[go: up one dir, main page]

JPH0426958B2 - - Google Patents

Info

Publication number
JPH0426958B2
JPH0426958B2 JP13745584A JP13745584A JPH0426958B2 JP H0426958 B2 JPH0426958 B2 JP H0426958B2 JP 13745584 A JP13745584 A JP 13745584A JP 13745584 A JP13745584 A JP 13745584A JP H0426958 B2 JPH0426958 B2 JP H0426958B2
Authority
JP
Japan
Prior art keywords
solder
lead
tin
solder material
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13745584A
Other languages
Japanese (ja)
Other versions
JPS6117355A (en
Inventor
Yasutoshi Kurihara
Koichi Inoe
Tadashi Minagawa
Komei Yatsuno
Mamoru Sawahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13745584A priority Critical patent/JPS6117355A/en
Priority to DE3523808A priority patent/DE3523808C3/en
Publication of JPS6117355A publication Critical patent/JPS6117355A/en
Publication of JPH0426958B2 publication Critical patent/JPH0426958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/268Pb as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/12Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of lead or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は相互に熱膨張係数の異なる2以上の異
種部材を電気的、熱的、機械的に接合する方法、
特に接合部の電気的断線や機械的損傷を軽減する
のに効果のあるはんだ接合方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for electrically, thermally, and mechanically joining two or more dissimilar members having mutually different coefficients of thermal expansion;
In particular, the present invention relates to a soldering method that is effective in reducing electrical disconnection and mechanical damage at joints.

〔発明の背景〕[Background of the invention]

鉛と錫を主成分とするはんだ材は、熱膨張係数
あるいは材質の異なる異種部材相互間を電気的、
熱的ないし機械的に接合するための材料として広
範な技術分野、特に電子工業の分野で使用されて
いる。
Solder materials whose main components are lead and tin are used to electrically connect dissimilar components with different thermal expansion coefficients or materials.
It is used as a material for thermal or mechanical bonding in a wide range of technical fields, especially in the electronic industry.

従来この種の技術分野で公知な接合例を以下に
説明する。(1)米国特許第3429040号には半導体基
体をControlled Collapse Bondingと称される方
法によつて誘導体基板の導体上に機械的かつ電気
的に接合する好ましい形態が開示されており、接
合用材料として約5ないし40重量%錫及び95ない
し6重量%鉛のはんだ組成物を用い、これを溶融
(reflow)せしめて相互に接続している。(2)IEEE
Trans.on Parts、Hybrids、and Packaging、
PHP−13、318(1977年)におけるS.K.Kangらに
よる“Thermal Fatigue Failure of Soft−
Soldered Contacts to Silicon Power
Transistors”と題する論文において、鋼板に銀
ろう付けした銅板上にシリコン基体を鉛ベースは
んだ(95%鉛−5%錫はんだ)により搭載した、
ダイボンデイング構造が開始されている。(3)特開
昭51−130285号公報には、接着面にニツケル層を
有する半導体チツプと金属製支持体とを1.0〜2.0
重量%の銀と1.5〜4.5重量%の錫と93.5〜97.5重
量%の鉛とからなるはんだで接着したダイボンデ
イング構造が開始されている。(4)IEEE Trans.
on Componets、Hybrids、and、Manufacture
Technology、CHMT−4、132(1981年)におけ
るH.N.Kellerによる“Temperature cycling of
HIC Thin−Film Solder Connections”と題す
る論文において、混成集積回路装置用セラミツク
板に金属端子を60重量%錫−40重量%鉛はんだに
より固着一体化したパツケージ構造体が開示され
ている。(5)Solid State Technology、July、54、
(1970年)におけるD.Boswellによる
“Mechanical Design of Chip Componets for
“Flip”and Short Beam−Lead Mounting”と
題する論文において、2端子コンデンサ素子を
60/40錫−鉛はんだによりアルミナ基板上の配線
にはんだ付けした構造が開示されている。(6)特開
昭58−39047号公報には、半導体基体に形成され
た微細なオーミツク接触された電極上に、接着熱
処理後の鉛/錫の原子比が99.5/0.5〜70/30程
度となるはんだを用いて、有機フイルム上にパタ
ーンニング形成された金属箔端子を固着一体化し
た半導体装置が開示されている。(7)電子技術、第
23巻、第7号、88(1981年)における有野らによ
る「半導体アツセンブリ用ソルダー」と題する論
文において、鉛及び錫を主要成分とする各種ソル
ダー材料の組成及び溶融温度を開示しており、特
に50重量%鉛−50重量%錫なる組成のはんだ材
料、そして30重量%鉛−70重量%錫なる組成のは
んだ材料が半導体アツセンブリ用として使用され
ていることを開示している。
An example of conventionally known joining in this type of technical field will be described below. (1) U.S. Patent No. 3,429,040 discloses a preferred form of mechanically and electrically bonding a semiconductor substrate onto a conductor of a dielectric substrate by a method called Controlled Collapse Bonding. A solder composition of about 5 to 40 weight percent tin and 95 to 6 weight percent lead is used to reflow the interconnect. (2)IEEE
Trans.on Parts, Hybrids, and Packaging,
“Thermal Fatigue Failure of Soft” by SKKang et al. in PHP-13, 318 (1977)
Soldered Contacts to Silicon Power
In a paper titled ``Transistors,'' a silicon substrate was mounted on a copper plate soldered with silver to a steel plate using lead-based solder (95% lead-5% tin solder).
The die bonding structure has been started. (3) JP-A-51-130285 discloses that a semiconductor chip having a nickel layer on the adhesive surface and a metal support are
Solder bonded die bonded structures consisting of weight percent silver, 1.5-4.5 weight percent tin, and 93.5-97.5 weight percent lead have been initiated. (4) IEEE Trans.
on Components, Hybrids, and Manufacture
“Temperature cycling of
In the paper titled ``HIC Thin-Film Solder Connections'', a package structure is disclosed in which metal terminals are fixed and integrated with a ceramic board for hybrid integrated circuit devices using 60% tin-40% lead solder.(5) Solid State Technology, July, 54,
“Mechanical Design of Chip Components for
In a paper titled “Flip” and Short Beam-Lead Mounting, a two-terminal capacitor element was
A structure is disclosed in which wiring is soldered onto an alumina substrate using 60/40 tin-lead solder. (6) JP-A-58-39047 discloses that the atomic ratio of lead/tin after adhesive heat treatment is about 99.5/0.5 to 70/30 on a fine ohmic contact electrode formed on a semiconductor substrate. A semiconductor device is disclosed in which metal foil terminals patterned on an organic film are fixedly integrated using solder. (7)Electronic technology, No.
23, No. 7, 88 (1981), Arino et al. discloses the composition and melting temperature of various solder materials whose main components are lead and tin, and in particular It is disclosed that a solder material having a composition of 50% by weight lead-50% by weight tin and a solder material having a composition of 30% by weight lead-70% by weight tin are used for semiconductor assembly.

上記技術分野において鉛−錫系はんだが用いら
れる理由は(1)鉛や錫が比較的廉価で、合金化や加
工が容易で経済的に有利であるという点、(2)上記
はんだ材の融点が183〜327℃と他の金系、銀系、
アルミニウム系金属ろうに比べて低く、例えば接
続部周辺の部材を損傷せずに接合できるなど接合
プロセス上の利点が多いこと、(3)鉛−錫系はんた
は他の金属ろうに比べて軟かく、塑性変形性に優
れ熱歪の吸収担体として優れると考えられている
こと等による。しかし、鉛−錫系はんだの中でも
特に一般的に多用されるはんだ材は、例えば95重
量%鉛−5重量%錫はんだに代表されるような鉛
ベース系はんだ材、あるいは40重量%鉛−60重量
%錫はんだで代表されるような共晶系はんだ材で
あつた。この理由は、鉛ベースはんだは、例えば
McGrow−Hill Book Company、Inc.、1106頁
(1958年)刊のMax Hansenによる
“Constitution of Binary Alloys”と題する刊行
物に記載されている二元合金状態図を参照して明
らかなように、軟かく応力場において塑性変形に
富むα固溶体(鉛中に錫が少量固溶)が硬くて塑
性変形しにくいβ固溶体(錫中に鉛が少量固溶)
より圧倒的に多く、はんだ材全体としての性質も
塑性変形しやすく、被接合部材の熱膨張係数差に
ともなう熱応力ないし歪を吸収し、もつて接合部
の電気的、機械的性能を維持するのに有利と考え
られていたことによる。一方、共晶系はんだは、
上記Hansenによる刊行物を参照して明らかなよ
うに、組成が共晶組成(37重量%鉛−63重量%
錫)に近く、微細な結晶粒からなる上記α固溶体
とβ固溶体との共晶組織を呈する。この場合共晶
系はんだは微細な結晶粒であることにより結晶粒
界界面すべりに基づく塑性変形や拡散的なクリー
プ作用を生じやすく、例えばTransaction of
the ASM、Vol.61、300(1968年)におけるS.W.
Zehr及びW.A.Backofenによる“Suprplasticity
in Lead−Tin Alloys”と題する論文に開示され
ているような超塑性現象を呈し、もつて被接合部
材相互の熱膨張係数差にともなう熱応力ないし歪
を吸収して、接合部の電気的、熱的、機械的性能
を維持するのに有利と考えられていたことによ
る。
The reasons why lead-tin solder is used in the above technical field are (1) lead and tin are relatively inexpensive and easy to alloy and process, which is economically advantageous; (2) the melting point of the solder material is is 183-327℃ and other gold-based, silver-based,
(3) Lead-tin solder is lower than other metal solders, and has many advantages in the joining process, such as being able to join without damaging parts around the joint; (3) lead-tin solder is lower than other metal solders; This is because it is soft, has excellent plastic deformability, and is considered to be excellent as a thermal strain absorbing carrier. However, among the lead-tin solders, the most commonly used solder materials are lead-based solder materials such as 95% lead-5% tin solder, or 40% lead-60% by weight. It was a eutectic solder material such as that represented by weight% tin solder. The reason for this is that lead-based solders, e.g.
As evidenced by reference to the binary alloy phase diagram described in the publication entitled “Constitution of Binary Alloys” by Max Hansen, published by McGrow-Hill Book Company, Inc., p. 1106 (1958), soft In this stress field, the α solid solution (a small amount of tin in solid solution in lead), which is rich in plastic deformation, becomes the β solid solution (a small amount of lead in solid solution in tin), which is hard and difficult to deform plastically.
The solder material as a whole is more susceptible to plastic deformation, absorbs thermal stress or strain due to the difference in thermal expansion coefficient of the parts to be joined, and maintains the electrical and mechanical performance of the joint. Because it was considered advantageous. On the other hand, eutectic solder
As is clear with reference to the above publication by Hansen, the composition is eutectic (37 wt.% lead - 63 wt.%
It exhibits a eutectic structure of the above α solid solution and β solid solution consisting of fine crystal grains. In this case, since the eutectic solder has fine crystal grains, it tends to cause plastic deformation due to grain boundary interface slip and diffusive creep action, such as transaction of
SW in the ASM, Vol.61, 300 (1968)
“Suprplasticity” by Zehr and WABackofen
It exhibits a superplastic phenomenon as disclosed in the paper entitled "In Lead-Tin Alloys", and absorbs the thermal stress or strain caused by the difference in thermal expansion coefficient between the joined parts, and the electrical and This is because it was thought to be advantageous in maintaining thermal and mechanical performance.

上記先行技術例(1)〜(6)においても、鉛ベースは
んだ材又は共晶系はんだ材が用いられ得ることを
開示している。一方、上記先行技術(1)では40重量
%錫及び60重量%鉛のはんだ組成物、そして(7)で
は50重量%鉛−50重量%錫はんだ、30重量%鉛−
70重量%錫はんだのように、鉛ベース又は共晶系
はんだ材以外の組成域のはんだ材が使用され得る
ことを開示している。しかしながら、鉛ベース系
又は共晶系以外の組成域に属するはんだ材は、信
頼性の点で鉛ベース系又は共晶系はんだに比べて
劣ると考えられ、従来の知見に基づく常識では使
用を避けるのが一般的であつた。即ち、鉛ベース
系あるいは共晶系を外れる組成域、(1)例えば60重
量%鉛−40重量%錫はんだでは、初晶のα固溶体
の存在比率が経るとともにα固溶体間の粒界に共
晶組織が存在して粒界変形性能を低下させ、又微
細な共晶組織中に超塑性作用を阻害する初晶α固
溶体が存在することによつて塑性変形性能が低下
し、そして(2)例えば30重量%鉛−70重量%錫はん
だでは、微細な共晶組織中に超塑性作用を阻害す
る比較的硬い初晶β固溶体が存在して粒界すべり
による塑性変形性能を低下させ、この結果接続部
を担うはんだ材自体又は同接続部に連なつて配置
されている被接続部材が損傷を受ける懸念があつ
たからである。換言すれば、鉛ベース系又は共晶
系以外の組成域に属するはんだ材は、異種部材を
冶金的に接合する又は物理的に一体化する又は電
気的に接続する目的に対しては、上記先行技術例
(1)又は(7)に開示されている如く作用可能な材料で
あつた。しかし、異種部材の一体化物が使用段階
で受ける熱的サイクルにともなつて、接合部を担
うはんだ材に対する応力ないし歪の導入及び疲労
の蓄積の結果破壊に至る物理的故障を軽減する観
点では、その目的を満し得る材料とは考えられて
いなかつた。又、このような背景に加えて鉛ベー
ス系又は共晶系以外の組成域に属するはんだ材を
使用した場合の、信頼性向上を目的とした接合プ
ロセスの検討も十分でなく、工業的に成立つプロ
セスが確立されていないのが実情である。
The above-mentioned prior art examples (1) to (6) also disclose that a lead-based solder material or a eutectic solder material can be used. On the other hand, the prior art (1) uses a solder composition of 40 wt% tin and 60 wt% lead, and (7) uses a 50 wt% lead-50 wt% tin solder and 30 wt% lead-
It is disclosed that solder materials in composition ranges other than lead-based or eutectic solder materials may be used, such as 70% by weight tin solder. However, solder materials that belong to composition ranges other than lead-based or eutectic solders are considered to be inferior to lead-based or eutectic solders in terms of reliability, and common sense based on conventional knowledge should avoid using them. was common. That is, in the composition range outside the lead-based system or the eutectic system, (1) for example, 60 wt% lead - 40 wt% tin solder, as the abundance ratio of the primary α solid solution changes, the eutectic occurs at the grain boundaries between the α solid solutions. (2) The presence of a primary α solid solution, which inhibits superplastic action, in the fine eutectic structure reduces grain boundary deformation performance, and (2) for example, In the 30 wt% lead-70 wt% tin solder, a relatively hard primary β solid solution exists in the fine eutectic structure that inhibits superplastic action, reducing the plastic deformation performance due to grain boundary sliding, resulting in poor connection. This is because there was a concern that the solder material itself that carries the connection part or the connected members arranged in series with the connection part may be damaged. In other words, solder materials belonging to composition ranges other than lead-based or eutectic systems cannot be used for the purpose of metallurgically joining, physically integrating, or electrically connecting dissimilar components. Technical example
It was a material capable of acting as disclosed in (1) or (7). However, from the perspective of reducing physical failures that result from the introduction of stress or strain to the solder material that serves as the joint and the accumulation of fatigue due to the thermal cycles that an integrated product of dissimilar parts undergoes during use, It had not been considered a material that could meet that purpose. In addition, in addition to this background, there has not been sufficient study of the bonding process for the purpose of improving reliability when using solder materials belonging to a composition range other than lead-based or eutectic, and it is not commercially viable. The reality is that no process has been established.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、異種部材又は相互に熱膨張係
数の異なる異種部材を冶金的に接合してなる一体
化物の接合部の耐熱疲労性能を向上させ得る接合
方法を提供することである。
An object of the present invention is to provide a joining method that can improve the thermal fatigue resistance of a joined part of an integrated product formed by metallurgically joining dissimilar members or dissimilar members having mutually different coefficients of thermal expansion.

本発明の他の目的は、接合部の耐疲労性を向上
させる手段として、組成の調整されたはんだ材を
用いて接合のための冶金プロセスを改良した新規
な接合方法を提供することである。
Another object of the present invention is to provide a new joining method in which the metallurgical process for joining is improved using a compositionally adjusted solder material as a means of improving the fatigue resistance of the joint.

本発明の他の目的は、鉛ベース系又は共晶系は
んだ材以外の組成領域に属するはんだ材を用い
て、はんだ材の溶融処理後の冷却速度ないし温度
プロフイールを調節した一体化物を得るための新
規な接合方法を提供することである。
Another object of the present invention is to obtain an integrated product in which the cooling rate or temperature profile after melting of the solder material is adjusted using a solder material belonging to a composition range other than lead-based or eutectic solder material. The object of the present invention is to provide a new joining method.

本発明の他の目的は、接合部を担うはんだ層の
疲労の進行を可及的に抑制し得る金属組織を得る
ための新規な冶金的接合方法を提供することであ
る。
Another object of the present invention is to provide a novel metallurgical joining method for obtaining a metal structure that can suppress the progress of fatigue of a solder layer that serves as a joint as much as possible.

〔発明の概要〕[Summary of the invention]

本発明のはんだ接合方法は、錫が35重量%以上
80重量%以下含有され(但し60重量%以上65重量
%未満を除く)そして残部が実質的に鉛からなる
はんだ材、若しくは同はんだ材に第3元素として
の金属が添加されたはんだ材を異種部材又は熱膨
張係数の異なる異種部材間に介装し、上記はんだ
材を溶融せしめた後125℃/分以下の速度で冷却
する冶金プロセスを有することを特徴とする。
The solder joining method of the present invention is characterized in that tin contains 35% or more by weight.
A solder material containing 80% by weight or less (excluding 60% by weight or more and less than 65% by weight) and the remainder consisting essentially of lead, or a solder material in which a metal as a third element is added to the same solder material is a different type of solder material. It is characterized by having a metallurgical process in which the solder material is interposed between members or different members having different thermal expansion coefficients, and the solder material is melted and then cooled at a rate of 125° C./min or less.

本発明者らが種々検討した結果、鉛と錫を主成
分とするはんだ材を用いて異種部材を接合した一
体化物の熱疲労耐力には、極めて明瞭な組成依存
性が見出され、特に好ましい冶金プロセス条件の
もとで接合した一体化物は、はんだ組成が50重量
%鉛−50重量%錫及び25重量%鉛−75重量%錫の
場合に極めて優れた耐熱疲労寿命特性を示すこと
を確認した。ここで言う好ましい冶金プロセス条
件とは、鉛ベース系又は共晶系はんだ以外の組成
領域に属するはんだ材、より好ましくは鉛が40重
量%以上65重量%未満では錫が35重量%以上60重
量%未満のはんだ材、又は鉛が20ないし35重量%
で錫が65ないし80重量%のはんだ材を異種部材間
に介装し、このはんだ材を溶融せしめた後、少く
ともはんだ融液が完全に固相化されるまでの期間
選択された速度、即ち125℃/分以下の速度で冷
却することである。
As a result of various studies conducted by the present inventors, it was found that the thermal fatigue strength of an integrated product made by joining dissimilar parts using a solder material mainly composed of lead and tin has an extremely clear compositional dependence, which is particularly desirable. It was confirmed that the integrated product bonded under metallurgical process conditions exhibits extremely excellent thermal fatigue life characteristics when the solder composition is 50 wt% lead-50 wt% tin and 25 wt% lead-75 wt% tin. did. The preferred metallurgical process conditions mentioned here are solder materials belonging to a composition range other than lead-based or eutectic solders, more preferably lead in a range of 40 wt% or more and less than 65 wt%, and tin in a range of 35 wt% or more and 60 wt%. Solder material with less than 20 to 35% lead by weight
A solder material containing 65 to 80% by weight of tin is interposed between dissimilar components, and after melting this solder material, the solder melt is melted at a selected speed for at least a period of time until the solder melt is completely solidified. That is, cooling at a rate of 125° C./min or less.

このような冶金プロセスを選ぶ理由は、第1に
はんだ材自体の破壊強度あるいは弾性応力範囲を
高めることであり、第2にはんだ層に塑性変形し
にくい又は塑性変形を抑制する金属組織を導入す
ることである。これらの事項が達成されることに
よつて、一体化物において最も軟かい部材で応力
集中とこれに伴なう塑性変形が顕著なはんだ層の
剛性を高め、同層の応力を分散させて塑性変形量
を軽減し、疲労寿命性能を向上せしめんとするも
のである。
The reason for choosing such a metallurgical process is, firstly, to increase the fracture strength or elastic stress range of the solder material itself, and secondly, to introduce a metal structure that is resistant to plastic deformation or suppresses plastic deformation into the solder layer. That's true. By achieving these points, the rigidity of the solder layer, which is the softest member in an integrated product and where stress concentration and associated plastic deformation are noticeable, is increased, and the stress in the same layer is dispersed to reduce plastic deformation. The aim is to reduce the amount of carbon dioxide and improve fatigue life performance.

〔発明の実施例〕[Embodiments of the invention]

次に図面を参照して、本発明の実施例を更に詳
細に説明する。
Next, embodiments of the present invention will be described in further detail with reference to the drawings.

第1図は本発明の第1実施例に関するもので、
好ましい冶金プロセスによつて接合されたシリコ
ントランジスタ基体3(熱膨張係数3.5×10-6
℃)と銅支持板2(同16.5×10-6/℃)との一体
化物の接合部の熱疲労寿命を示すグラフである。
この熱疲労寿命データ(○印)は、一体化物に−
55℃から+150℃までの温度変化(温度変化幅:
205deg.)をくり返し与えながら逐次読取つた熱
抵抗が、初期値の1.5倍に達したときのくり返し
回数を寿命と定義し、試料数10個の寿命値をワイ
ブルチヤート上にプロツトし、これによつて得た
直線から求めた平均寿命を表現するものである。
ここで、熱抵抗はシリコン基体3から銅支持板2
に至る熱伝導経路の定常熱抵抗であり、一体化物
のはんだ層1の疲労による亀裂によつて上昇すべ
きものである。一体化物は、厚さ3mmのニツケル
めつきした銅板からなる支持板2上に厚さ100μ
mのはんだシートを介装してシリコン基体3〔13
mm×13mm、厚さ250μm、接合面;クロム(0.1μ
m)−ニツケル(0.6μm)−銀(2μm)多層蒸着メ
タライズ〕を載置し、これを水素雰囲気中で加熱
してはんだシートを溶融せしめた後、少くとも溶
融はんだの固相化が完了するまでの期間40±10
℃/分なる速度で冷却して得た。用いたはんだシ
ートは、錫が35ないし59重量%で残部が実質的に
鉛からなる組成範囲から選ばれた合金、及び錫が
65ないし80重量%で残部が実質的に鉛である組成
範囲から選ばれた合金である。上述の冶金プロセ
スにおける熱処理は、最高到達温度がはんだ材の
液体点より略50deg.高くなるように、又到達温度
において略5分間保持されるように制御される。
尚、最高到達温度はんだ材と被接合部材との冶金
的接合が完全になされる点、並びに被接合部材の
構成成分が溶融はんだに混入してくる点を考慮し
て選ばれるべきもので、用いるはんだ材の液相点
以上の任意の温度を選択できる。同様の意味にお
いて保持時間も任意に調整し得る。
FIG. 1 relates to a first embodiment of the present invention.
Silicon transistor substrate 3 (thermal expansion coefficient 3.5×10 -6 /
12 is a graph showing the thermal fatigue life of the joint of the integrated product of copper supporting plate 2 (16.5×10 -6 /°C) and copper support plate 2 (16.5×10 −6 /°C).
This thermal fatigue life data (marked with ○) is -
Temperature change from 55℃ to +150℃ (temperature change width:
The life is defined as the number of repetitions when the thermal resistance, which is read sequentially while repeatedly applying 205 deg., reaches 1.5 times the initial value, and the life values of 10 samples are plotted on a Weibull chart. It expresses the average lifespan determined from the straight line obtained.
Here, the thermal resistance is calculated from the silicon substrate 3 to the copper support plate 2.
is the steady-state thermal resistance of the heat conduction path leading to , which should rise due to fatigue cracks in the solder layer 1 of the integral. The integrated product has a thickness of 100μ on a support plate 2 made of a nickel-plated copper plate with a thickness of 3mm.
Silicon substrate 3 [13
mm×13mm, thickness 250μm, joint surface; chrome (0.1μ
m) - Nickel (0.6 μm) - Silver (2 μm) multilayer vapor-deposited metallization] is placed and heated in a hydrogen atmosphere to melt the solder sheet, at least the solid phase of the molten solder is completed. Period up to 40±10
It was obtained by cooling at a rate of °C/min. The solder sheet used was made of an alloy selected from a composition range consisting of 35 to 59% by weight of tin with the balance being substantially lead;
It is an alloy selected from a composition range of 65 to 80% by weight, the balance being substantially lead. The heat treatment in the above-mentioned metallurgical process is controlled so that the maximum temperature reached is approximately 50 degrees higher than the liquid point of the solder material, and so that the temperature reached is maintained for approximately 5 minutes.
In addition, it should be selected and used in consideration of the fact that the metallurgical bond between the highest temperature solder material and the parts to be joined is completely achieved, and the constituent components of the parts to be joined are mixed into the molten solder. Any temperature above the liquidus point of the solder material can be selected. In the same sense, the retention time can also be adjusted arbitrarily.

第1図を参照するに、シリコン基体3と銅支持
板2をはんだ付け接合した一体化物の熱疲労寿命
は明瞭な組成依存性を有していて、はんだ層1中
の錫濃度が50重量%及び75重量%の場合に極大値
を持つ寿命特性を示している。又、上記実施例の
組成範囲のはんだ材を用いた場合は、寿命値500
回以上を記録している。第1図には比較例とし
て、上記実施例範囲以外から選択された組成のは
んだ材を用いて同様の冶金プロセスを経て作成し
た、一体化物の寿命特性を●印により示してい
る。これらの比較例の一体化物は、上記実施例組
成の一体化物と比較して明らかなように、サイク
ル数の少ない段階で寿命に達している。特に、従
来異種部材の接合に多用されてきた鉛−ベース系
や共晶系はんだを用いた一体化物との比較におい
て、上記実施例組成のはんだ材を用いた一体化物
は、ことごとく長い寿命を示している。以上の開
示から、本実施例冶金プロセスは、一体化物の耐
疲労寿命を向上させるのに極めて有効な作用を及
ぼしていることが理解される。上述した寿命の組
成依存性及び実施例組成域で好ましい寿命特性を
示す理由は、必ずしも十分明確になつていない
が、本発明者らはこれまでの検討結果に基づいて
次のメカニズムに起因するものと推測している。
以下、その、メカニズムについて説明する。
Referring to FIG. 1, the thermal fatigue life of the integrated silicon substrate 3 and copper support plate 2 soldered together has a clear composition dependence, and the tin concentration in the solder layer 1 is 50% by weight. It shows a life characteristic that has a maximum value at 75% by weight. In addition, when a solder material having the composition range of the above example is used, the life value is 500.
recorded more than once. In FIG. 1, as a comparative example, the life characteristics of an integrated product produced through a similar metallurgical process using a solder material having a composition selected from the range of the above-mentioned examples are indicated by black circles. As is clear from the comparison with the integrated products of the above-mentioned Example compositions, the integrated products of these comparative examples reach the end of their lifespans at a stage where the number of cycles is small. In particular, in comparison with integrated products using lead-based or eutectic solders, which have been commonly used to join dissimilar parts, all integrated products using the solder material of the above example composition have a long lifespan. ing. From the above disclosure, it is understood that the metallurgical process of this embodiment has an extremely effective effect in improving the fatigue life of the integrated product. Although the reasons for the above-mentioned composition dependence of life and the preferable life characteristics in the example composition range are not necessarily sufficiently clear, the present inventors believe that the reasons are due to the following mechanism based on the results of studies conducted so far. I guess.
The mechanism will be explained below.

第2図は第2実施例に関するもので、信号変換
器としての混成集積回路装置用アルミナ基板(幅
15mm、長さ30mm、厚さ0.6mm、熱膨張係数7.5×
10-6/℃)4と真鍮製端子部材(幅1mm、長さ13
mm、厚さ0.25mm、熱膨張係数20入1-6/℃、ニツ
ケルめつき3μm)5とを、はんだ層1により接
合した一体化構造物の接合部の剪断強度特性(曲
線A,B,C)を示す。曲線Aは−25℃、同Bは
20℃、そしては同Cは100℃における測定値であ
る。同図を参照するに、剪断破断強度には、はん
だ中の錫組成が50重量%及び75重量%で極大値を
持つ組成依存性が認められる。強度は雰囲気温度
が低い場合大きく高温ほど低下するが、いずれの
温度の場合も略同様の組成依存性を示している。
この傾向は第1図の寿命特性との明瞭な対応関係
を有していて、はんだ層1の強化の程度が疲労寿
命特性に少なからず反映されていることを示唆す
るものと理解される。同図には比較のために、は
んだ溶融後冷却速度略200℃/分で冷却して得た
アルミナ基板4と厚さ3μmのニツケルめつきを
施した真鍮端子5との一体化物におけるはんだ1
の剪断破断強度特性例(曲線D)を示す。この場
合は、例えば、材料試験技術、Vol.25、No.1、31
(1980年)における西畑らによる「Pb−Sn二元合
金の引張強さ、伸びに及ぼす引張速度の影響」と
題する論文において開示されている、圧延銅板の
引張試験で得られた引張強度と同様の傾向が認め
られるが、曲線A,B、及びCはそれと抵抗を異
にしている。したがつて、第2図が意味するもう
1つの重要な事項は、急冷によつて得たはんだ層
1は、上記実施例組成のはんだ材であつても強化
されていない点換言すると徐冷によつて上記実施
例組成のはんだ材は強化される点である。
Figure 2 relates to the second embodiment, and shows an alumina substrate (width
15mm, length 30mm, thickness 0.6mm, thermal expansion coefficient 7.5×
10 -6 /℃) 4 and brass terminal member (width 1 mm, length 13
Shear strength characteristics (curves A , B, C) is shown. Curve A is -25℃, curve B is
20℃, and the same C is the measured value at 100℃. Referring to the same figure, it is observed that the shear rupture strength is compositionally dependent, with maximum values occurring when the tin composition in the solder is 50% and 75% by weight. The strength decreases greatly when the ambient temperature is low and as the ambient temperature increases, but it shows approximately the same composition dependence at any temperature.
This tendency has a clear correspondence with the life characteristics shown in FIG. 1, and is understood to suggest that the degree of reinforcement of the solder layer 1 is reflected to a large extent in the fatigue life characteristics. For comparison, the figure shows solder 1 in an integrated product of an alumina substrate 4 obtained by cooling at a cooling rate of approximately 200°C/min after melting the solder and a brass terminal 5 plated with nickel with a thickness of 3 μm.
An example of shear rupture strength characteristics (curve D) is shown. In this case, for example, Material Testing Technology, Vol. 25, No. 1, 31
Similar to the tensile strength obtained in the tensile test of rolled copper sheets disclosed in the paper titled "Effect of tensile speed on tensile strength and elongation of Pb-Sn binary alloy" by Nishihata et al. (1980). However, curves A, B, and C have different resistances. Therefore, another important point that FIG. 2 means is that the solder layer 1 obtained by rapid cooling is not reinforced even if it is a solder material having the composition of the above example. Therefore, the solder material having the composition of the above example is strengthened.

尚、一体化物はロジン系フラツクスとはんだ粉
末との混合ペーストを端子5とアルミナ基板4と
の間に介装し、これを空気中で加熱しはんだ粉を
溶融させてはんだ材の液相点より略50℃高い温度
で保持した後、少なくとも溶融はんだの固相化が
完了するまでの期間60±10℃/分なる速度で冷却
して得たものであり、第2図の曲線A,B、及び
Cは制御された温度のもとでの引張試験(引張速
度2mm/分)して得たデータである。この接合部
のアルミナ基板4にはモリブデン焼成メタライズ
層にニツケルめつきを約3μm施した接合パツド
(幅1mm、長さ1.5mm)が形成されており、接合部
に供給したはんだ量は冶金プロセスを経た後のは
んだ層厚さが略100μmになるように調整されて
いる。この場合であつてもはんだ層1の熱疲労寿
命特性は、組成に対する傾向の点において第1図
と同様の結果が得られた。
The integrated product is made by interposing a mixed paste of rosin-based flux and solder powder between the terminal 5 and the alumina substrate 4, and heating it in the air to melt the solder powder and raise it from the liquidus point of the solder material. It was obtained by holding at a temperature approximately 50°C higher and then cooling at a rate of 60±10°C/min until at least the solidification of the molten solder was completed, and curves A, B, and and C are data obtained from a tensile test (tensile speed 2 mm/min) under controlled temperature. A bonding pad (width 1 mm, length 1.5 mm) is formed on the alumina substrate 4 of this bonding area, and the molybdenum fired metallized layer is plated with nickel to a thickness of about 3 μm.The amount of solder supplied to the bonding area is controlled by the metallurgical process. The thickness of the solder layer after soldering is adjusted to approximately 100 μm. Even in this case, the results of the thermal fatigue life characteristics of the solder layer 1 were similar to those shown in FIG. 1 in terms of trends with respect to composition.

第3図は、上記実施例組成の中から選択された
はんだ材(50重量%鉛−50重量%錫:曲線A、25
重量%鉛−75重量%錫:曲線B)を用いて得たア
ルミナ基板4と端子5との一体化物における、は
んだ溶融後の冷却速度と剪断破断強度(室温)の
関係である。同図をを参照すると、剪断強度は冷
却速度の低い領域では大きく、高速で冷却した場
合に小さい値を示しているが、安定して大きな強
度の得られるのは略125℃/分以下の場合である
ことが理解される。尚上述の50重量%錫又は75重
量%錫以外の組成であつても、実施例範囲のはん
だ材は同様の冷却速度依存性を有していた。
Figure 3 shows solder materials selected from the compositions of the above embodiments (50 wt% lead-50 wt% tin: curve A, 25
This is the relationship between the cooling rate after melting the solder and the shear rupture strength (at room temperature) in an integrated product of the alumina substrate 4 and the terminal 5 obtained using the curve B): lead by weight - 75% by weight. Referring to the same figure, the shear strength is large in the region where the cooling rate is low, and shows a small value when cooling at high speed, but stable high strength is obtained at approximately 125°C/min or less. It is understood that Note that even if the composition was other than the above-mentioned 50% by weight tin or 75% by weight tin, the solder materials in the Examples range had similar cooling rate dependence.

以上述べたように、好ましい寿命特性を示す理
由の第1は、制御された条件のもとではんだ材1
自体が強化される点であることが理解される。
As mentioned above, the first reason for the favorable life characteristics is that the solder material
It is understood that this is a point that itself is strengthened.

次に、好ましい寿命特性を示す第2の理由につ
いて説明する。
Next, the second reason for exhibiting preferable life characteristics will be explained.

第4図a及びbは上記実施例組成範囲のはんだ
材の代表例として選択した、それぞれ50重量%鉛
−50重量%錫のはんだ材及び25重量%鉛−75重量
%錫の好ましい治金プロセス(冷却速度40℃/
分)を経た後の金属組織、そして同図c及びdは
本発明において好ましくない冶金プロセス(冷却
速度150℃/分)を経た後の金属組織である。同
図aを参照するとはんだ層は大きな粒径に成長し
たα固溶体初晶の周囲を比較的大きな粒径の共晶
が包囲する組織を呈するのに対し、同図cでは比
較的粒系の小さいα固溶体初晶を微細粒からなる
共晶が包囲する組織を有している。同図bを参照
するとはんだ層は大きく成長したβ固溶体初晶を
粒径の大きな共晶が包囲するのに対し、同図dで
は粒径の小さいβ固溶体初生を微細粒径の共生が
包囲する組織を呈している。
FIGS. 4a and 4b show preferred metallurgical processes for 50 wt% lead-50 wt% tin solder material and 25 wt% lead-75 wt% tin solder material selected as representative examples of solder materials in the above embodiment composition range, respectively. (Cooling rate 40℃/
Figures c and d show the metal structure after undergoing a metallurgical process (cooling rate of 150° C./min), which is not preferred in the present invention. Referring to figure a, the solder layer exhibits a structure in which a relatively large grain size eutectic surrounds α solid solution primary crystals that have grown to large grain sizes, whereas in figure c, the solder layer has a relatively small grain size. It has a structure in which an α solid solution primary crystal is surrounded by a eutectic consisting of fine grains. Referring to figure b, in the solder layer, the large-grained eutectic surrounds the large-grown β-solid solution primary crystal, whereas in figure d, the small-grained β-solid solution primary is surrounded by fine-grained symbiotic crystals. It represents an organization.

上述したように、微細な結晶粒からなる共晶は
超塑性現象によつて変形しやすくなると考えられ
るが、第4図aのように共晶を構成するα固溶体
及びβ固溶体がその結晶粒径を増すと、共晶その
ものの塑性変形性能と低下を招くとともに、α固
溶体初晶の塑性変形をも抑制する作用を持つ。こ
れに対し、同図cのように微細な粒径の共晶が存
在する場合は共晶そのものの変形性能が維持され
る結果、初晶α固溶体の塑性変形に対する抑制効
果も低下する。一方、第4図bの如く大きく成長
したβ固溶対初晶を粒径の大きな共晶で包囲した
場合にはβ固溶体が塑性変形しにくいのに加えて
共晶そのものの塑性変形性能も失われるのに対
し、同図dのように比較的粒径の小さいβ固溶体
初晶の周囲を微細な粒径の共晶が包囲していて、
はんだ層全体の塑性変形性能の維持に寄与してい
る。即ち、好ましい冶金プロセス条件による場合
は、はんだ層の降伏強度換言すると剛性が高めら
れ、はんだ層に集中する応力ないし歪が適度に被
接合部材2,3,4,5にも分散させられ、終局
的結果として塑性変形による疲労の蓄積が抑制さ
れるものと理解される。尚、上記実施例組成域以
外で鉛含有量がより多い組成域例えば95重量%鉛
−5重量%錫系はんだで疲労寿命特性が劣る理由
は、α固溶体の存在比率が圧倒的に高くはんだ層
全体の塑性変形性能が維持されているためであ
り、錫含有量が極端に多い組成例えば5重量%鉛
−95重量%錫系はんだの場合に疲労寿命特性が低
下する理由は、鉛濃度が低くβ固溶体が純粋な錫
金属に近い性状を帯びるためと理解される。
As mentioned above, a eutectic consisting of fine crystal grains is thought to be easily deformed due to superplasticity, but as shown in Figure 4a, the α solid solution and β solid solution that make up the eutectic vary in their crystal grain size. Increasing the eutectic leads to a decrease in the plastic deformation performance of the eutectic itself, and also has the effect of suppressing the plastic deformation of the α solid solution primary crystal. On the other hand, when a eutectic with a fine grain size exists as shown in c in the same figure, the deformation performance of the eutectic itself is maintained, and as a result, the effect of suppressing the plastic deformation of the primary α solid solution is also reduced. On the other hand, when a large-grown β solid solution pair primary crystal is surrounded by a eutectic with a large grain size as shown in Figure 4b, not only is the β solid solution difficult to plastically deform, but the eutectic itself also loses its plastic deformation performance. On the other hand, as shown in Figure d, the β solid solution primary crystals with a relatively small particle size are surrounded by eutectic particles with a fine particle size.
It contributes to maintaining the plastic deformation performance of the entire solder layer. That is, under favorable metallurgical process conditions, the yield strength of the solder layer, in other words, the rigidity, is increased, and the stress or strain concentrated in the solder layer is appropriately dispersed to the members 2, 3, 4, and 5 to be joined, and the final It is understood that as a result of this, the accumulation of fatigue due to plastic deformation is suppressed. The reason why the fatigue life characteristics are inferior in a composition range other than the composition range of the above example where the lead content is higher, such as 95 wt% lead-5 wt% tin solder, is because the presence ratio of α solid solution is overwhelmingly high in the solder layer. This is because the overall plastic deformation performance is maintained, and the reason why the fatigue life characteristics decrease in the case of a composition with an extremely high tin content, such as 5% lead-95% tin solder, is because the lead concentration is low. This is understood to be because the β solid solution has properties close to pure tin metal.

以上の記述を要約すると、上記第2の理由は、
好ましい冶金プロセスを経て得られたはんだ層1
は共晶を構成する結晶粒径が大きく、共晶自体の
変形性能の低下とこれに伴なう降伏強度の増大及
び応力の分散に基づくものである。
To summarize the above description, the second reason above is:
Solder layer 1 obtained through a preferred metallurgical process
This is due to the fact that the crystal grain size constituting the eutectic is large, and the deformation performance of the eutectic itself is reduced, resulting in an increase in yield strength and stress dispersion.

本発明において、はんだ材は熱膨張係数の異な
る異種部材どうしの電気的、熱的、機械的接合の
いずれかを担う目的で用いられるものであり、こ
のいかなる場合でもはんだ材と被接合部材間の冶
金的接合は可及的に強固にされるのが望ましい。
冶金的接合であるから、接合部の要部において
は、はんだ材と被接合部材の少くとも最表層構成
物質との間で合金化がなされることは当然であ
る。このことは、接合が完了した後のはんだ材中
に第3成分としての鉛、錫以外の金属が固溶ない
し混入することは避けられない。又、鉛や錫以外
の金属をはんだ材に添加することは、はんだ材の
ぬれ性向上や被接合部材構成成分の混入を抑制す
る目的で好ましい場合がある。この際懸念される
問題は、第3成分の添加によつてはんだ材自体の
耐疲労性能が低下することである。以下この点に
ついて説明する。
In the present invention, the solder material is used for the purpose of electrically, thermally, or mechanically joining dissimilar members with different coefficients of thermal expansion, and in any of these cases, the solder material and the members to be joined are It is desirable that the metallurgical bond be as strong as possible.
Since it is metallurgical joining, it is natural that alloying occurs between the solder material and at least the outermost layer constituent material of the members to be joined in the main part of the joining part. This means that metals other than lead and tin as a third component are inevitably dissolved or mixed into the solder material after joining is completed. Further, it may be preferable to add metals other than lead or tin to the solder material for the purpose of improving the wettability of the solder material and suppressing contamination of constituent components of the parts to be joined. A problem to be worried about in this case is that the fatigue resistance of the solder material itself deteriorates due to the addition of the third component. This point will be explained below.

第5図は第3実施例に関するもので、
Integrated Circuit(以下ICと略す)チツプ(幅
6mm、長さ7mm、厚さ0.4mm)としてのシリコン
からなる半導体基体31を誘導耐基体としてのソ
ーダガラス(熱膨張係数9×10-6/℃)基板6に
微少はんだ群11を用いたControlled Collapse
Bonding法として知られる手法により電気的かつ
機械的に接続した液晶表示装置用一体化構造物接
合部の熱疲労寿命を示すグラフである。この熱疲
労寿命データは、ICチツプ31に断続通電して
チツプ31に50℃から125℃までの温度変化(温
度変化幅75deg.)をくり返し与えたとき、接続部
断線不良によつてチツプ31がICとしての回路
機能を消失したときのパワーサイクル数で、15な
いし20試料の平均値で表現されている。同図には
錫が35ないし59重量%又は65ないし80重量%で、
銅が1.0重量%、残部が実質的に鉛である組成範
囲から選ばれた微少はんだ11を用いた実施例組
成の場合(○印)、及びこれ以外の組成に銅を1.0
重量%含有せしめた微少はんだを用いた比較例組
成の場合(●印)についての結果を示す。同図を
参照するに、一体化物のパワーサイクル寿命はは
んだ層11の錫濃度50重量%及び75重量%の場合
に極大値を持つ寿命特性を有していて、第1図と
同様の組成依存性を有している。この開示より、
微少はんだ11に第3成分としての銅が添加され
た場合であつても疲労寿命の組成依存性は、銅無
添加の場合と同様の傾向を有し、そして実施例組
成域の場合は比較例組成特に鉛ベースや共晶系の
場合に比べて良好な寿命特性を有することが認め
られる。
FIG. 5 relates to the third embodiment,
A semiconductor substrate 31 made of silicon as an integrated circuit (hereinafter abbreviated as IC) chip (width 6 mm, length 7 mm, thickness 0.4 mm) is made of soda glass (thermal expansion coefficient 9×10 -6 /°C) as an induction-resistant substrate. Controlled Collapse using minute solder group 11 on board 6
2 is a graph showing the thermal fatigue life of a joint part of an integrated structure for a liquid crystal display device that is electrically and mechanically connected by a method known as a bonding method. This thermal fatigue life data shows that when the IC chip 31 is energized intermittently and the chip 31 is repeatedly subjected to temperature changes from 50°C to 125°C (temperature change width 75 degrees), the chip 31 is It is the number of power cycles when the circuit function as an IC is lost, and is expressed as the average value of 15 to 20 samples. The figure shows that tin is 35 to 59% by weight or 65 to 80% by weight;
In the case of the example composition using micro solder 11 selected from a composition range in which copper is 1.0% by weight and the balance is substantially lead (○ mark), and in other compositions, copper is 1.0% by weight.
The results are shown for a comparative example composition (● mark) using a small amount of solder containing % by weight. Referring to the figure, the power cycle life of the integrated product has a life characteristic that has a maximum value when the tin concentration of the solder layer 11 is 50% and 75% by weight, and it depends on the composition in the same way as in Figure 1. It has a sexual nature. From this disclosure,
Even when copper is added as a third component to the micro solder 11, the composition dependence of fatigue life has the same tendency as when no copper is added, and in the case of the example composition range, the composition dependence of the fatigue life is similar to that of the comparative example. It is recognized that the composition has better life characteristics than that of lead-based or eutectic compositions.

第3実施例において、ICチツプ基体にはアル
ミニウム配線パターン上に選択的に形成されたク
ロム(0.1μm)−銅(0.6μm)−ニツケル(0.3μm

積層金属からなる金属層と、ガラス基板6上に選
択的に形成されたクロム(0.1μm)−銅(2μm)
積層金属パターン間に微少はんだ11を介装し、
フロロカーボン液体の気化潜熱を利用したVapor
Cndensation Soldering法によつてはんだ材の液
相点より約50℃高い温度まで加熱して微少はんだ
11を溶融した後、少くともはんだの固相化が完
了するまでの期間15±5℃/分の速度で冷却して
得たものである。このような冶金プロセスにおい
て、第3添加金属としての銅の代替材料が銀、
金、パラジウム、ニツケル、アンチモン、亜鉛、
ビスマス、インジウム、カドミウム、ひ素、ガリ
ウムを添加した場合あるいはこれらの金属が複合
して添加化された場合であつても上述と同様の組
成依存性を有すること、特に金、銀、パラジウム
にあつては無添加の場合より寿命を更に伸ばし得
ることが確認された。又、上記第3添加金属を含
む場合であつても、125℃/分以下の速度で冷却
する好ましい冶金プロセスを経れば、疲労寿命性
能を阻害することはない。
In the third embodiment, the IC chip substrate has chromium (0.1 μm)-copper (0.6 μm)-nickel (0.3 μm) selectively formed on the aluminum wiring pattern.
)
A metal layer made of laminated metal and chromium (0.1 μm)-copper (2 μm) selectively formed on the glass substrate 6
A minute solder 11 is interposed between the laminated metal patterns,
Vapor that utilizes the latent heat of vaporization of fluorocarbon liquid
After melting a small amount of solder 11 by heating to a temperature approximately 50°C higher than the liquidus point of the solder material by the Cdendensation Soldering method, the solder material is heated for a period of 15±5°C/min at least until solidification of the solder is completed. It was obtained by cooling at high speed. In such metallurgical processes, silver, silver,
gold, palladium, nickel, antimony, zinc,
Even when bismuth, indium, cadmium, arsenic, and gallium are added, or when these metals are added in combination, the same compositional dependence as described above is observed, especially when it comes to gold, silver, and palladium. It was confirmed that the product life could be further extended compared to the case without additives. Further, even if the third additive metal is included, fatigue life performance will not be impaired if a preferable metallurgical process of cooling at a rate of 125° C./min or less is performed.

本発明の実施例において、好ましい実施態様と
して半導体と金属の接合、セラミツク又はガラス
無機誘導体と金属の接合、特に電子装置用の接合
法について開示した。しかしながら、本発明の好
ましい冶金プロセスによれば、例えばガラスエポ
キシ、紙フエノール、エポキシで代表されるよう
な有機樹脂と金属、無機誘導体、半導体との接
合、あるいは有機樹脂どうし、金属どうし、誘導
体どうしの接合若しくは有機樹脂、金属、誘導
体、半導体を任意に2以上組合せた一体化接合に
又は電子工業以外の技術分野であつても改善され
た疲労寿命特性が得られる。又、冶金プロセスに
おいて、水素、窒素、ヘリウム、アルゴン、炭酸
ガスで代表されるような気体やフロロカーボンで
代表されるような蒸気等、制御された雰囲気ある
いは空気中処理のいずれであつても支障はなく、
この観点で、炉中熱処理、ホツトプレート上熱処
理、赤外線、レーザ光線あるいは電子線の如きビ
ーム照射熱処理、浸漬法熱処理、Vapor
Condensation Soldering法熱処理、パラレルギ
ヤツプソルダリング法熱処理等いずれの手法でも
適用でき、更に一体化物に具備させるべき性能に
応じてフラツクスを使い分けること等は自由であ
る。尚、本発明において異種部材とは、熱膨張係
数、熱伝導性、機械的性質、電気的性質等、相互
に物性値の異なる部材を意味する。したがつて、
例えばはんだ接合すべき部材がモリブデン板であ
つても、単体のモリブデン板と銅板上に銀ろう接
合されたモリブデン板とは異種部材の範囲に属す
る。又銅板と鉄板を接合した複合部材であつて
も、拡散接合法によるものとろう材接合したもの
とは異種部材の範囲に属する。
In the embodiments of the present invention, bonding methods for semiconductors and metals, ceramics or glass inorganic derivatives, and metals, particularly for electronic devices, have been disclosed as preferred embodiments. However, according to the preferred metallurgical process of the present invention, it is possible to bond organic resins such as glass epoxy, paper phenol, and epoxy with metals, inorganic derivatives, and semiconductors, or to bond organic resins with each other, metals with each other, and derivatives with each other. Improved fatigue life properties can be obtained in bonding or integrated bonding of any two or more organic resins, metals, derivatives, semiconductors, or even in technical fields other than the electronics industry. In addition, in metallurgical processes, gases such as hydrogen, nitrogen, helium, argon, and carbon dioxide gas, and vapors such as fluorocarbons, can be used in controlled atmospheres or in air without any problems. Without,
From this point of view, heat treatment in a furnace, heat treatment on a hot plate, beam irradiation heat treatment such as infrared rays, laser beam or electron beam, immersion heat treatment, vapor heat treatment, etc.
Any method such as condensation soldering heat treatment or parallel gap soldering heat treatment can be applied, and it is also possible to use different fluxes depending on the performance that the integrated product should have. In the present invention, dissimilar members refer to members having mutually different physical property values, such as thermal expansion coefficient, thermal conductivity, mechanical properties, and electrical properties. Therefore,
For example, even if the member to be soldered is a molybdenum plate, a single molybdenum plate and a molybdenum plate bonded with silver solder to a copper plate belong to the range of different types of members. Furthermore, even if it is a composite member made by joining a copper plate and a steel plate, those made by diffusion bonding and those joined by brazing metal belong to the range of different types of members.

〔発明の効果〕〔Effect of the invention〕

本発明は、相互に熱膨張係数の異なる異種部材
を導電的、熱的、機械的に接合するための、改善
された冶金プロセスを開示するものである。以
下、本発明の効果ないし利点を示す。
The present invention discloses an improved metallurgical process for electrically, thermally, and mechanically joining dissimilar members having mutually different coefficients of thermal expansion. The effects and advantages of the present invention will be shown below.

(1) 本発明において、好ましい冶金プロセスを経
て得られる一体化物は、その接合部の熱疲労寿
命性能が一層向上されたものになる。これは主
としてはんだ材自体の強度向上と、塑性変形の
抑制効果に起因するものであつて、一体化部材
の品質並びに信頼性向上に対し飛躍的に貢献す
るものである。
(1) In the present invention, the integrated product obtained through the preferred metallurgical process has further improved thermal fatigue life performance of the joint. This is mainly due to the improvement in the strength of the solder material itself and the effect of suppressing plastic deformation, and contributes dramatically to improving the quality and reliability of the integrated member.

(2) 例えば大型半導体基体と金属支持部材との一
体化物の場合、その耐熱疲労寿命性能を維持す
るため、一体的には熱膨張係数差を緩和するモ
リブデン等の中間部材を介装せしめるのが常で
あるが、本発明の好ましい冶金プロセスによれ
ば疲労寿命性能を大幅に向上できるため、中間
部材を用いる必要性が減る。このことは部品点
数の削減に寄与するものである。又、発熱部材
又は受熱部材と吸放熱又は伝熱部材との一体化
物にあつては、中間部材の介装を回避できるた
め、熱伝導性能の向上にも寄与する。
(2) For example, in the case of an integrated product of a large semiconductor substrate and a metal support member, in order to maintain its thermal fatigue life performance, it is recommended to interpose an intermediate member such as molybdenum that alleviates the difference in thermal expansion coefficient. As always, the preferred metallurgical process of the present invention significantly improves fatigue life performance, thereby reducing the need for intermediate components. This contributes to reducing the number of parts. Furthermore, in the case of an integrated product of a heat generating member or a heat receiving member and a heat absorbing/radiating or heat transmitting member, the interposition of an intermediate member can be avoided, which also contributes to improvement of heat conduction performance.

(3) 本発明冶金プロセスによりはんだ材は強化さ
れていて、熱膨張係数差が大きい部材間の接合
であつても、直接はんだ付け接合できる。した
がつて、被接合部材の膨張係数を厳格に選択す
る必要がなく、一体化物設計上の自由度を増
す。
(3) The solder material is strengthened by the metallurgical process of the present invention, and can be directly soldered and joined even when joining members with a large difference in coefficient of thermal expansion. Therefore, there is no need to strictly select the expansion coefficient of the members to be joined, increasing the degree of freedom in designing the integrated product.

(4) 本発明冶金プロセスにおいては、接合部材と
して鉛及び錫を主成分とする一般的合金の使用
によつて、信頼性の高い電気的、熱的、機械的
接合を具現できる。この観点で経済面に資する
所大である。
(4) In the metallurgical process of the present invention, highly reliable electrical, thermal, and mechanical bonding can be realized by using a general alloy containing lead and tin as main components as the bonding member. From this point of view, it is a great contribution to the economic aspect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の疲労寿命特性を示
すグラフ、第2図及び第3図ははんだ材の剪断破
断強度を示すグラフ、そして第4図は改善された
冶金プロセス及び改善された冶金プロセスで得た
はんだ材の金属組織の相違を表わす図、第5図は
他の実施例の疲労寿命特性を示すグラフである。 1……はんだ層、2……銅支持板、3……シリ
コン基体。
FIG. 1 is a graph showing the fatigue life characteristics of an embodiment of the present invention, FIGS. 2 and 3 are graphs showing the shear rupture strength of the solder material, and FIG. 4 is a graph showing the improved metallurgical process and the improved metallurgical process. FIG. 5, which is a diagram showing the difference in the metal structure of the solder material obtained by the metallurgical process, is a graph showing the fatigue life characteristics of another example. 1...Solder layer, 2...Copper support plate, 3...Silicon base.

Claims (1)

【特許請求の範囲】 1 錫が35重量%以上60重量%以下含有し残部が
実質的に鉛であるはんだ材を、異種部材間に介装
し、はんだ材を溶融せしめた後、125℃/分以下
の速度で冷却する冶金プロセスを経ることを特徴
とする異種部材のはんだ接合方法。 2 特許請求の範囲第1項において、異種部材は
相互に熱膨張係数が異なることを特徴とする異種
部材のはんだ接合方法。 3 特許請求の範囲第1項において、少なくとも
溶融したはんだ材の固相化が完了するまでの期間
125℃/分以下の速度で冷却することを特徴とす
る異種部材のはんだ接合方法。
[Claims] 1. A solder material containing 35% by weight or more and 60% by weight or less of tin, with the remainder being substantially lead, is interposed between dissimilar members, and after melting the solder material, the solder material is heated at 125°C/ A method for soldering dissimilar parts, characterized by passing through a metallurgical process of cooling at a rate of less than 1 minute. 2. The method of soldering dissimilar members according to claim 1, wherein the dissimilar members have mutually different coefficients of thermal expansion. 3 In claim 1, at least the period until solidification of the molten solder material is completed.
A method for soldering dissimilar parts, characterized by cooling at a rate of 125°C/min or less.
JP13745584A 1984-07-03 1984-07-03 Joining of different members by soldering Granted JPS6117355A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13745584A JPS6117355A (en) 1984-07-03 1984-07-03 Joining of different members by soldering
DE3523808A DE3523808C3 (en) 1984-07-03 1985-07-03 Process for soldering parts of an electronic arrangement made of different materials and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13745584A JPS6117355A (en) 1984-07-03 1984-07-03 Joining of different members by soldering

Publications (2)

Publication Number Publication Date
JPS6117355A JPS6117355A (en) 1986-01-25
JPH0426958B2 true JPH0426958B2 (en) 1992-05-08

Family

ID=15199004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13745584A Granted JPS6117355A (en) 1984-07-03 1984-07-03 Joining of different members by soldering

Country Status (1)

Country Link
JP (1) JPS6117355A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137394U (en) * 1980-03-19 1981-10-17
JP2609724B2 (en) * 1989-06-28 1997-05-14 株式会社日立製作所 Semiconductor device
GB2434255B (en) * 2006-05-19 2008-05-21 William Gallacher Electric-magnetic drive

Also Published As

Publication number Publication date
JPS6117355A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
JP3226213B2 (en) Solder material and electronic component using the same
JP4609296B2 (en) High temperature solder, high temperature solder paste material, and power semiconductor device using the same
US7964492B2 (en) Semiconductor device and automotive AC generator
JP2516326B2 (en) Ternary solder alloy, method of electrically connecting integrated circuit chip to substrate having circuit pattern formed thereon, and integrated circuit chip module
JP2002307188A (en) Products using Zn-Al based solder
JP2009060101A (en) Electronics
JPH06297185A (en) Dynamic solder paste composition
JPS58107295A (en) Solder alloy
JP5031677B2 (en) Manufacturing method of bonded structure
JP2002261104A (en) Semiconductor devices and electronic equipment
JP5231727B2 (en) Joining method
US6742248B2 (en) Method of forming a soldered electrical connection
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
JPH0426958B2 (en)
JPH08102570A (en) Ceramic circuit board
JPS63123594A (en) Alloy for low temperature joining
JPH11343594A (en) Material for electrical and electronic parts, its production and electrical and electronic parts using the material
JP2503775B2 (en) Substrate for semiconductor device
WO2024090143A1 (en) Device, electrical device, and substrate
JP2014147966A (en) Joining material, joining method, joining structure, and semiconductor device
JPH04333392A (en) Solder alloy and metallized structure
JP2005177842A (en) Brazing material, manufacturing method of semiconductor device using the same and semiconductor device
JP2503779B2 (en) Substrate for semiconductor device
JP2503774B2 (en) Substrate for semiconductor device
JP5744080B2 (en) Bonded body and semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term