JPH04272593A - Structure for connecting piping - Google Patents
Structure for connecting pipingInfo
- Publication number
- JPH04272593A JPH04272593A JP3391391A JP3391391A JPH04272593A JP H04272593 A JPH04272593 A JP H04272593A JP 3391391 A JP3391391 A JP 3391391A JP 3391391 A JP3391391 A JP 3391391A JP H04272593 A JPH04272593 A JP H04272593A
- Authority
- JP
- Japan
- Prior art keywords
- liner
- pipe
- connecting pipes
- shape memory
- sealing material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 16
- 239000003566 sealing material Substances 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 abstract description 12
- 230000007797 corrosion Effects 0.000 abstract description 12
- 238000007789 sealing Methods 0.000 abstract description 5
- 239000000565 sealant Substances 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000005871 repellent Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910017773 Cu-Zn-Al Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
Abstract
Description
[発明の目的] [Purpose of the invention]
【0001】0001
【産業上の利用分野】本発明は形状記憶合金製管継手を
使用したコンポジットタイプの配管接続構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite type pipe connection structure using a shape memory alloy pipe joint.
【0002】0002
【従来の技術】従来から形状記憶合金製管継手を使用し
た配管接続構造は例えば特開昭61−112884号公
報に記載されているように幾つか開示されている。すな
わち、形状記憶合金製管継手(以下、管継手と記す)内
に接続すべき対向する一対の配管(以下、接続配管と記
す)を両側から挿入し、加熱ないしは冷却などの熱処理
を施して管継手の内径を縮小させて接続配管を接続する
構造が知られている。また、図3に示したように管継手
1と接続配管2,2′との間にライナ3を挿入したコン
ポジットタイプの構造が知られている。図3に示したコ
ンポジットタイプの構造の断面を図4に示す。このコン
ポジットタイプの構造は接続配管2,2′の外面に圧力
シール部4としての突起が形成されたライナ3を被せ、
ライナ3の外側に熱処理によって形状が変化する管継手
1を被せたものである。通常、このライナ3は異種金属
による接触腐食を避ける目的で接続配管2,2′と同種
類の金属材料を使用している。管継手1を加熱または冷
却すると管径が縮小し接続配管2,2′と密接し、接続
配管2,2′を接続することができる。この管継手1に
はNi−Ti系またはCu−Zn−Al系の合金が使用
されることが多い。2. Description of the Related Art Several pipe connection structures using pipe joints made of shape memory alloys have been disclosed, for example, in Japanese Patent Application Laid-open No. 112884/1984. In other words, a pair of opposing pipes (hereinafter referred to as connection pipes) to be connected are inserted into a shape memory alloy pipe joint (hereinafter referred to as pipe joints) from both sides, and the pipes are heat-treated by heating or cooling. A structure is known in which the inner diameter of a joint is reduced to connect connecting pipes. Further, as shown in FIG. 3, a composite type structure is known in which a liner 3 is inserted between the pipe joint 1 and the connecting pipes 2, 2'. A cross section of the composite type structure shown in FIG. 3 is shown in FIG. This composite type structure covers the outer surface of the connecting pipes 2, 2' with a liner 3 on which a protrusion is formed as a pressure seal part 4.
A pipe joint 1 whose shape changes through heat treatment is placed on the outside of a liner 3. Normally, the liner 3 is made of the same type of metal material as the connecting pipes 2, 2' in order to avoid contact corrosion caused by dissimilar metals. When the pipe fitting 1 is heated or cooled, the pipe diameter is reduced and it comes into close contact with the connecting pipes 2, 2', so that the connecting pipes 2, 2' can be connected. This pipe joint 1 is often made of a Ni-Ti alloy or a Cu-Zn-Al alloy.
【0003】また、管継手1に使用する形状記憶合金と
しては温度を下げるよりもむしろ温度を上げることによ
り管径を縮小して配管を接続するタイプが多い。このタ
イプの形状記憶合金の温度と歪との関係を図5に示す。
一般に使用される形状記憶合金としては室温(RT)よ
りも高い温度で歪が減少(管径が縮小)する加熱収縮型
(図中の破線)と、室温よりも低い温度で歪が減少する
低温収縮型(図中の実線)とがある。いずれの場合でも
、低温で与えた大きな歪は温度が低温(図中の左上、加
熱収縮型ではAs)から高温へと上がると、ある温度か
ら歪が減少して(加熱収縮型ではApになる)管径が縮
小するが、逆に温度を多少下げても歪が増加しない(加
熱収縮型ではAfまで温度歪が増加しない、温度ヒステ
リシスがある)ことを利用したものである。Furthermore, many shape memory alloys used in the pipe joint 1 are of a type that connects pipes by reducing the pipe diameter by increasing the temperature rather than lowering the temperature. FIG. 5 shows the relationship between temperature and strain for this type of shape memory alloy. Shape memory alloys commonly used include heat-shrinkable types (dashed line in the figure), which reduce strain (reduced tube diameter) at temperatures higher than room temperature (RT), and low-temperature alloys, which reduce strain at temperatures lower than room temperature (RT). There is a contracted type (solid line in the figure). In either case, when the temperature rises from a low temperature (upper left of the figure, As for the heat-shrinkable type) to a high temperature, the large strain applied at a low temperature decreases from a certain temperature (Ap for the heat-shrinkable type). ) This method takes advantage of the fact that although the tube diameter decreases, the strain does not increase even if the temperature is lowered somewhat (heat-shrinkable types do not increase temperature strain up to Af, and have temperature hysteresis).
【0004】このような形状記憶合金の歪特性を利用し
て配管の接続が行われている。この形状記憶合金を利用
した配管の接続は施工が短時間にできるため、例えば、
原子力発電所のように作業時間の制約が厳しい場所、あ
るいは配管同士が近接しているために溶接が難しい場所
などでの使用に適しており、更に、そのシール特性が優
れていることなどから、今後その利用範囲が拡大すると
言われている。[0004] Pipes are connected by utilizing the strain characteristics of shape memory alloys. Piping connections using this shape memory alloy can be constructed in a short time, so for example,
It is suitable for use in places such as nuclear power plants where working hours are severely restricted, or in places where piping is difficult to weld due to close proximity to each other.Furthermore, due to its excellent sealing properties, It is said that the scope of its use will expand in the future.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来の
配管接続構造は、接続配管2,2′と管継手1との間、
または接続配管2,2′とライナ3との間あるいは接続
配管2,2′同士の両端面間などに隙間5が生じる。特
にコンポジットタイプでは接続配管2,2′とライナ3
との間に 0.1mm〜 0.2mm程度の長い隙間5
が生じることが多い。この場合、接続配管2,2′内を
移送する液体の種類によってはその隙間5の部分で隙間
腐食が発生し、圧力シール部4の部分が腐食するとリー
クを生じる課題がある。このようなリークは使用環境、
例えば原子力発電施設などでは重要な問題となっている
。この対策、すなわち長時間の使用に対しても圧力シー
ルの健全性が保たれる形状記憶合金製管継手を用いた配
管接続構造の開発が強く望まれている。本発明は、上記
課題を解決するためになされたもので、長時間使用して
も圧力シール部の健全性を保つことができる配管接続構
造を提供することにある。
[発明の構成][Problems to be Solved by the Invention] However, in the conventional pipe connection structure, between the connection pipes 2, 2' and the pipe fitting 1,
Alternatively, a gap 5 is formed between the connecting pipes 2, 2' and the liner 3, or between both end faces of the connecting pipes 2, 2'. Especially in the composite type, connecting pipes 2, 2' and liner 3
There is a long gap of about 0.1mm to 0.2mm between the
often occurs. In this case, depending on the type of liquid transferred within the connecting pipes 2, 2', crevice corrosion may occur in the gap 5, and if the pressure seal portion 4 corrodes, leakage may occur. Such leaks may occur depending on the usage environment,
For example, this is an important problem in nuclear power generation facilities. As a countermeasure to this problem, it is strongly desired to develop a pipe connection structure using shape memory alloy pipe fittings that maintains the integrity of the pressure seal even during long-term use. The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a piping connection structure that can maintain the integrity of a pressure seal part even when used for a long time. [Structure of the invention]
【0006】[0006]
【課題を解決するための手段】本発明は、筒状形状記憶
合金製管継手と、この管継手内に挿入された筒状金属製
ライナと、このライナ内に挿入された対向する一対の接
続配管と、前記ライナ内に形成された圧力シール部から
前記接続配管の先端部まで生じる隙間に満たされたシー
ル材とからなることを特徴とする。[Means for Solving the Problems] The present invention provides a cylindrical shape memory alloy pipe joint, a cylindrical metal liner inserted into the pipe joint, and a pair of opposing connections inserted into the liner. It is characterized by comprising a pipe and a sealing material that fills a gap created from a pressure seal portion formed in the liner to the tip of the connecting pipe.
【0007】[0007]
【作用】隙間腐食は腐食性液体が隙間に浸入し、その隙
間内の溶液に溶けた酸素量、つまり溶存酸素が低下する
ため、金属の耐食性が低下することが主な原因である。
この隙間腐食はそれが発生し易い条件があり、特に形状
に対しては、形状記憶合金を使用した管継手は腐食を起
こし易い隙間( 0.1mm〜 0.2mm程度の隙間
)が形成される。[Operation] The main cause of crevice corrosion is that a corrosive liquid enters the crevice and the amount of oxygen dissolved in the solution in the crevice, that is, the dissolved oxygen, decreases, resulting in a decrease in the corrosion resistance of the metal. There are certain conditions that make this crevice corrosion more likely to occur, especially due to the shape of pipe joints that use shape memory alloys. .
【0008】通常、隙間が0.03mm以下になると、
隙間腐食の発生は極端に減少する。従って、管継手の隙
間にシール材を満たし、その隙間を狭くすることにより
隙間腐食を防止できる。また、そのシール材に撥水性の
シーラントを使用することで、隙間更にはそのシール材
の両端近傍に形成された圧力シール部への水の浸入を防
止することができ、隙間腐食によるリークを防止するこ
とができる。[0008] Normally, when the gap is 0.03 mm or less,
The occurrence of crevice corrosion is extremely reduced. Therefore, crevice corrosion can be prevented by filling the gap between the pipe joints with a sealing material and narrowing the gap. In addition, by using a water-repellent sealant for the sealing material, it is possible to prevent water from entering the gap and into the pressure seals formed near both ends of the sealing material, thereby preventing leakage due to crevice corrosion. can do.
【0009】[0009]
【実施例】図1および図2を参照しながら本発明に係る
配管接続構造の一実施例を説明する。なお、図2は図1
における配管接続構造を組立てる前の状態を分かり易く
説明するため部分的に誇張して示している。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a pipe connection structure according to the present invention will be described with reference to FIGS. 1 and 2. Note that Figure 2 is similar to Figure 1.
In order to clearly explain the state before the piping connection structure is assembled, some parts are exaggerated.
【0010】図1および図2において、符号1は形状記
憶合金製管継手で、この管継手1内に筒状金属製ライナ
3が挿入されている。このライナ3内に接続配管2,2
′がライナ3の両端から挿入されるが、ライナ3と接続
配管2,2′との間にシール材6が介挿されている。
ライナ3の内面にはその両端近傍に突起状の圧力シール
部4が形成されている。シール材6は厚さが約0.15
mmの撥水性シリコンゴムである。管継手1を加熱して
接続配管2,2′を締付けることによって圧力シール部
4から接続配管2,2′の先端部に形成される隙間5に
シール材6が満たされるだけでなく、接続配管2,2′
間まで進入して満たしはみ出し部7となって隙間5を完
全にシールしている。In FIGS. 1 and 2, reference numeral 1 denotes a shape memory alloy pipe joint, into which a cylindrical metal liner 3 is inserted. Connecting piping 2, 2 inside this liner 3
' are inserted from both ends of the liner 3, and a sealing material 6 is inserted between the liner 3 and the connecting pipes 2, 2'. Protruding pressure seal portions 4 are formed on the inner surface of the liner 3 near both ends thereof. The thickness of the sealing material 6 is approximately 0.15
mm water-repellent silicone rubber. By heating the pipe fitting 1 and tightening the connecting pipes 2, 2', not only the gap 5 formed from the pressure seal part 4 to the tip of the connecting pipes 2, 2' is filled with the sealing material 6, but also the sealing material 6 is filled with the sealing material 6. 2,2'
It penetrates into the gap and fills it up, forming a protruding portion 7 and completely sealing the gap 5.
【0011】すなわち、図2に示す配管接続構造を組立
てる前の段階ではシール材6とライナ3との間、または
シール材6と接続配管2,2′との間には大きな隙間5
がある。この図2のように配置した管継手1を 100
℃以上に加熱すると、管継手1は縮径して図1に示した
ように接続配管2,2′を締付けた後の状態となり、ラ
イナ3と接続配管2,2′との間はシール材6で完全に
満たされ、シール材6がライナ3および接続配管2,2
′と密着する。また、余分のシール材6は両側配管の隙
間に進入するため、シール性が不完全となることはない
。しかして、本実施例の配管接続構造によれば、従来例
のように接続配管同士の両端から腐食性溶液がリークし
て隙間5にその溶液が浸入することを阻止できる。That is, before assembling the pipe connection structure shown in FIG.
There is. The pipe joint 1 arranged as shown in Fig. 2 is 100
When heated above ℃, the diameter of the pipe fitting 1 decreases to the state shown in Fig. 1 after the connecting pipes 2 and 2' are tightened, and a sealing material is formed between the liner 3 and the connecting pipes 2 and 2'. 6, the sealing material 6 is completely filled with liner 3 and connecting pipes 2, 2.
′ in close contact. Further, since the excess sealing material 6 enters the gap between the piping on both sides, the sealing performance will not be incomplete. Therefore, according to the pipe connection structure of this embodiment, it is possible to prevent the corrosive solution from leaking from both ends of the connecting pipes and infiltrating into the gap 5 as in the conventional example.
【0012】次に本発明と従来の配管接続構造について
、配管内に腐食性溶液を流した場合の腐食状態を試験し
、その試験結果を表1に示す。試験はそれぞれ3個ずつ
の管継手について試験した。表1から明らかなように従
来例は、試験開始後 120時間目で1個が隙間腐食で
リークし、残りの2つも約 300時間でリークした。
これに対し、本発明では3000時間経過しても1個も
リークが発生せず、本発明の優位性が検証された。Next, the present invention and the conventional piping connection structure were tested for corrosion when a corrosive solution was flowed into the piping, and the test results are shown in Table 1. The test was performed on three pipe fittings each. As is clear from Table 1, in the conventional example, one leaked due to crevice corrosion 120 hours after the start of the test, and the remaining two leaked about 300 hours after the start of the test. In contrast, in the present invention, no leakage occurred even after 3000 hours, proving the superiority of the present invention.
【0013】[0013]
【表1】[Table 1]
【0014】以上の例は腐食性が強い環境での試験結果
であるが、同様の現象は高温純水である原子炉炉水環境
でも認められている。従来例では1000時間程度でリ
ークするものがあった。これに対して本発明では300
0時間でもリークがまったく認められなかった。なお、
本試験では高温純水用の管継手のシール材にはフッ素系
ゴムを使用した。本発明におけるシール材としては撥水
性のものが適しているが、硬化時に体積収縮の起こらな
いものであれば熱硬化型の樹脂なども使用可能である。Although the above examples are test results in a highly corrosive environment, a similar phenomenon has also been observed in the reactor water environment, which is high-temperature pure water. In some conventional examples, leakage occurred after about 1000 hours. In contrast, in the present invention, 300
No leakage was observed even at 0 hours. In addition,
In this test, fluorocarbon rubber was used as the seal material for the pipe joints for high-temperature pure water. Water-repellent materials are suitable as the sealing material in the present invention, but thermosetting resins can also be used as long as they do not undergo volumetric contraction during curing.
【0015】[0015]
【発明の効果】本発明によれば、隙間腐食によるリーク
を防止し、圧力シール部の健全性を保つことができる。
その結果、腐食性液体用配管に対しても長時間の使用が
可能である。また、本発明を原子力発電所などのプラン
トに使用されている配管の接続に適用した場合、従来例
に比較して信頼性が格段に向上し、その効果は非常に大
である。According to the present invention, leakage due to crevice corrosion can be prevented and the integrity of the pressure seal portion can be maintained. As a result, long-term use is possible even for corrosive liquid piping. Further, when the present invention is applied to the connection of piping used in plants such as nuclear power plants, the reliability is significantly improved compared to the conventional example, and the effect is very large.
【図1】図1は本発明に係る配管接続構造の一実施例を
示す縦断面図。FIG. 1 is a longitudinal sectional view showing an embodiment of a pipe connection structure according to the present invention.
【図2】図1における配管接続構造を組立てる前の手順
を説明するための縦断面図。FIG. 2 is a longitudinal sectional view for explaining the procedure before assembling the piping connection structure in FIG. 1;
【図3】従来の配管接続構造を示す斜視図。FIG. 3 is a perspective view showing a conventional piping connection structure.
【図4】従来のコンポジットタイプの配管接続構造を示
す縦断面図。FIG. 4 is a vertical cross-sectional view showing a conventional composite type piping connection structure.
【図5】形状記憶合金の温度と歪との関係を示す曲線図
。FIG. 5 is a curve diagram showing the relationship between temperature and strain of a shape memory alloy.
1…形状記憶合金製管継手、2,2′…接続配管、3…
ライナ、4…圧力シール部、5…隙間、6…シール材、
7…はみ出し部。1... Shape memory alloy pipe joint, 2, 2'... Connection piping, 3...
Liner, 4...Pressure seal part, 5...Gap, 6...Seal material,
7...Protruding part.
Claims (1)
内に挿入された筒状金属製ライナと、このライナ内に挿
入された対向する一対の接続配管と、前記ライナに形成
された圧力シール部から前記接続配管の先端部まで生じ
る隙間に満たされたシール材とからなることを特徴とす
る配管接続構造。Claim 1: A pipe joint made of a shape memory alloy, a cylindrical metal liner inserted into the pipe joint, a pair of opposing connecting pipes inserted into the liner, and a pressure formed in the liner. A pipe connection structure characterized by comprising a sealing material filling a gap generated from a seal portion to a tip end of the connection pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3391391A JPH04272593A (en) | 1991-02-28 | 1991-02-28 | Structure for connecting piping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3391391A JPH04272593A (en) | 1991-02-28 | 1991-02-28 | Structure for connecting piping |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04272593A true JPH04272593A (en) | 1992-09-29 |
Family
ID=12399760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3391391A Pending JPH04272593A (en) | 1991-02-28 | 1991-02-28 | Structure for connecting piping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04272593A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088079A (en) * | 2004-09-27 | 2006-04-06 | Bussan Nanotech Research Institute Inc | Pipe end connector |
JP2006137360A (en) * | 2004-11-15 | 2006-06-01 | Nippon Steel & Sumikin Stainless Steel Corp | Fuel tank or fuel pipe with excellent salt corrosion resistance |
CN102632101A (en) * | 2012-04-26 | 2012-08-15 | 哈尔滨工程大学 | Nickel-titanium shape memory alloy composite pipe joint forming method |
WO2016172772A1 (en) * | 2015-04-27 | 2016-11-03 | Fmc Technologies Do Brasil Ltda | Joint made of shape memory alloy and uses thereof |
-
1991
- 1991-02-28 JP JP3391391A patent/JPH04272593A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088079A (en) * | 2004-09-27 | 2006-04-06 | Bussan Nanotech Research Institute Inc | Pipe end connector |
WO2006035536A1 (en) * | 2004-09-27 | 2006-04-06 | Bussan Nanotech Research Institute, Inc. | Tube end connection body |
JP2006137360A (en) * | 2004-11-15 | 2006-06-01 | Nippon Steel & Sumikin Stainless Steel Corp | Fuel tank or fuel pipe with excellent salt corrosion resistance |
CN102632101A (en) * | 2012-04-26 | 2012-08-15 | 哈尔滨工程大学 | Nickel-titanium shape memory alloy composite pipe joint forming method |
WO2016172772A1 (en) * | 2015-04-27 | 2016-11-03 | Fmc Technologies Do Brasil Ltda | Joint made of shape memory alloy and uses thereof |
US10557579B2 (en) | 2015-04-27 | 2020-02-11 | Fmc Technologies Do Brasil Ltda | Joint made of shape memory alloy and uses thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1226276A (en) | Tube plug | |
US3469862A (en) | Expansion joints with frozen seals | |
US4773275A (en) | Seal for ceramic flow tube | |
JP2006038223A (en) | Seal for pipe device | |
JPH04272593A (en) | Structure for connecting piping | |
JP2007182929A (en) | Piping repair method | |
GB1332106A (en) | Device for providing a seal between two fluids at different temperatures | |
JP2849345B2 (en) | Pipe fittings | |
GB2079204A (en) | Methods of Securing a Tube in the Bore of a Wall | |
JPS6341678B2 (en) | ||
US4640343A (en) | Tube-in-shell heat exchangers | |
US3378283A (en) | Tube joints | |
CN112469148B (en) | Clean fluid tubular heater with two-stage sealing structure and sealing method | |
JP4089899B2 (en) | Connection method and structure of difficult-to-join pipes used at high temperatures | |
JPH04219590A (en) | Metallic sleeve for bridging position of leakage of pipe | |
JPH0464794A (en) | Leak preventing structure for weld joint part of tube | |
JPS63161395A (en) | How to repair a heat exchanger | |
CN221171283U (en) | Rubber ring electric smelting double-sealing drainage pipe joint | |
CN222186130U (en) | Heating pipeline connector | |
JPS5881521A (en) | Manufacture of double pipe | |
RU2084024C1 (en) | Nuclear reactor channel body | |
RU126416U1 (en) | WELDED PIPES WITH INTERNAL ANTI-CORROSION COATING | |
Sullivan et al. | The Follow Up Development and on the Usage of the Profiled Wire Gasket | |
EP0203919A1 (en) | An improved threaded pipe connection | |
JPH03163291A (en) | Shape memory alloy joint structure |