[go: up one dir, main page]

JPH0427428A - Catalyst for contact reduction of nitrogen oxide - Google Patents

Catalyst for contact reduction of nitrogen oxide

Info

Publication number
JPH0427428A
JPH0427428A JP2129943A JP12994390A JPH0427428A JP H0427428 A JPH0427428 A JP H0427428A JP 2129943 A JP2129943 A JP 2129943A JP 12994390 A JP12994390 A JP 12994390A JP H0427428 A JPH0427428 A JP H0427428A
Authority
JP
Japan
Prior art keywords
catalyst
calcined
metal oxide
nitrogen oxides
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129943A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Hiromasu Shimizu
宏益 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2129943A priority Critical patent/JPH0427428A/en
Priority to EP94201396A priority patent/EP0614692A1/en
Priority to EP19910303986 priority patent/EP0455491A3/en
Publication of JPH0427428A publication Critical patent/JPH0427428A/en
Priority to US08/084,332 priority patent/US5336651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To effect contact reduction of nitrogen oxide by using hydrocarbon as a reducing agent in the exhaust gas temp. range from 200 to 500 deg.C by preparing a catalyst containing (a), and a specified catalytic component selected from each group of (b) and (c) described below. CONSTITUTION:TiO2 (a) and metal oxide (b) are preliminarily mixed, molded by a proper method (e.g. extrusion molding, punching into tablets, or forming into spheres), and then calcined at 300-800 deg.C. The calcined product is then immersed in an aq. soln. of soluble salt of metal selected from Ru, Rh, Pd, Ag and Pt or metal oxide of these (c), dried and calcined at 300-800 deg.C. Further, if required, the product is calcined in a reductive atmosphere to obtain a selective reduction catalyst for nitrogen oxides. As for the preferable source material of metal oxide (b) in the form of precursors, water-soluble salt such as hydroxides, nitrate, sulfate, chloride, etc., can be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化水素を還元剤として用いる場合の窒素酸化
物接触還元用触媒に係わり、詳しくは工場、自動車など
から排出される排気ガスの中に含まれる有害な窒素酸化
物を還元除去する際に用いて好適な炭化水素による窒素
酸化物接触還元用触媒に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a catalyst for catalytic reduction of nitrogen oxides when hydrocarbons are used as reducing agents, and more specifically, the present invention relates to catalysts for catalytic reduction of nitrogen oxides when hydrocarbons are used as reducing agents. The present invention relates to a catalyst for catalytic reduction of nitrogen oxides using hydrocarbons, which is suitable for use in reducing and removing harmful nitrogen oxides contained in nitrogen oxides.

(従来の技術及び発明が解決しようとする1ml!I)
従来、排気ガス中に含まれる窒素酸化物は、■該窒素酸
化物を酸化した後、アルカリに吸収させる方法、■NH
i 、Hz 、Co等の還元剤を用いてNZに変える方
法などによって除去されてきた。
(1ml!I which the prior art and the invention try to solve)
Conventionally, nitrogen oxides contained in exhaust gas have been treated by two methods: (1) oxidizing the nitrogen oxides and then absorbing them in alkali; (2) NH
It has been removed by methods such as converting it into NZ using reducing agents such as i, Hz, and Co.

しかしながら、■の方接による場合は、公害防止のため
のアルカリの排液処理が必要となり、また■の方法にお
いて還元剤としてNHz等のアルカリ剤を用いる場合に
おいては、これが排ガス中のSOxと反応して塩類を生
成し、その結果還元剤の還元活性が低下してしまうとい
う問題があった。また、H2、CO1炭化水素を還元剤
として用いる場合、これらが低濃度に存在するNOXよ
り高濃度に存在する02と反応してしまうため、N O
xを低減するためには多量の還元剤を必要とした。
However, in the case of the method (■), it is necessary to treat alkaline wastewater to prevent pollution, and when an alkaline agent such as NHz is used as a reducing agent in the method (■), this may react with SOx in the exhaust gas. There has been a problem in that salts are produced, resulting in a decrease in the reducing activity of the reducing agent. Furthermore, when H2 and CO1 hydrocarbons are used as reducing agents, they react with 02, which is present in higher concentrations, than with NOX, which is present in lower concentrations, so NO
A large amount of reducing agent was required to reduce x.

このため、最近では、還元剤を用いることなく窒素酸化
物を触媒により直接分解する方法も提案されているが、
窒素酸化物分解活性が低いため、実用に供し得ないとい
う問題があった。
For this reason, a method has recently been proposed in which nitrogen oxides are directly decomposed using a catalyst without using a reducing agent.
Since the nitrogen oxide decomposition activity was low, there was a problem that it could not be put to practical use.

本発明は、以上の事情に鑑みてなされたものであって、
その目的とするところは、炭化水素を還元剤として用い
たときに、酸素の共存下においても窒素酸化物が炭化水
素と選択的に反応するため、多量の炭化水素を用いるこ
となく排気ガス中の窒素酸化物を効率良く還元すること
ができる炭化水素による窒素酸化物接触還元用触媒を従
供するにある。
The present invention has been made in view of the above circumstances, and
The purpose of this is that when hydrocarbons are used as reducing agents, nitrogen oxides react selectively with hydrocarbons even in the presence of oxygen. The present invention provides a catalyst for catalytic reduction of nitrogen oxides using hydrocarbons, which can efficiently reduce nitrogen oxides.

(課題を解決するための手段〕 上記目的を達成するための本発明に係る窒素酸化物の選
択的還元触媒(接触還元触媒)は.TiO2(a)と、
Adz Ox 、S I C’z 、Z r 02から
なる群より選ばれた少なくとも一種の金属酸化物(ロ)
と、Ru、RhS Pd、Ag、Ptからなる群より選
ばれた少なくとも一種の金属および/またはその金属酸
化物(c)とからなる。
(Means for Solving the Problems) A selective reduction catalyst (catalytic reduction catalyst) for nitrogen oxides according to the present invention for achieving the above object includes .TiO2(a),
At least one metal oxide selected from the group consisting of Adz Ox, S I C'z, and Z r 02 (b)
and at least one metal selected from the group consisting of Ru, RhS Pd, Ag, and Pt and/or its metal oxide (c).

本発明に係る炭化水素による窒素酸化物選択的還元触媒
は、例えば次に示す(1)(2)または(3)の各製法
により製造される。
The catalyst for selectively reducing nitrogen oxides using hydrocarbons according to the present invention is manufactured, for example, by each of the following manufacturing methods (1), (2), or (3).

(1)先ず、TiO□(a)と金属酸化物(ロ)とを予
め混合し、適宜の成形方法(押出成形、打錠成形、球状
成形等)により成形した後、300〜800°Cで焼成
して得た焼成物を、Ru、Rh、Pd、Agおよびpt
からなる群より選ばれた金属および/またはその金属酸
化物(c)の可溶性塩の水溶液に浸漬し、乾燥後、30
0〜800°Cで焼成する。
(1) First, TiO□ (a) and metal oxide (b) are mixed in advance, molded by an appropriate molding method (extrusion molding, tablet molding, spherical molding, etc.), and then heated at 300 to 800°C. The fired product obtained by firing is treated with Ru, Rh, Pd, Ag and pt.
After being immersed in an aqueous solution of a soluble salt of a metal and/or its metal oxide (c) selected from the group consisting of
Bake at 0-800°C.

必要に応じて、さらに還元雰囲気下で焼成してもよい。If necessary, it may be further fired in a reducing atmosphere.

(2)  T i 02 (a)と、金属酸化物(b)
ノ塩とを水ナトに溶解し、これにアンモニア、水酸化ナ
トリウム等のアルカリを沈澱剤として加えて沈澱物を生
成せしめ、該沈澱物を乾燥した後、300〜800℃で
焼成して得た焼成物を、粉砕し、適宜の成形方法(押出
成形、打錠成形、球状成形等)により成形する0次いで
、必要に応じて300〜800℃で焼成した後、この成
形物を、Ru、Rh、Pd、Agおよびptからなる群
より選ばれた金属および/またはその金属酸化物(c)
の可溶性塩の水溶液に浸漬し、乾燥後、300〜800
°Cで焼成する。必要に応じて、さらに還元雰囲気下で
焼成してもよい。
(2) T i 02 (a) and metal oxide (b)
The salt was dissolved in aqueous solution, and an alkali such as ammonia or sodium hydroxide was added thereto as a precipitant to form a precipitate. After drying the precipitate, it was calcined at 300 to 800°C. The fired product is pulverized and molded by an appropriate molding method (extrusion molding, tablet molding, spherical molding, etc.).Then, after firing at 300 to 800°C as necessary, the molded product is treated with Ru, Rh. , a metal selected from the group consisting of Pd, Ag and pt and/or its metal oxide (c)
300 to 800 after drying.
Bake at °C. If necessary, it may be further fired in a reducing atmosphere.

(3)Ti塩と、金属酸化物(ロ)の金属塩と、金属お
よび/またはその金属酸化物(c)の金属塩とを、水な
どに熔解し、これにアンモニア、水酸化ナトリウム等の
アルカリを沈澱剤として加えて沈澱物を生成せしめ、該
沈澱物を乾燥した後、300〜800℃で焼成して得た
焼成物を、粉砕し、適宜の成形方法(押出成形、打錠成
形、球状成形等)により成形する0次いで、必要に応し
て300〜800″Cで焼成してもよい、さらに場合に
よっては、還元雰囲気下で焼成してもよい。
(3) Dissolve the Ti salt, the metal salt of the metal oxide (b), and the metal salt of the metal and/or its metal oxide (c) in water, etc., and add ammonia, sodium hydroxide, etc. Add an alkali as a precipitant to form a precipitate, dry the precipitate, and then sinter at 300 to 800°C. Then, if necessary, it may be fired at 300 to 800''C, and in some cases, it may be fired in a reducing atmosphere.

なお、上記(1)〜(3)は、本発明に係る触媒の調製
方法を例示したものであり、本発明に係る触媒は、上記
調製方法以外の方法によって調製することが可能である
ことは勿論であり、触媒成分が実質的に同じものであれ
ば、同等の効果を有するものが得られる。
Note that (1) to (3) above are examples of methods for preparing the catalyst according to the present invention, and the catalyst according to the present invention may be prepared by methods other than the above-mentioned method. Of course, if the catalyst components are substantially the same, products with equivalent effects can be obtained.

本発明におけるTi01の前駆体は、硫酸チタン、塩化
チタン、チタン酸などである。なおこれらの沈澱剤とし
てはアンモニアあるいは水酸化ナトリウム等のアルカリ
剤が好ましい。
Precursors of Ti01 in the present invention include titanium sulfate, titanium chloride, titanic acid, and the like. As these precipitants, alkali agents such as ammonia or sodium hydroxide are preferable.

また、本発明における金属酸化物Φ)の好ましい原料で
ある前駆体としては、水酸化物、硝酸塩、硫酸塩、塩化
物などの水溶性塩を挙げることができる。さらに、金属
または金属酸化物(c)の好ましい原料である前駆体と
しては、例えば塩化ルテニウム、硝酸ロジウム、塩化パ
ラジウム、硝酸銀、塩化白金酸、塩化金酸などの水溶性
塩を挙げることができる。また、これらの成分以外にチ
クニア、アルミナ、シリカなどの公知の担体成分、粘土
などの成形助剤成分、ガラス繊維などの補強側を添加し
てもよい。なお、これらの成分の総量は触媒成分中の5
0%以下とすることが好ましい。
Precursors that are preferred raw materials for the metal oxide Φ) in the present invention include water-soluble salts such as hydroxides, nitrates, sulfates, and chlorides. Furthermore, examples of precursors that are preferable raw materials for the metal or metal oxide (c) include water-soluble salts such as ruthenium chloride, rhodium nitrate, palladium chloride, silver nitrate, chloroplatinic acid, and chloroauric acid. In addition to these components, known carrier components such as chikunia, alumina, and silica, molding aid components such as clay, and reinforcing components such as glass fiber may be added. The total amount of these components is 5% of the catalyst components.
It is preferably 0% or less.

本発明における(a)(bl (c1の好ましい組成比
は原子比で(a) : (b) : (c)が90〜5
0:5〜50:0.01〜10であり、より好ましくは
90〜75:10〜25:0.1〜5である。これらの
それぞれの反応速度への寄与は定かではないが、これら
の原子比において、最も還元性を示す結果となった。
The preferred composition ratio of (a)(bl (c1) in the present invention is (a):(b):(c) in atomic ratio of 90 to 5.
0:5-50:0.01-10, more preferably 90-75:10-25:0.1-5. Although the contribution of each of these to the reaction rate is unclear, the results showed the highest reducing properties at these atomic ratios.

本発明における炭化水素としては、アルカン、アルケン
、アルキン等の脂肪族系炭化水素、芳香族系炭化水素な
どが挙げられる。
Examples of the hydrocarbon in the present invention include aliphatic hydrocarbons such as alkanes, alkenes, and alkynes, aromatic hydrocarbons, and the like.

なお、選択的還元反応を示す温度は、アルキンくアルケ
ンく芳香族系炭化水素くアルカンの順に高くなる。また
、同系の炭化水素においては、炭素数が大きくなるにし
たがって、その温度は低くなる。
The temperature at which the selective reduction reaction occurs increases in the order of alkynes, alkenes, aromatic hydrocarbons, and alkanes. Furthermore, in similar hydrocarbons, the temperature decreases as the number of carbon atoms increases.

好適な炭化水素としては、アセチレン、メチルアセチレ
ン、l−ブチン等の低級アルキン、エチレン、プロピレ
ン、イソブチレン、1−ブテン、2−ブテン等の低級ア
ルケン、ブタジェン、イソプレン等の低級ジエンが例示
される。
Suitable hydrocarbons include lower alkynes such as acetylene, methylacetylene and l-butyne, lower alkenes such as ethylene, propylene, isobutylene, 1-butene and 2-butene, and lower dienes such as butadiene and isoprene.

上記炭化水素の好適な添加量は、炭化水素の種類によっ
て異なるが、窒素酸化物の濃度に対してモル比で0. 
1〜2倍程度である。0.1倍未満であると、充分な活
性を得ることができず、また2倍を越えると、未反応の
炭化水素の排出量が多くなるため、これを処理するため
の後処理が必要となる。
The preferred amount of the hydrocarbon to be added varies depending on the type of hydrocarbon, but the molar ratio to the concentration of nitrogen oxides is 0.
It is about 1 to 2 times. If it is less than 0.1 times, it will not be possible to obtain sufficient activity, and if it exceeds 2 times, the amount of unreacted hydrocarbons will increase, so post-treatment is required to deal with this. Become.

本発明に係る炭化水素による窒素酸化物の選択的還元用
触媒が窒素酸化物に対して還元活性を示す最適な温度は
、使用する還元剤、触媒種により異なるが、通常100
〜800°Cであり、この温度領域においては、空間速
度(SV)500〜50000程度で排気ガスを通流さ
せることが好ましい、なお、より好適な使用温度領域は
200〜500°Cである。
The optimal temperature at which the catalyst for selective reduction of nitrogen oxides by hydrocarbons according to the present invention exhibits reducing activity for nitrogen oxides varies depending on the reducing agent and catalyst type used, but is usually 100°C.
~800°C, and in this temperature range, it is preferable to flow the exhaust gas at a space velocity (SV) of about 500 to 50,000. A more suitable working temperature range is 200 to 500°C.

以上のように、本発明に係る触媒は、(a)と、(b)
および(c)の各群より選ばれた触媒成分とを含有する
ことによって、排ガス温度が200〜500℃の温度域
において炭化水素を還元剤として窒素酸化物を接触還元
することを可能ならしめたのである。
As described above, the catalyst according to the present invention has (a) and (b)
and a catalyst component selected from each group (c), thereby making it possible to catalytically reduce nitrogen oxides using hydrocarbons as a reducing agent in an exhaust gas temperature range of 200 to 500°C. It is.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいてさらに詳細に説明する
が、本発明は下記実施例に何ら限定されるものではなく
、その要旨を変更しない範囲において適宜変更して実施
することが可能なものである。
Hereinafter, the present invention will be explained in more detail based on examples, but the present invention is not limited to the following examples in any way, and can be practiced with appropriate modifications within the scope of the gist thereof. It is.

(1)触媒の調製 (実施例1) 硫酸チタン、硝酸アルミニウムを各々酸化物基準で90
g、9g秤量し、これを11のイオン交換水に溶解した
。この水溶液中に、充分攪拌を行いながら、アンモニア
を吹き込みpH7,0となるまで添加し中和反応を終了
した(中和時間1時間)。その後、30分間熟成した後
、ろ過、水洗し、100°Cにて18時間乾燥した後、
s o o ’cにて3時間焼成した。この焼成物をス
クリーンが0.5■φであるサンプルミルにて粉砕した
。この粉砕物50gを、水20Od中に投入し充分撹拌
を行って得たスラリー中に、空隙率81%、ピッチ4m
のセラミックファイバー製コルゲート状ハニカムを浸漬
し、TiO2−A1203を、該ハニカムに担持させた
。その担持率は143%であった。これを常温通風乾燥
した後、100 ’Cにて18時間乾燥した。この乾燥
物を塩化白金酸水溶液(ptとして33g/l中に浸漬
し、常温通風乾燥した後、100°Cにて18時間乾燥
し、次いで500°Cにて3時間焼成して触媒(AI)
を得た。
(1) Preparation of catalyst (Example 1) Titanium sulfate and aluminum nitrate were each prepared at a concentration of 90% on an oxide basis.
9g was weighed out and dissolved in 11 ion-exchanged water. Ammonia was blown into this aqueous solution with sufficient stirring and added until the pH reached 7.0 to complete the neutralization reaction (neutralization time 1 hour). After that, after aging for 30 minutes, filtering, washing with water, and drying at 100 ° C for 18 hours,
It was baked for 3 hours in SO'C. This baked product was pulverized in a sample mill with a screen of 0.5 φ. 50 g of this pulverized material was poured into 20 Od of water and thoroughly stirred, resulting in a slurry with a porosity of 81% and a pitch of 4 m.
A corrugated honeycomb made of ceramic fiber was immersed, and TiO2-A1203 was supported on the honeycomb. The loading rate was 143%. This was air-dried at room temperature and then dried at 100'C for 18 hours. This dried product was immersed in a chloroplatinic acid aqueous solution (33 g/l as pt, dried with ventilation at room temperature, dried at 100°C for 18 hours, and then calcined at 500°C for 3 hours to form a catalyst (AI).
I got it.

(実施例2) 硝酸アルミニウムおよびオキシ塩化ジルコニウムを各々
酸化物基準で50g、50g秤量し、これを11のイオ
ン交換水に溶解した。この水溶液中に、充分攪拌を行い
ながらアンモニアを吹き込みp)I’7.0として中和
反応を終了した(中和時間1時間)、その後、30分間
熟成した後、ろ過、水洗し、100°Cにて18時間乾
燥した後、600℃にて3時間焼成した。この焼成物を
、スクリーンが0.5髄φであるサンプルミルにて粉砕
した。この粉砕物50gと水酸化チタンを500”Cに
て1時間焼成して得たTi0□50gを、水400dに
投入し、遊星ミルにて30分分間式粉砕した。このスラ
リー中に、空隙率81%、ピッチ41Ilのセラミック
ファイバー製コルゲート状ハニカムを浸漬し、Ti(h
  AI!、z (h  Zr0zを該ハニカムに担持
させた。その担持率は156%であった。以下、実施例
1と同様にして触媒(A−2)を得た。
(Example 2) Aluminum nitrate and zirconium oxychloride were weighed in an amount of 50 g and 50 g, respectively, based on the oxide, and dissolved in 11 ion-exchanged water. Ammonia was blown into this aqueous solution with sufficient stirring to complete the neutralization reaction (neutralization time: 1 hour) to obtain p) I'7.0. Afterwards, after aging for 30 minutes, filtering, washing with water, and 100° After drying at C for 18 hours, it was fired at 600°C for 3 hours. This fired product was pulverized in a sample mill with a screen having a diameter of 0.5 mm. 50 g of this pulverized material and 50 g of Ti0□ obtained by firing titanium hydroxide at 500"C for 1 hour were put into 400 d of water and pulverized for 30 minutes in a planetary mill. In this slurry, the porosity A ceramic fiber corrugated honeycomb of 81% and pitch 41Il was immersed in Ti(h
AI! , z (h Zr0z was supported on the honeycomb. The supporting rate was 156%. Hereinafter, a catalyst (A-2) was obtained in the same manner as in Example 1.

(実施例3) 実施例2において、塩化白金酸水溶液濃度をPtとして
165 g/j!としたこと以外は、実施例2と同様に
して、触媒(A−3)を得た。
(Example 3) In Example 2, the concentration of the chloroplatinic acid aqueous solution was 165 g/j as Pt! A catalyst (A-3) was obtained in the same manner as in Example 2, except for the following.

(実施例4) 実施例2において、塩化白金酸水溶液に代えて塩化パラ
ジウム水溶液を用いたこと以外は、実施例2と同様にし
て、触媒を得た。二あとき、濃度を16 g/l、、3
3g/j!、66 g/j!とじて各々触媒(A−4−
1)、(A−4−2)、(A−4−3)を得た。
(Example 4) A catalyst was obtained in the same manner as in Example 2, except that a palladium chloride aqueous solution was used in place of the chloroplatinic acid aqueous solution. Two days later, the concentration was 16 g/l, 3
3g/j! , 66 g/j! Each catalyst (A-4-
1), (A-4-2), and (A-4-3) were obtained.

(実施例5) 実施例2において、塩化白金酸水溶液に代えて塩化ルテ
ニウム水溶液(Ruとして33 g/jりを用いたこと
以外は、実施例2と同様にして、触媒(A−5)を得た
(Example 5) Catalyst (A-5) was prepared in the same manner as in Example 2, except that a ruthenium chloride aqueous solution (33 g/j of Ru was used in place of the chloroplatinic acid aqueous solution). Obtained.

(実施例6) 実施例2において、塩化白金酸水溶液に代えて塩化ロジ
ウム水溶液(Rhとして33g/lを用いたこと以外は
、実施例2と同様にして、触媒(A−6)を得た。
(Example 6) A catalyst (A-6) was obtained in the same manner as in Example 2, except that a rhodium chloride aqueous solution (33 g/l as Rh was used in place of the chloroplatinic acid aqueous solution). .

(実施例7) 実施例2において、塩化白金酸水溶液に代えて硝酸銀水
溶液(AgzOとして71 g/jりを用いたこと以外
は、実施例2と同様にして、触媒(A−7)を得た。
(Example 7) Catalyst (A-7) was obtained in the same manner as in Example 2, except that a silver nitrate aqueous solution (71 g/j as AgzO) was used in place of the chloroplatinic acid aqueous solution. Ta.

(実施例8) 口座化学社製スノーテックスOとメタチタン酸ゾル(メ
タチタン酸を硝酸により解膠したもの)とを酸化物換算
で50g、50g秤量し、充分混合した後、100°C
にて18時間乾燥し、次いで700℃にて3時間焼成し
た。この焼成物を実施例1と同様に粉砕した。この粉砕
物を用い以下実施例1と同様にして触媒(A−8)を得
た。
(Example 8) Weighed 50g and 50g of metatitanic acid sol (metatatitanic acid peptized with nitric acid) manufactured by Kakuto Kagaku Co., Ltd. in terms of oxides, mixed them thoroughly, and then heated them at 100°C.
The mixture was dried for 18 hours at 700° C. and then fired for 3 hours at 700°C. This fired product was pulverized in the same manner as in Example 1. Using this pulverized product, a catalyst (A-8) was obtained in the same manner as in Example 1.

(実施例9) 実施例8において、塩化白金酸に代えて塩化パラジウム
水溶液を用いたこと以外は、実施例8と同様にして、触
媒(A−9)を得た。
(Example 9) A catalyst (A-9) was obtained in the same manner as in Example 8, except that an aqueous palladium chloride solution was used in place of chloroplatinic acid.

(実施例10) 実施例8において、塩化白金酸に代えて硝酸ロジウム水
溶液を用いたこと以外は、実施例8と同様にして、触媒
(A〜10)を得た。
(Example 10) Catalysts (A to 10) were obtained in the same manner as in Example 8, except that an aqueous rhodium nitrate solution was used in place of chloroplatinic acid.

(実施例11) 実施例8において、スノーテックスOとメタチタン酸ゾ
ルとを酸化物換算で30g、70gとしたこと以外は、
実施例8と同様にして、触媒(A11)を得た。
(Example 11) In Example 8, except that Snowtex O and metatitanic acid sol were 30 g and 70 g in terms of oxide,
A catalyst (A11) was obtained in the same manner as in Example 8.

(実施例12) 実施例8において、スノーテックス0とメタチタン酸ゾ
ルとを酸化物換算でlog、90gとしたこと以外は、
実施例8と同様にして、触媒(A−12)を得た。
(Example 12) In Example 8, except that Snowtex 0 and metatitanic acid sol were set to log 90g in terms of oxide,
A catalyst (A-12) was obtained in the same manner as in Example 8.

(比較例1) 炭酸カルシウムを65″O℃にて1時間焼成してカルシ
ア100gを調製し、以後、実施例1と同様にして、触
媒(B−1)を得た。
(Comparative Example 1) Calcium carbonate was calcined at 65''O<0>C for 1 hour to prepare 100 g of calcia, and then the same procedure as in Example 1 was carried out to obtain a catalyst (B-1).

(比較例2) 水酸化マグネシウムを650℃にて1時間焼成してマグ
ネシア100gを調製し、以後、実施例1と同様にして
触媒(B−2)を得た。
(Comparative Example 2) Magnesium hydroxide was calcined at 650° C. for 1 hour to prepare 100 g of magnesia, and thereafter, the same procedure as in Example 1 was carried out to obtain a catalyst (B-2).

(比較例3) ビーカーに、A1(NOx)i  ・9H20を3゜1
3g及び水を100d入れてマグネチックスターラーで
攪拌して溶解しながら、臭化テトラプロピルアンモニウ
ム7.98gとシリカゾル水溶液(Si(h:31重置
%、NazO:0.4重量%、Alz 03  : 0
.03重量%を含有する水溶液)60gとを加えた。
(Comparative Example 3) In a beaker, add 3°1 of A1(NOx)i 9H20.
Add 3 g of tetrapropylammonium bromide and 100 d of water and stir with a magnetic stirrer to dissolve. 0
.. 60 g of an aqueous solution containing 0.3% by weight) were added.

次いで、この溶液に、水酸化ナトリウム3. 12gを
407の水に溶解した溶液を撹拌しながら徐々に加えた
。この混合液をオートクレーブに仕込み、160°Cで
72時間、攪拌を加えて結晶化させた。
This solution was then added with 3.5% sodium hydroxide. A solution of 12 g of 407 in water was gradually added with stirring. This mixed solution was placed in an autoclave and stirred at 160°C for 72 hours to crystallize it.

この生成物を固液分離した後、固形物を水洗し、乾燥し
て、基剤となるナトリウム型のZSM−5ゼオライト(
SiCh /Al2O3=70)を得た。
After solid-liquid separation of this product, the solid material was washed with water and dried, and sodium-type ZSM-5 zeolite (
SiCh/Al2O3=70) was obtained.

このゼオライトを、0.05モル/lの酢酸銅の水溶液
に入れて、l昼夜攪拌した後、遠心分離した。
This zeolite was placed in an aqueous solution of 0.05 mol/l copper acetate, stirred day and night, and then centrifuged.

上記操作を合計3回繰り返し行った後、純水で5回水洗
し、次いで110℃で終夜乾燥して触媒(B−3)を得
た。
After repeating the above operation three times in total, it was washed with pure water five times, and then dried at 110° C. overnight to obtain a catalyst (B-3).

10評価試験 実施例1〜12、比較例1〜3で得た触媒A−1〜A−
12およびB−1〜B−3について、下記の試験条件に
より窒素酸化物含有ガスの窒素酸化物接触還元を行い、
窒素酸化物のN2への転換率を、ガスクロマトグラフ法
によりN2を定量して算出した。
10 Evaluation Test Examples 1 to 12 and Comparative Examples 1 to 3 Catalysts A-1 to A-
For No. 12 and B-1 to B-3, nitrogen oxide catalytic reduction of the nitrogen oxide-containing gas was performed under the following test conditions,
The conversion rate of nitrogen oxides to N2 was calculated by quantifying N2 by gas chromatography.

(試験条件) (1)ガス組成     NO1容量%02  10容
量% 還元側 l容量% He   残部 (2)空間速度     1000 1/Hr(3)反
応温度  200°C1300°C1400°Cまたは
500℃ 結果を表に示す。
(Test conditions) (1) Gas composition NO1 volume %02 10 volume % Reduction side 1 volume % He balance (2) Space velocity 1000 1/Hr (3) Reaction temperature 200°C1300°C1400°C or 500°C Show the results Shown below.

(以下、余白) 表より、本発明に係る炭化水素による窒素酸化物接触還
元用触媒(A−1〜A−12)は、いずれもN2への転
化率が高いのに対して、従来の触媒(B−1〜B−3)
は、いずれの反応温度においても総じてNZへの転化率
が低いことが分かる。
(Hereinafter, blank space) From the table, it can be seen that the catalysts for catalytic reduction of nitrogen oxides using hydrocarbons according to the present invention (A-1 to A-12) all have a high conversion rate to N2, whereas the conventional catalysts have a high conversion rate to N2. (B-1 to B-3)
It can be seen that the conversion rate to NZ is generally low at any reaction temperature.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明に係る炭化水素に
よる窒素酸化物接触還元用触媒は、排気ガス中の窒素酸
化物を効率良く接触還元することができるなど、本発明
は優れた特有の効果を奏する。
As described above in detail, the catalyst for catalytic reduction of nitrogen oxides using hydrocarbons according to the present invention has excellent and unique properties, such as being able to efficiently catalytically reduce nitrogen oxides in exhaust gas. be effective.

特許出願人 堺化学工業株式会社Patent applicant: Sakai Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.TiO_2(a)と、Al_2O_3、SiO_2
、ZrO_2からなる群より選ばれた少なくとも一種の
金属酸化物(b)と、Ru、Rh、Pd、Ag、Ptか
らなる群より選ばれた少なくとも一種の金属および/ま
たはその金属酸化物(c)とからなる炭化水素による窒
素酸化物接触還元用触媒。
1. TiO_2(a), Al_2O_3, SiO_2
, at least one metal oxide selected from the group consisting of ZrO_2 (b), and at least one metal selected from the group consisting of Ru, Rh, Pd, Ag, and Pt and/or its metal oxide (c) A catalyst for catalytic reduction of nitrogen oxides using hydrocarbons.
JP2129943A 1990-05-03 1990-05-19 Catalyst for contact reduction of nitrogen oxide Pending JPH0427428A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2129943A JPH0427428A (en) 1990-05-19 1990-05-19 Catalyst for contact reduction of nitrogen oxide
EP94201396A EP0614692A1 (en) 1990-05-03 1991-05-02 Catalysts and methods for denitrization
EP19910303986 EP0455491A3 (en) 1990-05-03 1991-05-02 Catalysts and methods for denitrization
US08/084,332 US5336651A (en) 1990-05-03 1993-06-30 Catalysts and methods for denitrization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129943A JPH0427428A (en) 1990-05-19 1990-05-19 Catalyst for contact reduction of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH0427428A true JPH0427428A (en) 1992-01-30

Family

ID=15022272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129943A Pending JPH0427428A (en) 1990-05-03 1990-05-19 Catalyst for contact reduction of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH0427428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284664A (en) * 1994-04-20 1995-10-31 Riken Corp Waste gas purification material and method for purifying waste gas
JP2002513670A (en) * 1998-05-06 2002-05-14 シーメンス アクチエンゲゼルシヤフト Oxidation catalyst and catalyst oxidation method
JP2012527349A (en) * 2009-05-19 2012-11-08 ミレニアム・イノーガニック・ケミカルス・インコーポレイテッド Catalyst cocatalyst in vanadium-free mobile catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284664A (en) * 1994-04-20 1995-10-31 Riken Corp Waste gas purification material and method for purifying waste gas
JP2002513670A (en) * 1998-05-06 2002-05-14 シーメンス アクチエンゲゼルシヤフト Oxidation catalyst and catalyst oxidation method
JP2012527349A (en) * 2009-05-19 2012-11-08 ミレニアム・イノーガニック・ケミカルス・インコーポレイテッド Catalyst cocatalyst in vanadium-free mobile catalyst

Similar Documents

Publication Publication Date Title
EP0545404B1 (en) Catalyst and a method of preparing the catalyst
JP5932650B2 (en) Sulfur resistant alumina catalyst support
JPH07163877A (en) Catalyst for treating exhaust gas containing dioxines, production thereof and treatment method
JPH08224469A (en) Highly heat-resistant catalyst carrier, its production, highly heat-resistant catalyst and its production
JPH02187148A (en) Catalyst for decomposing ozone
JPH05237390A (en) Catalyst for purification of exhaust gas
JP3406001B2 (en) Exhaust gas purification catalyst
JPH06315634A (en) Catalytic structure for nitrogen oxide catalytic reduction
JPH06142517A (en) Catalyst for decomposition of nitrous oxide
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JPH0427428A (en) Catalyst for contact reduction of nitrogen oxide
JP2591703B2 (en) Catalyst structure for catalytic reduction of nitrogen oxides
JPH1076159A (en) Exhaust gas purification catalyst and its production
JP2784444B2 (en) Nitrogen oxide decomposition catalyst
JP2921517B2 (en) Nitrogen oxide decomposition catalyst
JPH02293050A (en) Catalyst for purification of exhaust gas
JP2691750B2 (en) Nitrogen oxide decomposition catalyst
JPH04298235A (en) Catalyst for contact reduction of nox
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH038447A (en) Catalyst for decomposition of ozone
JPH02122830A (en) Catalyst for removal of nitrogen oxide
JPH0768180A (en) Catalyst for catalytic reduction of nox
JP2001113167A (en) Exhaust gas treating catalyst, its manufacturing method and method for treating exhaust gas
JPH0429743A (en) Catalyst for nitrogen oxide contact reduction
JPH02144147A (en) Catalyst for removal of nitrogen oxide