[go: up one dir, main page]

JPH04273104A - Conductive composite and manufacture - Google Patents

Conductive composite and manufacture

Info

Publication number
JPH04273104A
JPH04273104A JP5832791A JP5832791A JPH04273104A JP H04273104 A JPH04273104 A JP H04273104A JP 5832791 A JP5832791 A JP 5832791A JP 5832791 A JP5832791 A JP 5832791A JP H04273104 A JPH04273104 A JP H04273104A
Authority
JP
Japan
Prior art keywords
conductive composite
solid content
composite
aqueous slurry
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5832791A
Other languages
Japanese (ja)
Inventor
Keiichi Asami
圭一 浅見
Kiyotaka Nakanishi
清隆 中西
Hideki Takahashi
英樹 高橋
Ritsuko Shidei
四手井 律子
Atsusuke Yamagata
山形 阿都佐
Yoshiaki Echigo
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5832791A priority Critical patent/JPH04273104A/en
Publication of JPH04273104A publication Critical patent/JPH04273104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a conductive composite which is thermally stable, whose electric resistance value is well reproducible and which displays a positive temperature coefficient and to provide a method to easily manufacture the composite. CONSTITUTION:A conductive composite is composed mainly of an ultrahigh- molecular-weight polyethylene fine powder and a carbon fiber. The conductive composite is obtained as follows: the ultrahigh-molecular-weight polyethylene fine powder, the carbon fiber and a latex are dispersed to water; an aqueous slurry is prepared; a polymer coagulant is added to the obtained aqueous slurry; a solid content is coagulated; and the coagulated solid content is heated, compressed and molded.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は,熱安定性で電気抵抗値
が再現性のよい正特性温度係数(以下PTCと略す)を
示す導電性複合体およびその製造方法に関するものであ
る。 【0002】 【従来の技術】PTCとは,特定の温度領域において電
気抵抗値が温度の上昇と共に急激に増加する性質を示す
係数であり,従来,PTCを示す導電性組成物として,
ポリエチレンやポリプロピレンあるいはナイロンなどの
結晶性ポリマーに,カーボンブラックや金属粉末を混合
して得られる組成物が知られている。しかしながら,従
来のものは,熱安定性に欠けPTCの再現性が悪いとい
う問題があった。そこで,熱安定性でPTCの再現性の
よい導電性複合体を得る方法として,例えば,分子量2
0〜40万のポリエチレンとカーボンブラックを混合し
てペレット化した後,射出成形して得た成形物に電子線
を照射し,PTCを示す導電性架橋ポリマーを得る方法
が特開昭61−218117号公報に開示されている。 また,ポリエチレン等の有機高分子とカーボンブラック
を溶融混合し,それを微粉砕し電子線を照射した後マト
リックスポリマーとブレンドして成形した導電性ポリマ
ー組成物を得る方法が特開昭62−167358号公報
に開示されている。 【0003】これらの方法では,成形前あるいは成形後
に電子線などの放射線を照射することによりポリマーを
架橋させ,熱安定化させてPTCの再現性を向上させて
いた。しかし,ポリマーを均一に架橋させることは難し
く, その結果,熱安定性でPTCの再現性のよいもの
が得にくかった。また,ポリマーを均一に架橋させるた
めには,線源,強度,エネルギー,および照射方法の選
択が非常に難しくまた工程が複雑になるという問題があ
った。 【0004】 【発明が解決しようとする課題】そこで,本発明の課題
は,熱安定性でPTCの再現性のよい導電性複合体およ
び該複合体を容易に得ることができる導電性複合体の製
造方法を提供することにある。 【0005】 【課題を解決するための手段】本発明者らは,上記課題
を解決すべく鋭意研究した結果,耐熱性に優れた超高分
子量ポリオレフィンに後述するような特定の炭素繊維を
混在させた組成物よりなる複合体は,熱安定性でPTC
の再現性がよいということを見い出し,また,このよう
な導電性複合体を後述するような方法で容易に製造する
ことができるという知見を得,本発明に到達した。 【0006】すなわち, 本発明の要旨は, 主成分が
超高分子量ポリオレフィンと繊維長が0.2〜50mm
である炭素繊維とからなる複合体であって,25℃での
体積抵抗が100Ωcm以下であり, 電気抵抗値が正
特性温度係数を示すことを特徴とする導電性複合体であ
り,このような導電性複合体は, 超高分子量ポリオレ
フィン,繊維長が0.2〜50mmである炭素繊維およ
びラテックスを水に分散させて水性スラリーを調製し,
得られた水性スラリーに高分子凝集剤を添加して固形分
を凝集させ,凝集した固形分を成形することによって製
造することができる。 【0007】以下,本発明について詳しく説明する。本
発明の導電性複合体は,25℃での体積抵抗が100Ω
cm以下の抵抗値を示し,0〜200℃の操作温度範囲
において, R15値が10以上またはR100 値が
100以上を示すもの, 特にR15値が10以上およ
びR100 値が100以上を示すものが好ましい。こ
こで,R15値とは0〜200℃の操作温度範囲におい
て抵抗率増加が最も大きい15℃の温度範囲における最
初と最後の抵抗率の比を表し, R100 値とは0〜
200℃の操作温度範囲において抵抗率増加が最も大き
い100℃の温度範囲における最初と最後の抵抗率の比
を表したものである。 【0008】本発明における導電性複合体は, その主
成分が超高分子量ポリオレフィンと炭素繊維とからなり
,超高分子量ポリオレフィンとしては,例えば,エチレ
ン,プロピレン,1−ブテン,1−ヘキセン,1−オク
テン,1−デセン,1−ドデセン,4−メチル−1−ペ
ンテンなどのα−オレフィンの単独重合体,または共重
合体あるいはこれらの混合物等が用いられ, これらの
うちエチレンの単独重合体が特に好ましい。超高分子量
ポリオレフィンの分子量は100万以上,特に300〜
800万が好ましい。分子量が100万未満の場合には
,熱安定性でPTCの再現性のよいものが得られ難い。 また,あまりに高分子過ぎると成形性が悪くなる。 【0009】本発明で用いらる超高分子量ポリオレフィ
ンの粒径は,10〜800μmのものが好ましく使用さ
れる。粒径が10μm未満のものは二次凝集をおこしや
すく,また,800μmを超えるものを使用すると十分
な強度を有する複合体が得られ難い。超高分子量ポリオ
レフィンの含有量は10〜99.5重量%,特に20〜
96重量%が好ましく,10重量%未満では十分な強度
の複合体が得れ難く,99.5重量%を超えると十分な
導電性を有する複合体が得られ難い。 【0010】本発明で使用される炭素繊維としては,ア
クリロニトリル系繊維,ピッチ系繊維,フェノール系繊
維またはレーヨン系繊維等を炭素化して得られる炭素繊
維が用いられ,アクリロニトリル系繊維を炭素化して得
られる高強度,高弾性率の炭素繊維が特に好ましい。炭
素繊維の平均長さは0.2〜50mmのものを使用する
。平均長さが0.2mmより短い場合は,十分な強度が
得られ難く,平均長さが50mmを超える場合は,水性
媒体中に分散し難い。また,繊維のアスペクト比(長さ
対直径の比)が40より大きいものを使用することが好
ましい。アスペクト比が40以下の場合は十分な強度が
得られ難い。すなわち,繊維の長さが0.5〜16mm
で直径が13〜25μmのものを使用することが特に好
ましい。また炭素繊維を用いた複合体はPTCを示すと
同時に機械的強度も高くなる。 【0011】導電性複合体中の炭素繊維の含有量は, 
通常0.5〜90重量%, 特に3〜70重量%とする
のが好ましい。0.5重量%未満では十分な導電性が得
られ難く,また90重量%を超えると導電性複合体の強
度が弱くなるとともに成形しにくくなる。 【0012】次に,本発明の導電性複合体の好ましい製
造例について説明する。超高分子量ポリオレフィン,炭
素繊維およびラテックスを水性媒体中で十分撹拌してき
れいに分散しているのを確認した後,高分子凝集剤を加
え水性スラリー中の固形分を不安定化させて凝集させて
固形分を回収し,脱水,乾燥した後,後述する方法で固
形分を成形して導電性複合体を得る。固形分を凝集させ
て回収する際,シートマシンにより固形分をシートにし
て回収すると,シート状複合体を得る場合は好適である
とともに後の工程が容易である。 【0013】ここで使用されるラテックスは,合成ある
いは天然のポリマーが水に分散したものが用いられ,こ
のようなラッテクスとしては,乳化重合によって製造さ
れるアクリル系ポリマーラテックス,エチレン系不飽和
基を有するモノマーのホモポリマーまたはコポリマーあ
るいはこれらのポリマー誘導体のラテックス等が挙げら
れる。ラテックス中のポリマーは水性スラリー中の固形
分を回収するときに固形分を結合または接着させる役割
を果たす。ラテックスの水性スラリーへの添加量は,固
形分で複合体中の0.1〜10重量%となるようにする
のが好ましい。0.1重量%未満では十分な強度の導電
性複合体が得られ難く, 10重量%を超えると凝集剤
の使用量が多くなり経済的でない。 【0014】また,高分子凝集剤は水性スラリー中の固
形分を不安定化させて凝集させる役割を果たす。高分子
凝集剤は, 天然あるいは合成のポリマーで, 室温ま
たはそれ以下の温度(40℃以下)においてフィルム形
成性のポリマーであることが好ましい。特に湿式積層マ
ット形成プロセスを経る場合には, その温度において
フィルム形成性であるポリマーを用いることが好ましい
。 【0015】高分子凝集剤としては,部分的に加水分解
したポリアクリルアミド,ポリアクリル酸ソーダ,ポリ
アクリロニトリル部分加水分解物,変性カチオン性ポリ
アクリルアミド,ジアルキルアミノエチルメタアクリレ
ート重合体,ビニルイミダゾリン重合体,ジアリールア
ミン重合体が挙げられる。高分子凝集剤の添加量は固形
分で複合体の重量の0.1〜10重量%となるようにす
るのが好ましい。0.1重量%未満および10重量%を
超える場合は,十分な強度の導電性複合体が得られ難い
。 【0016】成形条件は,温度:超高分子量ポリオレフ
ィンの融点〜融点+50℃, 特に融点〜融点+30℃
,プレス圧:100〜1500kg/cm2,  特に
120〜1000kg/cm2 ,プレス時間:0.2
〜900秒間, 特に0.5〜400秒間とするのが好
ましい。成形時の温度が融点より低いと十分な強度が得
られ難く,融点+50℃より高い温度では超高分子量ポ
リオレフィンが炭素繊維の表面を覆ってしまい十分な導
電性が得られ難い。プレス圧が100kg/cm2 よ
り低く, プレス時間が0.2秒より短い場合は十分な
強度が得られ難く, プレス圧が1500kg/cm2
を超える場合は燃費がかかり経済的でない。プレス時間
が900秒を超えると成形サイクルが長くなり経済的で
ない。 【0017】 【実施例】次に,実施例を用いて本発明を具体的に説明
する。 実施例1 超高分子量ポリエチレン微粉末(PE−COMP−14
07,東洋インキ社製)9g,カーボンファイバーチョ
ップドストランド(繊維長:3mm,HTA−C3−P
L,東邦レーヨン社製)1g,ラテックス(SFC−5
5,大日本インキ社製,固形分3重量%)10gを水1
l中に入れ,5分間攪拌して水性スラリーを調製した。 得られた水性スラリーに高分子凝集剤(UF−105,
ユニチカ社製,固形分0.05重量%)100gを加え
固形分を凝集させてマットを得,このマットを乾燥し,
金型に充填して150℃,150kg/cm2で30秒
間プレスを行い,加圧下冷却して導電性複合体を得た。 得られた導電性複合体の特性値を表1に示す。 【0018】実施例2 超高分子量ポリエチレン微粉末(PE−COMP−14
07,東洋インキ社製)8g,カーボンファイバーチョ
ップドストランド(繊維長:3mm,HTA−C3−P
L,東邦レーヨン社製)2gに変更した以外は実施例1
と同様にして導電性複合体を得た。得られた導電性複合
体の特性値を表1に示す。 【0019】実施例3 炭素繊維をカーボンファイバーチョップドストランド(
繊維長:6mm,HTA−C6−PL,東邦レーヨン社
製)に変更した以外は実施例1と同様にして導電性複合
体を得た。得られた導電性複合体の特性値を表1に示す
。 【0020】 【表1】       【0021】 【発明の効果】以上のように本発明の導電性複合体は,
熱安定性で電気抵抗値が再現性のよいPTCを示す。し
たがって, 電子デバイスなどのヒューズとして, あ
るいは, 面状発熱体などに最適に用いられる。また,
本発明方法によれば導電性複合体を容易に製造すること
ができる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to a conductive composite material which is thermally stable and exhibits a positive characteristic temperature coefficient (hereinafter abbreviated as PTC) with good electrical resistance value reproducibility. The present invention relates to a manufacturing method thereof. [0002] PTC is a coefficient that indicates the property that the electrical resistance value increases rapidly as the temperature rises in a specific temperature range. Conventionally, as a conductive composition exhibiting PTC,
Compositions obtained by mixing carbon black and metal powder with crystalline polymers such as polyethylene, polypropylene, or nylon are known. However, conventional products have a problem of poor thermal stability and poor PTC reproducibility. Therefore, as a method for obtaining a thermally stable conductive composite with good PTC reproducibility, for example,
JP-A No. 61-218117 discloses a method for obtaining a conductive crosslinked polymer exhibiting PTC by mixing 0 to 400,000 polyethylene and carbon black into pellets, and then irradiating the resulting molded product with an electron beam. It is disclosed in the publication No. In addition, JP-A-62-167358 discloses a method of melt-mixing an organic polymer such as polyethylene and carbon black, pulverizing the mixture, irradiating it with electron beams, and then blending it with a matrix polymer to obtain a molded conductive polymer composition. It is disclosed in the publication No. In these methods, the polymer is crosslinked by irradiating it with radiation such as an electron beam before or after molding, thereby thermally stabilizing it and improving the reproducibility of PTC. However, it is difficult to uniformly crosslink polymers, and as a result, it has been difficult to obtain a product that is thermally stable and has good PTC reproducibility. Furthermore, in order to crosslink the polymer uniformly, it is extremely difficult to select the radiation source, intensity, energy, and irradiation method, and the process becomes complicated. [Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide a conductive composite that is thermally stable and has good PTC reproducibility, and a conductive composite that can be easily obtained. The purpose is to provide a manufacturing method. [Means for Solving the Problems] As a result of intensive research in order to solve the above problems, the present inventors have found that ultra-high molecular weight polyolefin with excellent heat resistance is mixed with a specific carbon fiber as described below. The composite composed of the composition is thermostable and PTC
The present invention was achieved based on the discovery that the reproducibility of the conductive composite is good and that such a conductive composite can be easily produced by the method described below. That is, the gist of the present invention is that the main components are ultra-high molecular weight polyolefin and the fiber length is 0.2 to 50 mm.
It is a conductive composite consisting of carbon fibers having a volume resistivity of 100 Ωcm or less at 25°C, and an electrical resistance value exhibiting a positive characteristic temperature coefficient. The conductive composite is prepared by dispersing ultra-high molecular weight polyolefin, carbon fiber with a fiber length of 0.2 to 50 mm, and latex in water to prepare an aqueous slurry.
It can be produced by adding a polymer flocculant to the resulting aqueous slurry to flocculate the solids, and then molding the flocculated solids. The present invention will be explained in detail below. The conductive composite of the present invention has a volume resistance of 100Ω at 25°C.
It is preferable to have a resistance value of 10 cm or less and an R15 value of 10 or more or an R100 value of 100 or more in the operating temperature range of 0 to 200°C, especially one with an R15 value of 10 or more and an R100 value of 100 or more. . Here, the R15 value represents the ratio of the initial and final resistivity in the temperature range of 15°C, where the increase in resistivity is the largest in the operating temperature range of 0 to 200°C, and the R100 value represents the ratio of the resistivity between 0 and 200°C.
It represents the ratio of the initial and final resistivity in the temperature range of 100°C, where the increase in resistivity is the largest in the operating temperature range of 200°C. [0008] The conductive composite according to the present invention is mainly composed of an ultra-high molecular weight polyolefin and carbon fibers, and examples of the ultra-high molecular weight polyolefin include ethylene, propylene, 1-butene, 1-hexene, and 1-hexene. Homopolymers or copolymers of α-olefins such as octene, 1-decene, 1-dodecene, 4-methyl-1-pentene, or mixtures thereof are used, and among these, homopolymers of ethylene are particularly used. preferable. The molecular weight of ultra-high molecular weight polyolefin is 1 million or more, especially 300~
8 million is preferred. When the molecular weight is less than 1 million, it is difficult to obtain a PTC with good thermal stability and reproducibility. Also, if the polymer is too high, moldability will be poor. The ultra-high molecular weight polyolefin used in the present invention preferably has a particle size of 10 to 800 μm. If the particle size is less than 10 μm, secondary aggregation is likely to occur, and if the particle size is more than 800 μm, it is difficult to obtain a composite with sufficient strength. The content of ultra-high molecular weight polyolefin is 10 to 99.5% by weight, especially 20 to 99.5% by weight.
It is preferably 96% by weight; if it is less than 10% by weight, it will be difficult to obtain a composite with sufficient strength, and if it exceeds 99.5% by weight, it will be difficult to obtain a composite with sufficient conductivity. The carbon fibers used in the present invention include carbon fibers obtained by carbonizing acrylonitrile fibers, pitch fibers, phenol fibers, rayon fibers, etc. Carbon fibers with high strength and high modulus of elasticity are particularly preferred. Carbon fibers having an average length of 0.2 to 50 mm are used. If the average length is shorter than 0.2 mm, it is difficult to obtain sufficient strength, and if the average length exceeds 50 mm, it is difficult to disperse in an aqueous medium. Further, it is preferable to use fibers having an aspect ratio (length to diameter ratio) of greater than 40. When the aspect ratio is 40 or less, it is difficult to obtain sufficient strength. That is, the fiber length is 0.5 to 16 mm.
It is particularly preferable to use one having a diameter of 13 to 25 μm. Further, a composite using carbon fiber exhibits PTC and also has high mechanical strength. [0011] The content of carbon fiber in the conductive composite is
It is usually 0.5 to 90% by weight, particularly preferably 3 to 70% by weight. If it is less than 0.5% by weight, it is difficult to obtain sufficient conductivity, and if it exceeds 90% by weight, the strength of the conductive composite becomes weak and it becomes difficult to mold it. Next, a preferred example of manufacturing the conductive composite of the present invention will be explained. After thoroughly stirring the ultra-high molecular weight polyolefin, carbon fiber, and latex in an aqueous medium and confirming that they are neatly dispersed, a polymer flocculant is added to destabilize the solid content in the aqueous slurry and cause it to flocculate. After the solid content is collected, dehydrated, and dried, the solid content is molded by the method described below to obtain a conductive composite. When collecting the solid content by agglomerating it, collecting the solid content in the form of a sheet using a sheet machine is suitable for obtaining a sheet-like composite, and the subsequent steps are easy. [0013] The latex used here is one in which a synthetic or natural polymer is dispersed in water, and examples of such latex include acrylic polymer latex produced by emulsion polymerization, and acrylic polymer latex containing ethylenically unsaturated groups. Examples include homopolymers or copolymers of monomers having the same, and latexes of these polymer derivatives. The polymer in the latex serves to bind or adhere the solids in the aqueous slurry as they are recovered. The amount of latex added to the aqueous slurry is preferably 0.1 to 10% by weight of the composite in terms of solid content. If it is less than 0.1% by weight, it will be difficult to obtain a conductive composite with sufficient strength, and if it exceeds 10% by weight, the amount of coagulant used will be large, making it uneconomical. [0014] Furthermore, the polymer flocculant plays the role of destabilizing and flocculating the solid content in the aqueous slurry. The polymer flocculant is preferably a natural or synthetic polymer that can form a film at room temperature or lower temperatures (40° C. or lower). Particularly when going through a wet lamination mat forming process, it is preferred to use a polymer that is film-forming at that temperature. Examples of the polymer flocculant include partially hydrolyzed polyacrylamide, sodium polyacrylate, partially hydrolyzed polyacrylonitrile, modified cationic polyacrylamide, dialkylaminoethyl methacrylate polymer, vinylimidazoline polymer, Examples include diarylamine polymers. The amount of polymer flocculant added is preferably 0.1 to 10% by weight of the composite in terms of solid content. If it is less than 0.1% by weight or more than 10% by weight, it is difficult to obtain a conductive composite with sufficient strength. [0016] The molding conditions are: temperature: melting point of ultra-high molecular weight polyolefin to melting point +50°C, especially melting point to melting point +30°C
, Press pressure: 100 to 1500 kg/cm2, especially 120 to 1000 kg/cm2, Press time: 0.2
-900 seconds, particularly preferably 0.5-400 seconds. If the temperature during molding is lower than the melting point, it will be difficult to obtain sufficient strength, and if the temperature is higher than the melting point +50°C, the ultra-high molecular weight polyolefin will cover the surface of the carbon fiber, making it difficult to obtain sufficient electrical conductivity. If the press pressure is lower than 100kg/cm2 and the press time is shorter than 0.2 seconds, it is difficult to obtain sufficient strength, and the press pressure is 1500kg/cm2.
Exceeding this value increases fuel consumption and is not economical. If the pressing time exceeds 900 seconds, the molding cycle becomes long, which is not economical. EXAMPLES Next, the present invention will be specifically explained using examples. Example 1 Ultra-high molecular weight polyethylene fine powder (PE-COMP-14
07, manufactured by Toyo Ink Co., Ltd.) 9g, carbon fiber chopped strand (fiber length: 3mm, HTA-C3-P
L, manufactured by Toho Rayon Co., Ltd.) 1g, latex (SFC-5
5. Manufactured by Dainippon Ink Co., Ltd., solid content 3% by weight) 10g to 1 part water
1 and stirred for 5 minutes to prepare an aqueous slurry. A polymer flocculant (UF-105,
Add 100 g of Unitika (manufactured by Unitika, solid content 0.05% by weight) to coagulate the solid content to obtain a mat, dry this mat,
The mixture was filled into a mold, pressed at 150° C. and 150 kg/cm 2 for 30 seconds, and cooled under pressure to obtain a conductive composite. Table 1 shows the characteristic values of the obtained conductive composite. Example 2 Ultra-high molecular weight polyethylene fine powder (PE-COMP-14
07, manufactured by Toyo Ink Co., Ltd.) 8g, carbon fiber chopped strand (fiber length: 3mm, HTA-C3-P
Example 1 except that it was changed to 2g (L, manufactured by Toho Rayon Co., Ltd.)
A conductive composite was obtained in the same manner as above. Table 1 shows the characteristic values of the obtained conductive composite. Example 3 Carbon fibers were made into carbon fiber chopped strands (
A conductive composite was obtained in the same manner as in Example 1 except that the fiber length was changed to 6 mm, HTA-C6-PL (manufactured by Toho Rayon Co., Ltd.). Table 1 shows the characteristic values of the obtained conductive composite. [Table 1] [Effects of the Invention] As described above, the conductive composite of the present invention has the following properties:
PTC exhibits thermal stability and electrical resistance values with good reproducibility. Therefore, they are ideally used as fuses in electronic devices, or in planar heating elements. Also,
According to the method of the present invention, a conductive composite can be easily produced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  主成分が超高分子量ポリオレフィンと
繊維長が0.2〜50mmである炭素繊維とからなる複
合体であって,25℃での体積抵抗が100Ωcm以下
であり, 電気抵抗値が正特性温度係数を示すことを特
徴とする導電性複合体。
Claim 1: A composite whose main components are ultra-high molecular weight polyolefin and carbon fibers with a fiber length of 0.2 to 50 mm, which has a volume resistivity of 100 Ωcm or less at 25°C and an electrical resistance value of A conductive composite characterized by exhibiting a positive characteristic temperature coefficient.
【請求項2】  超高分子量ポリオレフィン,繊維長が
0.2〜50mmである炭素繊維およびラテックスを水
に分散させて水性スラリーを調製し,得られた水性スラ
リーに高分子凝集剤を添加して固形分を凝集させ,凝集
した固形分を成形することを特徴とする請求項1記載の
導電性複合体の製造方法。
[Claim 2] An aqueous slurry is prepared by dispersing ultra-high molecular weight polyolefin, carbon fibers having a fiber length of 0.2 to 50 mm, and latex in water, and a polymer flocculant is added to the obtained aqueous slurry. 2. The method for producing a conductive composite according to claim 1, further comprising aggregating the solid content and molding the agglomerated solid content.
JP5832791A 1991-02-27 1991-02-27 Conductive composite and manufacture Pending JPH04273104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5832791A JPH04273104A (en) 1991-02-27 1991-02-27 Conductive composite and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5832791A JPH04273104A (en) 1991-02-27 1991-02-27 Conductive composite and manufacture

Publications (1)

Publication Number Publication Date
JPH04273104A true JPH04273104A (en) 1992-09-29

Family

ID=13081204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5832791A Pending JPH04273104A (en) 1991-02-27 1991-02-27 Conductive composite and manufacture

Country Status (1)

Country Link
JP (1) JPH04273104A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239282A (en) * 1991-12-05 1993-09-17 Hoechst Ag Molding material of ultrahigh molecular weight polyethylene
AU665133B2 (en) * 1992-12-11 1995-12-14 Hoechst Aktiengesellschaft Process for producing moldings of ultra high molecular weight polyethylene
GB2363126A (en) * 2000-06-06 2001-12-12 Therm O Disc Inc Conductive polymer compositions containing fibrillated fibres and devices
US8728354B2 (en) 2006-11-20 2014-05-20 Sabic Innovative Plastics Ip B.V. Electrically conducting compositions
JP2014101459A (en) * 2012-11-21 2014-06-05 Sumitomo Bakelite Co Ltd Composite resin composition and molding having an excellent heat diffusibility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239282A (en) * 1991-12-05 1993-09-17 Hoechst Ag Molding material of ultrahigh molecular weight polyethylene
AU665133B2 (en) * 1992-12-11 1995-12-14 Hoechst Aktiengesellschaft Process for producing moldings of ultra high molecular weight polyethylene
GB2363126A (en) * 2000-06-06 2001-12-12 Therm O Disc Inc Conductive polymer compositions containing fibrillated fibres and devices
GB2363126B (en) * 2000-06-06 2004-10-27 Therm O Disc Inc Conductive polymer compositions containing fibrillated fibers and devices
US8728354B2 (en) 2006-11-20 2014-05-20 Sabic Innovative Plastics Ip B.V. Electrically conducting compositions
JP2014101459A (en) * 2012-11-21 2014-06-05 Sumitomo Bakelite Co Ltd Composite resin composition and molding having an excellent heat diffusibility

Similar Documents

Publication Publication Date Title
EP0038718B1 (en) Conductive polymer compositions containing fillers
JPS63230312A (en) Reinforced thermoplastic material and manufacture thereof
JPH0428743B2 (en)
JPH0474383B2 (en)
US6540874B1 (en) Asphalt-grade carbon fiber paper and its process
JPH04273104A (en) Conductive composite and manufacture
CN104194131A (en) High-density polyethylene/graphene/polyaniline composite material and synthetic method thereof
CN110444717A (en) A kind of enhanced polypropylene diaphragm, preparation method and application
CN103304947A (en) Anti-oxidation PTC (Positive Temperature Coefficient) macromolecular heating material and preparation method thereof
CN102093619A (en) Method for preparing positive temperature coefficient (PTC) conducting material by compounding polyaniline/carbon black/polyethylene
JPS61146899A (en) Improved aqueous slurry method for producing reinforced polymer like composite material
CN103304872A (en) High-density polyvinyl PTC high molecular exothermic material and preparation method thereof
JP3525935B2 (en) Method for producing PTC composition
JP4839507B2 (en) Method for producing PTC ink composition
JP2918306B2 (en) Conductive composite and method for producing the same
CN100484991C (en) Method for improving high-density polyethylene /carbon ink composite material positive temperature coefficient property
CN110484105A (en) A kind of hot slurry of graphene macromolecule intelligence and preparation method thereof
JPS6255533B2 (en)
CA1176452A (en) Conductive polymer compositions containing fillers
CN106751088A (en) A kind of temp auto-controlled PTC electric heating materials and preparation method thereof
JPS5923971B2 (en) Method for manufacturing conductive polyolefin resin molded body
JPS624750A (en) Composition having positive temperature coefficient and production thereof
JPH06101372B2 (en) Method for manufacturing conductive sheet
JPH10172805A (en) Overccurrent protective circuit element
CN115340719A (en) Graphene composite PTC material and preparation method thereof