotary table was installed with the rotation axis of the grinding machine shifted by 90 mm between the rotation axis of the lower grinding wheel, and a CIFB-D grinding wheel and an electrolytic attachment (Fig. 3) were attached to each rotation axis. . The coolant is a water-soluble grinding fluid diluted with tap water, and the grindstone has a common outer diameter of φ200m
A CIFB-D grindstone disk with a diameter of 77.5 mm and a width of 77.5 mm was used, and the inner circumference #4000/outer circumference #30000 was used on the upper side, and the inner circumference #1200/outer circumference #4000 was used on the lower side. The workpieces were made of cemented carbide (WC), silicon carbide (SiC), and alumina with a diameter of 47/44 mm and a thickness of 6.5 mm, and experiments were mainly conducted on changes in machining conditions, vertical load, and machined surface roughness. .
【0013】CIFB−D砥石ディスクの上下を適宜ツ
ルーイングした後、目立てを別々に約30min行った
。ツルーイングはCIFB−Dカップ砥石によるEli
dツルーイング等を適用した。被加工物を試料ホルダに
保持し、Elid条件を無負荷電圧E0=90V、最大
設定電流Ip=24A、パルス幅τon=12μs/τ
off=3μsに設定して、上下砥石を同時に電解ドレ
ッシングした。上下砥石の回転方向は相対的に逆回転で
行ったが、予備実験として同方向でも顕著な差は認めら
れなかった。まず、所定量のステップ送りにより上側砥
石を被加工物面に切り込み、次いで所定時間スパークア
ウトし、最後に上側砥石を退避させ、1回の工程を終了
した。上記条件下における実験により、砥石周速VL=
100m/min、切り込み速度fd=6μm/min
、1回の総切り込みDT=80μmにおいて、スパーク
アウトの効果が最良となり削り残し量が少なく、Eli
d効果の連続特性では2回以降の最大荷重に変化はなく
安定したElid研削が行えることがわかった。[0013] After suitably truing the upper and lower parts of the CIFB-D grindstone disc, sharpening was performed separately for about 30 minutes. Truing is Eli using CIFB-D cup whetstone.
d-truing etc. were applied. The workpiece is held in a sample holder, and the Elid conditions are: no-load voltage E0 = 90V, maximum setting current Ip = 24A, pulse width τon = 12μs/τ
The upper and lower grindstones were simultaneously electrolytically dressed by setting off to 3 μs. Although the rotation directions of the upper and lower grindstones were relatively reversed, no significant difference was observed even in the same direction as a preliminary experiment. First, the upper grindstone cut into the surface of the workpiece by step feeding by a predetermined amount, then sparked out for a predetermined time, and finally the upper grindstone was retracted to complete one process. Through experiments under the above conditions, grinding wheel peripheral speed VL=
100m/min, cutting speed fd=6μm/min
, When the total cutting depth DT = 80 μm per cut, the spark-out effect is the best, the amount of uncut material is small, and Eli
It was found that with the continuous characteristics of the d effect, there was no change in the maximum load after the second time, and stable Elid grinding could be performed.
【0014】第4図(A)(B)(C)に超硬合金の各
粒度による仕上面粗さの実施例を示す。超硬合金の場合
、#1200(A)ではRMax100nm、#400
0(B)ではRMax50nm、#30000(C)で
はRMax15nm前後の鏡面性状が得られ、更に微細
なサブミクロン砥石により実施した場合にも良好な鏡面
研削加工が実現された。上記実施例は超硬合金、炭化ケ
イ素、アルミナを試料として得られた結果であるが、シ
リコンと同等の硬度及び脆性を有する材料であり、本発
明をシリコンウエハの研削加工に適用できることが確認
できた。FIGS. 4(A), 4(B), and 4(C) show examples of finished surface roughness according to each grain size of cemented carbide. In the case of cemented carbide, RMax 100 nm for #1200 (A), #400
0(B) had a mirror finish with an RMax of 50 nm, and #30000(C) had a mirror finish with an RMax of around 15 nm, and good mirror polishing was also achieved when using a finer submicron grindstone. The above examples are results obtained using cemented carbide, silicon carbide, and alumina as samples, which are materials with hardness and brittleness equivalent to silicon, and it can be confirmed that the present invention can be applied to grinding of silicon wafers. Ta.
【0015】[0015]
【発明の効果】本発明によれば、従来とほぼ同様のEl
id研削加工を被加工物の両面に同時に行うことができ
るので、特に両面加工を必要とする半導体材料のシリコ
ンウエハの両面加工に対し適用して多大な効果を実現で
きる。すなわち、シリコンウエハに要求されている除去
加工能率、加工面粗さ、表面と裏面の面粗さの制御、加
工面損傷の低減等を一気に向上させ、しかも従来のラッ
ピング→裏面ダメージ→ポリッシングの3工程を毎葉加
工方式として自動化することが可能になる。更に、シリ
コンウエハの鏡面仕上能率は、概ね1枚当たり2〜3分
間で加工できる。Effects of the Invention According to the present invention, the El
Since ID grinding can be performed on both sides of the workpiece at the same time, great effects can be achieved especially when applied to double-sided processing of silicon wafers made of semiconductor materials that require double-sided processing. In other words, the removal processing efficiency, processing surface roughness, control of surface roughness of the front and back surfaces, and reduction of processing surface damage required for silicon wafers are improved all at once, and in addition, the conventional three steps of lapping → back surface damage → polishing are improved. It becomes possible to automate the process as a leaf processing method. Furthermore, the mirror finishing efficiency of silicon wafers can be processed in about 2 to 3 minutes per silicon wafer.
【0016】[0016]
【図1】本発明の電解ドレッシングによる両面ラップ研
削加工法の概念図。FIG. 1 is a conceptual diagram of the double-sided lap grinding method using electrolytic dressing of the present invention.
【図2】上下砥石と電解用アタッチメントの装着状態を
示す概念図。FIG. 2 is a conceptual diagram showing how upper and lower grindstones and electrolytic attachments are attached.
【図3】電解用アタッチメントの構造を示す概念図。FIG. 3 is a conceptual diagram showing the structure of an electrolytic attachment.
【図4】各粒度により本発明を実施した表面粗さパター
ン図。FIG. 4 is a surface roughness pattern diagram obtained by implementing the present invention with each particle size.
【図5】従来の両面ラップ装置の構造を示す断面図。FIG. 5 is a sectional view showing the structure of a conventional double-sided wrapping device.
11 下側砥石 12 上側砥石 13、13′ 砥石面 14、53 被加工物 15、56 ワークホルダ 16 電極 17 給電部 18 Elid電源 19 クーラント供給口 S1、S2、S3スイッチ 31 支持板 32、32′絶縁棒 33 バネ 34 補強板 51、52 ラップ定盤 54、55 間隙 57 ギア 11 Lower whetstone 12 Upper whetstone 13, 13' Grinding wheel surface 14, 53 Workpiece 15, 56 Work holder 16 Electrode 17 Power supply section 18 Elid power supply 19 Coolant supply port S1, S2, S3 switch 31 Support plate 32, 32' insulation rod 33 Spring 34 Reinforcement plate 51, 52 Lap surface plate 54, 55 Gap 57 Gear
Claims (1)
性の下側砥石と上側砥石とを備え、前記下側砥石と上側
砥石の回転軸をずらして前記各砥石の砥石面が重ね合わ
されるように対設させ、前記重ね合わせ部の外側に前記
各砥石の砥石面に近接させた電極をそれぞれ備え、前記
砥石と前記電極間に導電性液をそれぞれ供給し、前記砥
石と前記電極との間に電流をそれぞれ供給し、被加工物
を前記重ね合わせ部の間隙に配設されたホルダにより保
持して前記対設した砥石で挟み、これにより各砥石の砥
石面を電解ドレッシングしながら、被加工物の両面を研
削加工することを特徴とする電解ドレッシングを用いた
両面ラップ研削加工方法。1. A conductive lower grindstone and an upper grindstone that rotate horizontally around a rotation axis, and the rotation axes of the lower grindstone and the upper grindstone are shifted so that the grindstone surfaces of the respective grindstones are overlapped. electrodes are provided on the outside of the overlapping portion and close to the grinding wheel surface of each of the grinding wheels, and a conductive liquid is supplied between the grinding wheels and the electrodes, and the contact between the grinding wheels and the electrodes is A current is supplied between the two, and the workpiece is held by a holder disposed in the gap between the overlapping parts and sandwiched between the opposed grinding wheels, thereby electrolytically dressing the grinding surface of each grinding wheel and applying the coating. A double-sided lap grinding method using electrolytic dressing, which is characterized by grinding both sides of the workpiece.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03123199A JP3136169B2 (en) | 1991-03-04 | 1991-03-04 | Double-sided lap grinding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03123199A JP3136169B2 (en) | 1991-03-04 | 1991-03-04 | Double-sided lap grinding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04275874A true JPH04275874A (en) | 1992-10-01 |
JP3136169B2 JP3136169B2 (en) | 2001-02-19 |
Family
ID=14854649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03123199A Expired - Fee Related JP3136169B2 (en) | 1991-03-04 | 1991-03-04 | Double-sided lap grinding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3136169B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100428881B1 (en) * | 1995-07-18 | 2004-07-23 | 가부시키 가이샤 에바라 세이사꾸쇼 | Method and apparatus for dressing a polishing surface of a polishing cloth |
JP2011035023A (en) * | 2009-07-30 | 2011-02-17 | Nippon Steel Corp | Polishing method and polishing apparatus of semiconductor substrate |
CN108161662A (en) * | 2018-02-07 | 2018-06-15 | 遵义市汇川区吉美电镀有限责任公司 | A kind of plating grinding device |
-
1991
- 1991-03-04 JP JP03123199A patent/JP3136169B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100428881B1 (en) * | 1995-07-18 | 2004-07-23 | 가부시키 가이샤 에바라 세이사꾸쇼 | Method and apparatus for dressing a polishing surface of a polishing cloth |
JP2011035023A (en) * | 2009-07-30 | 2011-02-17 | Nippon Steel Corp | Polishing method and polishing apparatus of semiconductor substrate |
CN108161662A (en) * | 2018-02-07 | 2018-06-15 | 遵义市汇川区吉美电镀有限责任公司 | A kind of plating grinding device |
Also Published As
Publication number | Publication date |
---|---|
JP3136169B2 (en) | 2001-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0576937B1 (en) | Apparatus for mirror surface grinding | |
JP3909619B2 (en) | Apparatus and method for mirror processing of magnetic disk substrate | |
US5032238A (en) | Method of and apparatus for electropolishing and grinding | |
JPH11239970A (en) | Electric dressing grinding method and apparatus | |
US6489243B2 (en) | Method for polishing semiconductor device | |
KR100831148B1 (en) | ELID mirror grinding device for large diameter workpieces and method thereof | |
KR100567083B1 (en) | Form mirror grinding method and apparatus | |
JP2838314B2 (en) | Electrolytic interval dressing grinding method | |
JPH04275874A (en) | Double face lap grinding method used with electrolytic dressing | |
JP2013094924A (en) | Grinding method for ceramic substrate with through electrode | |
JPH01188266A (en) | Grinding equipment | |
JP2565385B2 (en) | Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool | |
JP4013240B2 (en) | Processing method for work made of brittle materials | |
JP2001007064A (en) | Grinding method of semiconductor wafer | |
JP3251610B2 (en) | Mirror polishing method and apparatus using electrolytic products | |
JP3194624B2 (en) | Grinding method and apparatus | |
JP4420490B2 (en) | ELID surface grinder electrode support apparatus and method | |
Ohmori et al. | Highly efficient and precision fabrication of cylindrical parts from hard materials with the application of ELID (electrolytic in-process dressing) | |
JP5145857B2 (en) | Wafer manufacturing method | |
JP3882992B2 (en) | Wafer polishing method and apparatus | |
JP3169631B2 (en) | Method and apparatus for electrolytic dressing with semiconductor contact electrode | |
JP2002086350A (en) | Polishing fluid for electrophoretic polishing and polishing method | |
JP2846056B2 (en) | Grinding device and grinding method | |
WO2000013870A1 (en) | Method and device for cutting and mirror finishing single crystal silicon carbide | |
JPH07290366A (en) | Metal bond grinding wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |