[go: up one dir, main page]

JPH04267929A - Denitration apparatus and preparation of zeolite azide compound mixed molded body - Google Patents

Denitration apparatus and preparation of zeolite azide compound mixed molded body

Info

Publication number
JPH04267929A
JPH04267929A JP3029980A JP2998091A JPH04267929A JP H04267929 A JPH04267929 A JP H04267929A JP 3029980 A JP3029980 A JP 3029980A JP 2998091 A JP2998091 A JP 2998091A JP H04267929 A JPH04267929 A JP H04267929A
Authority
JP
Japan
Prior art keywords
zeolite
nan3
nox
molded body
mixed molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3029980A
Other languages
Japanese (ja)
Inventor
Yoshihiko Asano
義彦 浅野
Masamichi Kuramoto
政道 倉元
Yoshio Nakajima
義雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3029980A priority Critical patent/JPH04267929A/en
Publication of JPH04267929A publication Critical patent/JPH04267929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To remove NOx with high denitration efficiency within a low temp. region over a wide use temp. range by subjecting NOx in the gas flowing through a treatment container to the contact reaction with the zeolite NaN3 mixed molded body in the treatment container. CONSTITUTION:NOx in the gas flowing through a treatment container 1 is subjected to the contact reaction with the zeolite NaN3 mixed molded body 7 in the container 1 to be removed by the removing action of zeolite and NaN3. The aforementioned mixed molded body 7 can be obtained by mixing an org. binder (e.g. polyvinyl alcohol) with a powder mixture of zeolite and NaN3 to mold both of them and baking the molded body in a nitrogen atmosphere. By this denitration apparatus, high denitration efficiency can be realized by the synergistic removing action of zeolite and NaN3 and a use temp. range becomes a wide low temp. region. Further, the convenience and safety of handling are enhanced and the apparatus can be also miniaturized. Since a catalyst is unnecessary, this apparatus is economically advantageous.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、内燃機関の排煙等の
窒素酸化物(NOX)含有ガスからNOXを除去する技
術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for removing NOX from nitrogen oxide (NOX)-containing gas such as exhaust gas from an internal combustion engine.

【0002】0002

【従来の技術】一般に、NOX処理技術は排煙脱硝技術
として実用化されている。排煙脱硝方法は乾式法と湿式
法に大別され、最も進んでいるのは乾式法の1つである
選択接触還元法である。この選択選択還元法における主
反応を(1)式に示す。
2. Description of the Related Art Generally, NOX treatment technology has been put to practical use as a flue gas denitrification technology. Flue gas denitrification methods are broadly divided into dry methods and wet methods, and the most advanced method is the selective catalytic reduction method, which is one of the dry methods. The main reaction in this selective selective reduction method is shown in equation (1).

【0003】 4NO+4NH3+O2→4N2+6H2O…(1)こ
の選択接触還元法では、還元剤としてアンモニアや炭化
水素、一酸化炭素が使用され、特にアンモニアは酸素が
共存していても選択的にNOXと反応するため、ディー
ゼル機関の排気ガス等、酸素が多く含まれる排気ガスの
処理に使用される。また、触媒としてPtなどの貴金属
系やAl2O3,TiO2などに担持させた各種金属酸
化物などが使用される。
4NO + 4NH3 + O2 → 4N2 + 6H2O... (1) In this selective catalytic reduction method, ammonia, hydrocarbons, and carbon monoxide are used as reducing agents, and ammonia in particular reacts selectively with NOX even if oxygen is present. It is used to treat exhaust gas that contains a lot of oxygen, such as exhaust gas from diesel engines. Further, as a catalyst, noble metals such as Pt, various metal oxides supported on Al2O3, TiO2, etc. are used.

【0004】この選択接触還元法は、簡単なシステムで
処理を行うことができ、高脱硝率が得られ、しかもNO
Xを無害なN2とH2Oに分解できるので排出処理が不
要となる等の利点を有する反面、次のような問題点があ
る。まず、有害で危険なアンモニアガスを使用するため
、その取り扱いに細心の注意を要する点が挙げられる。 また、NOXの還元反応が等モル反応であるため、脱硝
するNOX量に等しいアンモニアを排気ガス中に注入し
なければならず、アンモニア貯蔵設備や触媒等の大型化
を招く問題もある。また、アンモニアガスにより還元触
媒性能が劣化し、排気ガス成分によっても還元触媒の劣
化が進むため、触媒の交換作業が必要となり、特に高価
な貴金属系の触媒の場合は経済的に不利となる問題もあ
る。また、高温では触媒成分の焼結が進行するなどの不
都合を生じ、低温ではアンモニアが水分,SOXと反応
するために脱硝率が低下してしまい、使用温度の範囲が
320〜450℃と高温域に制限される問題もある。
[0004] This selective catalytic reduction method can be carried out using a simple system, provides a high denitrification rate, and also reduces NOx.
Although it has advantages such as eliminating the need for discharge treatment because X can be decomposed into harmless N2 and H2O, it has the following problems. First, since it uses harmful and dangerous ammonia gas, it must be handled with great care. Furthermore, since the NOX reduction reaction is an equimolar reaction, ammonia equal to the amount of NOx to be denitrified must be injected into the exhaust gas, which poses the problem of increasing the size of ammonia storage equipment, catalysts, and the like. In addition, the performance of the reduction catalyst deteriorates due to ammonia gas, and the deterioration of the reduction catalyst progresses due to exhaust gas components, making it necessary to replace the catalyst, which is an economically disadvantageous problem, especially in the case of expensive precious metal catalysts. There is also. In addition, at high temperatures, problems such as sintering of catalyst components occur, and at low temperatures, ammonia reacts with moisture and SOX, reducing the denitrification rate. There are some issues that are limited to.

【0005】このように選択接触還元法には不利な点も
多いため、現在、他の脱硝方法の研究も行われている。 他の脱硝方法として、NOXを吸着・除去する方法が挙
げられる。この方法のうち多数は活性炭による吸着方式
であるが、ゼオライトによる吸着方式の研究も行われて
いる。ゼオライトを使用する場合、通常は合成ゼオライ
トを使用し、天然ゼオライトを用いた研究は極めて少な
い(「NOXのゼオライトによる除去に関する研究」工
業開発研究所(1984)、Ma,Y.H.&C.Ma
ncei;AIchEJ,18  1148(1972
)参照)。合成ゼオライトを用いた脱硝方法として、銅
イオン交換ZSM−5型ゼオライトを用いる研究が行わ
れている。この方法の場合、200〜400℃の反応温
度で50%近い脱硝率があると報告されている。
Since the selective catalytic reduction method has many disadvantages as described above, research on other denitrification methods is currently being conducted. Other denitrification methods include a method of adsorbing and removing NOX. Most of these methods are adsorption methods using activated carbon, but research is also being conducted on adsorption methods using zeolite. When using zeolite, synthetic zeolite is usually used, and there are very few studies using natural zeolite ("Study on the removal of NOx by zeolite", Industrial Development Institute (1984), Ma, Y. H. & C. Ma
ncei; AIchEJ, 18 1148 (1972
)reference). As a denitrification method using synthetic zeolite, research is being conducted using copper ion exchange ZSM-5 type zeolite. This method is reported to have a denitrification rate of nearly 50% at a reaction temperature of 200 to 400°C.

【0006】[0006]

【発明が解決しようとする課題】しかしながら合成ゼオ
ライトによるNOX吸着・除去方法の場合、排気ガス中
に含まれる酸素(数10%以下)で触媒性能が劣化して
脱硝率が低下する点が大きな課題となっている。また、
活性時間が長く、反応温度範囲が制限され、反応量も限
界がある等、様々な課題もある。
[Problems to be Solved by the Invention] However, in the case of the NOX adsorption/removal method using synthetic zeolite, a major problem is that the catalyst performance deteriorates due to oxygen contained in the exhaust gas (several 10% or less) and the denitrification rate decreases. It becomes. Also,
There are various problems such as long activation time, limited reaction temperature range, and limited reaction amount.

【0007】この発明は、このような事情に鑑み、ゼオ
ライトを用いてNOXを除去する方法を改善し、簡便で
脱硝率の高い脱硝処理を可能とする技術を提供すること
を目的とする。
[0007] In view of the above circumstances, an object of the present invention is to improve the method of removing NOX using zeolite and to provide a technology that enables simple denitrification treatment with a high denitrification rate.

【0008】[0008]

【課題を解決するための手段および作用】この発明は、
上記の目的を達成するために、NOX含有ガスが流通す
る処理容器を備え、ゼオライトとアジ化化合物の混合成
形物をこの処理容器の内部に配置した脱硝装置を提供す
る。この装置によれば、処理容器の内部において、ゼオ
ライト・アジ化化合物混合成形物がNOXに接触反応し
、ゼオライトとアジ化化合物の除去作用によってNOX
が除去される。
[Means and effects for solving the problems] This invention has the following features:
In order to achieve the above object, a denitrification device is provided which is equipped with a processing vessel through which NOX-containing gas flows, and in which a molded mixture of zeolite and an azide compound is placed inside the processing vessel. According to this device, the zeolite/azide compound mixed molded product catalytically reacts with NOX inside the processing container, and the NOx is removed by the removal action of the zeolite and the azide compound.
is removed.

【0009】前記のゼオライト・アジ化化合物混合成形
物は、ゼオライトおよびアジ化化合物の混合粉末にバイ
ンダを混合して成形し、この成形物を窒素雰囲気中にて
焼成することによって得ることができる。
The zeolite/azide compound mixed molded product described above can be obtained by mixing a binder with a mixed powder of zeolite and an azide compound, molding the mixture, and firing the molded product in a nitrogen atmosphere.

【0010】0010

【実施例】以下、この発明の実施例を説明する。この実
施例では、合成ゼオライトを使用せず、ゼオライトとア
ジ化ナトリウム(NaN3)との混合成形物を作成し、
この混合成形物を用いてNOX除去を行うものであり、
以下詳細に説明する。
[Embodiments] Examples of the present invention will be described below. In this example, a molded mixture of zeolite and sodium azide (NaN3) was created without using synthetic zeolite.
This mixed molded product is used to remove NOX,
This will be explained in detail below.

【0011】まず、ゼオライトとして市販のもの(東ソ
ー製:ゼオラムF−9)を用意し、このゼオライトを砕
いて粉末にする。そして、このゼオライト粉末5gにN
aN3をたとえば10重量%加え、これにバインダとし
て有機物を数重量%混合して所定の形状に成形する。こ
の形状としては、ハニカム状や板状、多孔質板状、球状
などが考えられる。多孔質にする場合、バインダとして
PVA(ポリビニルアルコール)を使用する。この後、
N2雰囲気において低温(100〜300℃の範囲)で
成形物を3時間焼成する。以上の工程により、ゼオライ
ト・NaN3の混合成形物が得られた。この混合成形物
は、NOX除去の他、CO2等のガスの除去に有効であ
ると考えられる。
First, a commercially available zeolite (Zeolum F-9 manufactured by Tosoh) is prepared, and this zeolite is crushed into powder. Then, add N to 5g of this zeolite powder.
For example, 10% by weight of aN3 is added, and a few% by weight of an organic substance as a binder is mixed therewith and molded into a predetermined shape. Possible shapes include a honeycomb shape, a plate shape, a porous plate shape, and a spherical shape. When making it porous, PVA (polyvinyl alcohol) is used as a binder. After this,
The moldings are fired for 3 hours at low temperature (range 100-300°C) in a N2 atmosphere. Through the above steps, a zeolite/NaN3 mixed molded product was obtained. This mixed molded product is considered to be effective in removing gases such as CO2 in addition to removing NOx.

【0012】次に、この混合成形物を用いた脱硝実験に
ついて説明する。
Next, a denitrification experiment using this mixed molded product will be explained.

【0013】図1は、脱硝実験にあたって構成した装置
を示す。処理容器(ガラス円筒)1には、ヒータ2が取
り付けられると共に、ガス導入管3およびガス排出管4
が連結されている。ガス導入管3は、NOを含有した標
準ガスと水分を混合して処理容器に導入するものであり
、ガス排出管4は、処理後のガスを排出するものである
。ガス導入管3には、水分を供給する導入管5が連結さ
れている。ガス排出管4の後段には、NOX濃度分析計
(島津製作所製:NOX分析計CLM−107)6が設
置されている。7は前記したゼオライト・NaN3混合
成形物であり、この混合成形物7をステンレス製のメッ
シュケース8に収納したうえで、メッシュケース8を処
理容器1の内部に挿入・設置する。
FIG. 1 shows the apparatus constructed for the denitrification experiment. A heater 2 is attached to the processing container (glass cylinder) 1, as well as a gas introduction pipe 3 and a gas discharge pipe 4.
are connected. The gas introduction pipe 3 is for introducing a mixture of a standard gas containing NO and moisture into the processing container, and the gas exhaust pipe 4 is for discharging the gas after processing. An introduction pipe 5 for supplying moisture is connected to the gas introduction pipe 3. A NOX concentration analyzer (manufactured by Shimadzu Corporation: NOX analyzer CLM-107) 6 is installed downstream of the gas exhaust pipe 4. Reference numeral 7 denotes the above-mentioned zeolite/NaN3 mixed molded product. This mixed molded product 7 is housed in a mesh case 8 made of stainless steel, and then the mesh case 8 is inserted and installed inside the processing container 1.

【0014】以上の構成において、ディーゼル機関で発
生する排気ガス中のNOX成分のほとんどがNOであり
、NO2は5%程度であることを考慮して、NO濃度1
000ppmのNO/N2ガス(日本酸素製)を標準ガ
スとし、この標準ガスを毎分1リットルで水分と共にガ
ス導入管2から処理容器1に送り込む。処理容器1の内
部では、標準ガス中のNOがゼオライト・NaN3混合
成形物7と接触反応して(接触時間:5秒)除去される
。このようにして処理されたガスのNO濃度をNOX濃
度分析計6で測定することにより、NO除去率を検証で
きる。
In the above configuration, considering that most of the NOX components in the exhaust gas generated by a diesel engine are NO, and that NO2 is about 5%, the NO concentration is 1.
000 ppm NO/N2 gas (manufactured by Nippon Sanso) is used as a standard gas, and this standard gas is fed into the processing container 1 from the gas introduction pipe 2 together with moisture at 1 liter per minute. Inside the processing container 1, NO in the standard gas is removed by contact reaction with the zeolite/NaN3 mixed molded product 7 (contact time: 5 seconds). By measuring the NO concentration of the gas thus treated with the NOX concentration analyzer 6, the NO removal rate can be verified.

【0015】まず、NaN3混合率10%のゼオライト
・NaN3混合成形物を用いて温度範囲25〜250℃
(混合成形物の温度)におけるNO除去率を検証した。 この結果、図2に示すように、NO除去可能な温度範囲
が広く、しかも低温域であることが確認された。
[0015] First, a zeolite/NaN3 mixed molded product with a NaN3 mixing ratio of 10% was used at a temperature range of 25 to 250°C.
The NO removal rate at (temperature of the mixed molded product) was verified. As a result, as shown in FIG. 2, it was confirmed that the temperature range in which NO could be removed was wide and in a low temperature range.

【0016】次に、NaN3混合率がそれぞれ10〜5
0%の混合成形物を用いてNO除去率を検証した。この
結果を図3に示す。NaN3混合率は、脱硝率と接触面
積の関係上、1〜50%程度が良好であると考えられる
Next, the mixing ratio of NaN3 is 10 to 5, respectively.
The NO removal rate was verified using a 0% mixed molding. The results are shown in FIG. It is considered that a good NaN3 mixing ratio is about 1 to 50% due to the relationship between the denitrification rate and the contact area.

【0017】[0017]

【発明の効果】以上説明したように、この発明に係る脱
硝装置よれば、次のような利点がある。
[Effects of the Invention] As explained above, the denitrification device according to the present invention has the following advantages.

【0018】(1)ゼオライトとアジ化化合物との混合
成形物を使用して脱硝を行うので、ゼオライトとアジ化
化合物との除去作用の相乗効果により高脱硝率を実現で
きる。
(1) Since denitrification is carried out using a molded mixture of zeolite and azide compound, a high denitrification rate can be achieved due to the synergistic effect of the removal action of zeolite and azide compound.

【0019】(2)使用温度範囲が広く、しかも低温域
で脱硝可能である。
(2) The operating temperature range is wide, and denitrification is possible in a low temperature range.

【0020】(3)取り扱いの面倒なアンモニアガスが
不要であり、任意の形状のアジ化化合物・ゼオライトの
混合成形物を使用して脱硝を行えるので、取り扱いの便
や安全性が向上し、交換等の作業も容易である。
(3) There is no need for ammonia gas, which is difficult to handle, and denitrification can be performed using a mixture of azide compound and zeolite in any shape, improving ease of handling and safety, and reducing the need for replacement. These operations are also easy.

【0021】(4)アンモニアガス貯蔵設備や触媒等が
不要であり、装置の小型化が可能である。
(4) There is no need for ammonia gas storage equipment, catalysts, etc., and the device can be made smaller.

【0022】(5)高価な貴金属を使用せずに脱硝を行
うことができ、しかも高価な触媒が不要であるので、経
済的に有利である。
(5) Denitration can be carried out without using expensive precious metals, and there is no need for expensive catalysts, which is economically advantageous.

【0023】また、この発明に係る混合成形物の製造方
法によれば、次のような効果がある。
[0023] Furthermore, the method for producing a mixed molded product according to the present invention has the following effects.

【0024】(1)混合粉末にバインダを加えて成形・
焼成するだけの簡単な工程により脱硝用の混合成形物を
得ることができる。
(1) Adding a binder to the mixed powder and molding/
A molded mixture for denitrification can be obtained through a simple process of firing.

【0025】(2)アジ化化合物の混合率を調整するこ
とにより、混合成形物の脱硝率を調整することができる
(2) By adjusting the mixing ratio of the azide compound, the denitrification rate of the mixed molded product can be adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例に係る脱硝装置の概要を示
す説明図。
FIG. 1 is an explanatory diagram showing an outline of a denitrification device according to an embodiment of the present invention.

【図2】NOX除去率と温度との相関を示すグラフ。FIG. 2 is a graph showing the correlation between NOX removal rate and temperature.

【図3】NOX除去率とNaN3混合率との相関を示す
グラフ。
FIG. 3 is a graph showing the correlation between NOX removal rate and NaN3 mixing rate.

【符号の説明】[Explanation of symbols]

1…処理容器 7…ゼオライト・NaN3混合成形物 1...Processing container 7... Zeolite/NaN3 mixed molded product

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  NOX含有ガスが流通する処理容器を
備え、ゼオライト・アジ化化合物の混合成形物をこの処
理容器の内部に配置したことを特徴とする脱硝装置。
1. A denitrification device comprising a processing container through which NOX-containing gas flows, and a molded mixture of zeolite and azide compound is placed inside the processing container.
【請求項2】  ゼオライトおよびアジ化化合物の混合
粉末にバインダを混合して成形し、この成形物を窒素雰
囲気中にて焼成することを特徴とするゼオライト・アジ
化化合物混合成形物の製造方法。
2. A method for producing a zeolite/azide compound mixed molded product, which comprises mixing a binder with a mixed powder of zeolite and an azide compound, molding the mixture, and firing the molded product in a nitrogen atmosphere.
JP3029980A 1991-02-25 1991-02-25 Denitration apparatus and preparation of zeolite azide compound mixed molded body Pending JPH04267929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3029980A JPH04267929A (en) 1991-02-25 1991-02-25 Denitration apparatus and preparation of zeolite azide compound mixed molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3029980A JPH04267929A (en) 1991-02-25 1991-02-25 Denitration apparatus and preparation of zeolite azide compound mixed molded body

Publications (1)

Publication Number Publication Date
JPH04267929A true JPH04267929A (en) 1992-09-24

Family

ID=12291113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3029980A Pending JPH04267929A (en) 1991-02-25 1991-02-25 Denitration apparatus and preparation of zeolite azide compound mixed molded body

Country Status (1)

Country Link
JP (1) JPH04267929A (en)

Similar Documents

Publication Publication Date Title
KR100969378B1 (en) Exhaust gas filter
JP2005177570A (en) Scr catalyst excellent in characteristic at high temperature
JP4172828B2 (en) NOx removal agent and method for removing nitrogen oxides in exhaust gas
JP2006289211A (en) Ammonia oxidation catalyst
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
JP2020045862A (en) Exhaust emission control device
JPH04267929A (en) Denitration apparatus and preparation of zeolite azide compound mixed molded body
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JP2023085859A (en) Metal zeolite catalyst regeneration method and metal zeolite catalyst regeneration apparatus
JPH04267930A (en) Denitration apparatus and preparation of azide compound mixed molded body
US6077493A (en) Method for removing nitrogen oxides
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3015051B2 (en) Exhaust gas purification method
JPH04265119A (en) Denitrator and production of azide compound-carrying zeolite
JPH04313323A (en) Method for denox and production of denox agent
JPH04265120A (en) Denitrator
JPH04265118A (en) Denitrator and production of azide compound-carrying zeolite
JPH03101836A (en) Catalyst for decomposition of nitrogen oxide
JP2849133B2 (en) Method for catalytic decomposition of nitrogen oxides
JPH0714460B2 (en) Simultaneous treatment of nitrogen oxides and carbon monoxide in exhaust gas
JPH04367713A (en) Nitrogen oxide removal
JPH06126162A (en) Denitration agent, method for manufacturing denitration agent and denitration method
JPH0487620A (en) Treatment of nox gas
JP2004261754A (en) Exhaust gas purifying catalyst and purifying method
JPH06126180A (en) Denitrating agent and denitration method