[go: up one dir, main page]

JPH04268033A - Production of beryllium-copper alloy - Google Patents

Production of beryllium-copper alloy

Info

Publication number
JPH04268033A
JPH04268033A JP4745691A JP4745691A JPH04268033A JP H04268033 A JPH04268033 A JP H04268033A JP 4745691 A JP4745691 A JP 4745691A JP 4745691 A JP4745691 A JP 4745691A JP H04268033 A JPH04268033 A JP H04268033A
Authority
JP
Japan
Prior art keywords
beryllium
copper alloy
alloy
casting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4745691A
Other languages
Japanese (ja)
Inventor
Munenori Uchida
宗範 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4745691A priority Critical patent/JPH04268033A/en
Publication of JPH04268033A publication Critical patent/JPH04268033A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To keep a molten alloy at <=1,100 deg.C at the beginning of casting when a Be-Cu alloy contg. 1.5-2.0wt.% Be is produced. CONSTITUTION:The amt. of beryllium carbide contained in a Be-Cu alloy product contg. 1.5-2.0wt.% Be in the alloy is reduced by keeping a molten alloy at <=1,100 deg.C at the beginning of casting.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ベリリウム銅合金の鋳
造方法に関するものである。さらに詳しく述べると、本
発明は、ベリリウム銅合金中に含まれる炭化物を低減す
ることを可能とするベリリウム銅合金の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting beryllium-copper alloys. More specifically, the present invention relates to a method for producing a beryllium copper alloy that makes it possible to reduce carbides contained in the beryllium copper alloy.

【0002】0002

【従来の技術】ベリリウム銅合金は、導電性及び高強度
性に優れているため、スイッチ部品あるいは自動車の電
装部品として用いられている。かかるベリリウム銅合金
は、一般に、溶解−脱ガス−鋳造法、あるいは連続鋳造
法によって製造される。製造工程中に、炭素が炉あるい
はスクラップ等から混入して溶湯中に溶解し、ベリリウ
ム銅合金中には、炭化物(主に、ベリリウムカーバイド
)として存在する。かかる炭化物は硬くて脆い為、炭化
物を含むベリリウム銅合金材料の被削性を低下すること
が知られている。従来のベリリウム銅合金の製造方法で
は、コバルト等の添加成分を溶かす為、ベリリウム銅合
金の合金成分を1150〜1200℃の温度で溶解し、
同温度にて溶湯を鋳型に注入している。この場合、炭化
物は、溶解中に生成してくる酸化物系の非金属介在物と
同様に溶湯中に存在するものと考えられ、非金属介在物
を除去する為に行なう溶湯の浮上分離−フィルトレーシ
ョンによって炭化物を除去する方法が行なわれている。 しかしながら、この方法では、ベリリウム銅合金中の炭
化物を十分には低減できなかった。
2. Description of the Related Art Beryllium copper alloys have excellent electrical conductivity and high strength, and are therefore used as switch parts or electrical components of automobiles. Such beryllium copper alloys are generally produced by melting-degassing-casting or continuous casting. During the manufacturing process, carbon is mixed in from the furnace or scrap and dissolved into the molten metal, and is present in the form of carbides (mainly beryllium carbide) in the beryllium-copper alloy. Since such carbides are hard and brittle, it is known that they reduce the machinability of beryllium copper alloy materials containing carbides. In the conventional manufacturing method of beryllium copper alloy, in order to melt additive components such as cobalt, the alloy components of beryllium copper alloy are melted at a temperature of 1150 to 1200°C.
Molten metal is poured into the mold at the same temperature. In this case, carbides are considered to be present in the molten metal in the same way as oxide-based nonmetallic inclusions that are generated during melting, and the molten metal is floated and filtered to remove nonmetallic inclusions. A method of removing carbides is by tration. However, this method could not sufficiently reduce carbides in the beryllium-copper alloy.

【0003】0003

【発明が解決しようとする課題】従来方法では、ベリリ
ウム銅合金中の炭化物の量を十分には低減できなかった
が、本発明はかかる炭化物の量を有効に低減することを
目的とする。即ち、本発明は、ベリリウム銅合金中の炭
化物、特にベリリウムカーバイドの量を低減することを
可能とする被削性に優れたベリリウム銅合金の製造方法
を提供することを目的とするものである。
Although conventional methods have not been able to sufficiently reduce the amount of carbides in beryllium-copper alloys, it is an object of the present invention to effectively reduce the amount of carbides. That is, an object of the present invention is to provide a method for producing a beryllium copper alloy with excellent machinability, which makes it possible to reduce the amount of carbides, particularly beryllium carbide, in the beryllium copper alloy.

【0004】0004

【課題を解決するための手段】本発明は、ベリリウムを
合金全重量に対して1.5 − 2.0重量%含有する
ベリリウム銅合金の製造方法であって、鋳造開始温度を
1,100 ℃以下とすることを特徴とする。本明細書
中、鋳造開始温度とは、溶湯を鋳型に注入する取鍋の出
湯口の溶湯の温度をいう。
[Means for Solving the Problems] The present invention provides a method for producing a beryllium-copper alloy containing 1.5 to 2.0% by weight of beryllium based on the total weight of the alloy, the casting start temperature being 1,100°C. It is characterized by the following. In this specification, the casting start temperature refers to the temperature of the molten metal at the outlet of the ladle through which the molten metal is poured into the mold.

【0005】本発明は、以下の知見に基づいてなされた
。上記したように、従来ベリリウム銅合金中の炭化物は
ベリリウム銅合金の溶解工程以前から存在しているもの
と考えられ、非金属介在物と一緒に浮上分離−フィルト
レーションという方法によって除去する試みがなされて
いた。本発明者は、炭化物低減を目的として、溶解工程
、注入工程、冷却工程を詳細に検討した所、溶湯中には
炭素として溶解していること及び冷却中に該炭素がベリ
リウムと結合してベリリウムカーバイドとして晶出し、
それがベリリウム銅合金中に存在するということを初め
て見い出した。そこで、さらに、冷却過程を詳細に検討
した所、鋳造開始時の温度を1,100 ℃以下にして
鋳造を行なうことにより、ベリリウム銅合金中の炭化物
の量が低減された、優れた被削性を有するベリリウム銅
合金が得られ、本発明を完成した。
The present invention was made based on the following findings. As mentioned above, carbides in conventional beryllium-copper alloys are thought to exist before the melting process of beryllium-copper alloys, and attempts have been made to remove them together with non-metallic inclusions by a method called flotation/filtration. It had been done. The present inventor conducted a detailed study of the melting process, injection process, and cooling process for the purpose of reducing carbides, and found that carbon is dissolved in the molten metal, and that the carbon combines with beryllium during cooling to form beryllium. Crystallizes as carbide,
It was discovered for the first time that it exists in beryllium-copper alloys. Therefore, a detailed study of the cooling process revealed that by casting at a temperature of 1,100°C or less at the start of casting, the amount of carbides in the beryllium-copper alloy was reduced, resulting in excellent machinability. A beryllium-copper alloy having the following properties was obtained, and the present invention was completed.

【0006】合金成分の溶解を1,100 ℃以下で行
なう場合には、そのまま出湯を行えば良いが、所望合金
組成によっては、合金成分を溶解させるために、1,1
00 ℃より高い温度で溶解を行なう場合がある。この
ような場合には、溶解後、温度を1.100 ℃以下に
下げて分離した炭化物を浮上分離を行なった後(以下、
前処理という)、同温度以下でかつ近接した温度で脱ガ
ス、鋳造を行う。このような前処理を行なうものも、本
発明の範囲内に入る。
[0006] When melting the alloy components at a temperature below 1,100°C, it is sufficient to tap the metal as is, but depending on the desired alloy composition, it is necessary to melt the alloy components at 1,1
Melting may be carried out at temperatures higher than 00°C. In such a case, after melting, lower the temperature to below 1.100 °C and float the separated carbides (hereinafter referred to as
(referred to as pretreatment), degassing and casting are performed at the same temperature or lower but at a similar temperature. Those that perform such pretreatment also fall within the scope of the present invention.

【0007】まず、ベリリウム銅合金中のベリリウム含
有量と炭素溶解度との関係を説明する。銅合金中にBe
が添加されると、炭素は、合金中に溶解する。そこで、
Beの含有量を種々変更して、ベリリウム銅合金を1,
200℃で溶解し、炭素の溶湯中の溶解度を調べた。測
定は、溶湯より分析用サンプルを採取し、これを赤外吸
収スペクトル分析法を用いて分析した。結果を第1図に
示す。同表からBeが1.5 重量%以下では、炭素の
溶解度が50 ppm以下であることがわかる。発明者
は、溶湯中に炭素が50 ppm以上あると、冷却中に
Be2C (ベリリウムカーバイド) が晶出し、製品
であるベリリウム銅合金中に現われることを見い出した
First, the relationship between beryllium content in beryllium copper alloy and carbon solubility will be explained. Be in copper alloy
When carbon is added, the carbon dissolves into the alloy. Therefore,
By changing the Be content variously, the beryllium copper alloy was made into 1,
It was melted at 200°C and the solubility of carbon in the molten metal was examined. For the measurement, a sample for analysis was taken from the molten metal and analyzed using infrared absorption spectroscopy. The results are shown in Figure 1. From the same table, it can be seen that when Be is 1.5% by weight or less, the solubility of carbon is 50 ppm or less. The inventor has discovered that when the molten metal contains 50 ppm or more of carbon, Be2C (beryllium carbide) crystallizes during cooling and appears in the beryllium copper alloy product.

【0008】次に、ベリリウム銅合金溶湯温度と炭素溶
解度との関係について説明する。第2図は、ベリリウム
の含有量を2.0 重量%とした場合のベリリウム銅合
金について得られた溶湯温度と炭素溶解度との関係を示
すグラフである。同図から、ベリリウムの含有量が2.
0 重量%であっても、溶湯の温度を1,100 ℃と
すれば、炭素の溶解度を50 ppm以下とできること
が分かる。ここに、ベリリウムの含有量2.0 重量%
とは、通常のベリリウム合金のベリリウム含有量が取り
得る最大値と考えられる。 また、鋳造開始温度の下限値は特に限定がなく、合金が
溶解状態となっていれば良いと考えられる。従って、下
限としては、970 ℃位が採用されよう。上記結果か
ら、ベリリウム銅合金の製造方法において、Beの含有
量を1.5 〜2.0 重量%とし、鋳造開始温度を1
,100 ℃以下に保って鋳造を行なえば、炭化物の晶
出のないベリリウム銅合金が得られることがわかる。B
e以外の添加物とししては、Co, Ni, Mn, 
Mg, Al等を加えても勿論良いものである。
Next, the relationship between beryllium copper alloy molten metal temperature and carbon solubility will be explained. FIG. 2 is a graph showing the relationship between molten metal temperature and carbon solubility obtained for a beryllium-copper alloy when the beryllium content is 2.0% by weight. From the same figure, the content of beryllium is 2.
It can be seen that even if the carbon content is 0% by weight, the solubility of carbon can be reduced to 50 ppm or less if the temperature of the molten metal is 1,100°C. Here, the content of beryllium is 2.0% by weight.
is considered to be the maximum value that the beryllium content of ordinary beryllium alloys can take. Further, there is no particular restriction on the lower limit of the casting start temperature, and it is considered that it is sufficient as long as the alloy is in a molten state. Therefore, about 970°C will be adopted as the lower limit. From the above results, in the manufacturing method of beryllium copper alloy, the Be content is set to 1.5 to 2.0% by weight, and the casting start temperature is set to 1.
, 100° C. or lower, a beryllium-copper alloy without carbide crystallization can be obtained. B
Additives other than e include Co, Ni, Mn,
Of course, it is also good to add Mg, Al, etc.

【0009】[0009]

【実施例】以下に本発明を実施例を参照して説明する。 実験例1 以下の条件によって、1.86% Be −0.25%
 Co を含有するベリリウム鋼合金を、金型鋳造法に
より溶解−脱ガス−鋳造工程で製造し、合金中に晶出し
たカーバイド量を後述の方法によって測定した。結果を
表1に併せて記す。   上記結果から、比較例ではカーバイドの143 個
/cm2 の晶出が見られたが、比較例よりも鋳造開始
温度が58℃低く鋳造開始温度が1100℃以下である
本発明方法で鋳造したベリリウム銅合金中には、ベリリ
ウムカーバイドの晶出は全く見られなかった。なお、ベ
リリウムカーバイド量の測定法としては、400 倍の
光学顕微鏡を用いて、合金断面の100 視野につきベ
リリウムカーバイド量測定を行ない、単位面積当りに換
算し、それら値の平均値をとった。
EXAMPLES The present invention will be explained below with reference to Examples. Experimental example 1 1.86% Be -0.25% under the following conditions
A beryllium steel alloy containing Co was produced by a melting-degassing-casting process using a die casting method, and the amount of carbide crystallized in the alloy was measured by the method described below. The results are also shown in Table 1. From the above results, although 143 carbide crystals/cm2 were observed in the comparative example, the beryllium copper cast by the method of the present invention, which has a casting start temperature of 58°C lower than the comparative example and a casting start temperature of 1100°C or less. No crystallization of beryllium carbide was observed in the alloy. The amount of beryllium carbide was measured using an optical microscope with a magnification of 400 times, and the amount of beryllium carbide was measured in 100 fields of view of the cross section of the alloy, and the amount was calculated per unit area, and the average value of these values was taken.

【0010】実施例2 表2に示すベリリウム銅合金の合金成分を混合、溶解し
、連続鋳造を行なって直径200 mmのビレットを製
造した。なお、この時の溶解温度を1100℃以下にし
た。そして実施例1と同様の方法によりベリリウムカー
バイドの量を測定した。鋳造温度とベリリウムカーバイ
ド量との関係を表2に示す。   表2から分かるように、本発明方法によると、ベリ
リウム銅合金中のベリリウムカーバイドの量をゼロとす
ることができる。一方、鋳造開始温度を1,100 ℃
より高くした比較例では、123 〜141 個数/c
m2 もの多量のカーバイドの晶出がみられる。
Example 2 The alloy components of beryllium copper alloy shown in Table 2 were mixed and melted, and continuous casting was performed to produce a billet with a diameter of 200 mm. Note that the melting temperature at this time was 1100°C or lower. Then, the amount of beryllium carbide was measured by the same method as in Example 1. Table 2 shows the relationship between casting temperature and beryllium carbide content. As can be seen from Table 2, according to the method of the present invention, the amount of beryllium carbide in the beryllium copper alloy can be reduced to zero. On the other hand, the casting start temperature was set at 1,100°C.
In a comparative example with a higher value, 123 to 141 pieces/c
A large amount of carbide (m2) was observed to crystallize.

【0011】実施例3 以下の条件によって、1.83%Be−0.23%Co
のベリリウム銅合金を溶解−脱ガス−前処理−鋳造工程
で製造した。 溶解は1100℃以上で行い、鋳造は連続鋳造法にて厚
さ130 ×幅500 スラブに鋳造した。前処理は脱
ガス後に除滓剤を用いて溶湯表面スラグを除去すること
により行った。   従来法では136, 178個/cm2 のカーバ
イドの晶出が見られたが、溶解後1100℃以下で前処
理を行い鋳造を開始した本発明ではカーバイドの晶出は
見られなかった。1100℃以上で溶解を開始しても本
発明によればカーバイドのないベリリウム銅合金が得ら
れる。
Example 3 Under the following conditions, 1.83%Be-0.23%Co
beryllium copper alloy was produced by melting-degassing-pretreatment-casting process. Melting was performed at 1100° C. or higher, and casting was performed by continuous casting into a slab with a thickness of 130 mm and a width of 500 mm. Pretreatment was performed by removing slag on the surface of the molten metal using a sludge remover after degassing. In the conventional method, crystallization of 136,178 carbides/cm2 was observed, but in the present invention, in which pretreatment was performed at 1100° C. or lower after melting and casting was started, no crystallization of carbide was observed. According to the present invention, a carbide-free beryllium copper alloy can be obtained even if melting starts at 1100° C. or higher.

【0012】以上、説明したように、本発明に係るベリ
リウムを1.5 −2.0 重量%含有するベリリウム
銅合金の製造方法において、鋳造開始温度を1,100
 ℃以下とすることによって、合金中に晶出するベリリ
ウムカーバイド量を実質的にゼロとできる。従って、本
発明によれば、被削性に優れた実用性の高いベリリウム
銅合金が得られる。
As explained above, in the method for producing a beryllium copper alloy containing 1.5-2.0% by weight of beryllium according to the present invention, the casting start temperature is set at 1,100% by weight.
By keeping the temperature below 0.degree. C., the amount of beryllium carbide crystallized in the alloy can be made substantially zero. Therefore, according to the present invention, a highly practical beryllium copper alloy with excellent machinability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】1200℃におけるベリリウム銅合金溶湯中の
ベリリウム含有量と炭素溶解度との関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between beryllium content in a molten beryllium-copper alloy and carbon solubility at 1200°C.

【図2】ベリリウム銅合金溶湯の温度と炭素溶解度との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between temperature and carbon solubility of a molten beryllium copper alloy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ベリリウムを合金全重量中に1.5 
−2.0 重量%含有するベリリウム銅合金の製造方法
において、溶湯の鋳造開始温度を1,100 ℃以下と
することを特徴とするベリリウム銅合金の製造方法。
Claim 1: Contains 1.5 beryllium in the total weight of the alloy.
- A method for producing a beryllium copper alloy containing 2.0% by weight, characterized in that the casting start temperature of the molten metal is 1,100°C or less.
【請求項2】  ベリリウム銅合金の合金成分を1,1
00 ℃より高い温度で溶解する場合には、溶湯を1,
100 ℃以下に下げて、それによって分離した炭化物
を除去し、しかる後に鋳造を行なうことを特徴とする請
求項1の製造方法。
[Claim 2] The alloy composition of the beryllium copper alloy is 1.1.
When melting at a temperature higher than 0.0°C, the molten metal is
2. A manufacturing method according to claim 1, characterized in that the temperature is lowered to 100 DEG C. or less to thereby remove separated carbides, followed by casting.
JP4745691A 1991-02-21 1991-02-21 Production of beryllium-copper alloy Withdrawn JPH04268033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4745691A JPH04268033A (en) 1991-02-21 1991-02-21 Production of beryllium-copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4745691A JPH04268033A (en) 1991-02-21 1991-02-21 Production of beryllium-copper alloy

Publications (1)

Publication Number Publication Date
JPH04268033A true JPH04268033A (en) 1992-09-24

Family

ID=12775655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4745691A Withdrawn JPH04268033A (en) 1991-02-21 1991-02-21 Production of beryllium-copper alloy

Country Status (1)

Country Link
JP (1) JPH04268033A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142428A1 (en) 2010-05-14 2011-11-17 三菱マテリアル株式会社 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
WO2011142450A1 (en) 2010-05-14 2011-11-17 三菱マテリアル株式会社 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US9587299B2 (en) 2011-10-28 2017-03-07 Mitsubishi Materials Corporation Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
US10153063B2 (en) 2011-11-07 2018-12-11 Mitsubishi Materials Corporation Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US10458003B2 (en) 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142428A1 (en) 2010-05-14 2011-11-17 三菱マテリアル株式会社 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
WO2011142450A1 (en) 2010-05-14 2011-11-17 三菱マテリアル株式会社 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
EP2952595A1 (en) 2010-05-14 2015-12-09 Mitsubishi Materials Corporation Copper alloy and material rolled thereof for electronic device and method for producing this alloy
EP3009523A2 (en) 2010-05-14 2016-04-20 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing it, and rolled material from it
EP3020836A2 (en) 2010-05-14 2016-05-18 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing it, and rolled copper alloy for electronic device
US10032536B2 (en) 2010-05-14 2018-07-24 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US10056165B2 (en) 2010-05-14 2018-08-21 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US9587299B2 (en) 2011-10-28 2017-03-07 Mitsubishi Materials Corporation Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
US10153063B2 (en) 2011-11-07 2018-12-11 Mitsubishi Materials Corporation Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US10458003B2 (en) 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material

Similar Documents

Publication Publication Date Title
KR100921311B1 (en) Casting method of modified copper alloy using the master alloy for use in modifying copper alloy
JP5839461B2 (en) Method for producing spheroidal graphite cast iron, and method for producing vehicle parts using spheroidal graphite cast iron
CN114393181B (en) Assembled frog and preparation method thereof
US3928028A (en) Grain refinement of copper alloys by phosphide inoculation
CN113444890A (en) Feeding production method of high-quality large-tonnage electroslag ingot
CN101400814A (en) Low-carbon resulfurized free-cutting steel material
JPH04268033A (en) Production of beryllium-copper alloy
JPH04218640A (en) Die stock
JP2011012300A (en) Copper alloy and method for producing copper alloy
CN113458352B (en) Method for producing Cu-Ni-Sn alloy and cooler for use in same
KR101024358B1 (en) Continuous cast iron casting method of spherical graphite cast iron
CN111518990B (en) Method for controlling alloy elements in free-cutting steel to be uniformly distributed
JPH09241767A (en) Consumable electrode type remelting method for superalloy
US4238230A (en) Process for producing free-machining steel
JP4833694B2 (en) Oxygen-free copper and oxygen-free copper alloy rough wire rods with excellent peelability
JP2005144492A (en) Method for producing chromium-zirconium-aluminum-series copper alloy wire rod
JP6831968B1 (en) Crystal grain refinement determination method from the cooling curve
JP2003041351A (en) High chromium steel and its manufacturing method
KR100573781B1 (en) Solvent for Melting Treatment of Copper and Copper Alloy
US20050181955A1 (en) Method of producing Mn alloy sputtering target and Mn alloy sputtering target produced through the production method
JP2866510B2 (en) Melting casting method of copper alloy containing iron
JPH05311281A (en) Cu-fe alloy for adding to copper alloy and its manufacture
JPH0339453A (en) Production of cast aluminum alloy bar for vtr cylinder
US1586871A (en) Casting metals
JP2003221614A (en) Method for manufacturing maraging steel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514