JPH0426764B2 - - Google Patents
Info
- Publication number
- JPH0426764B2 JPH0426764B2 JP19706785A JP19706785A JPH0426764B2 JP H0426764 B2 JPH0426764 B2 JP H0426764B2 JP 19706785 A JP19706785 A JP 19706785A JP 19706785 A JP19706785 A JP 19706785A JP H0426764 B2 JPH0426764 B2 JP H0426764B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnet
- poles
- cylindrical magnet
- multipolar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 96
- 238000000465 moulding Methods 0.000 claims description 24
- 239000000843 powder Substances 0.000 claims description 23
- 230000005294 ferromagnetic effect Effects 0.000 claims description 17
- 230000005415 magnetization Effects 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 230000003068 static effect Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 230000004907 flux Effects 0.000 description 27
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000001746 injection moulding Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910017110 Fe—Cr—Co Inorganic materials 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【発明の詳細な説明】
[産業上の量分野]
本発明は、各種の電子機器、産業機器に使われ
てる制御用モータの界磁等に使用される多極異方
性円筒状磁石およびその製造方法に関するもので
ある。[Detailed Description of the Invention] [Industrial Quantity Field] The present invention relates to a multipolar anisotropic cylindrical magnet used for field magnets of control motors used in various electronic equipment and industrial equipment, and the like. This relates to a manufacturing method.
[従来の技術]
各種機器の制御用モーターには、定回転速度で
使用されるものが多く、定回転速度に制御するた
めに常に回転速度を検出しフイードバツク制御す
る機能を持たせることが必要である。[Prior Art] Many motors used to control various devices are used at a constant rotation speed, and in order to control the rotation speed at a constant speed, it is necessary to have a function that constantly detects the rotation speed and performs feedback control. be.
この種の制御用モータの界磁用磁石としては、
例えば射出成形等により一体成形した磁石であつ
て、異なる二方向に磁石の磁化容易軸を配列させ
た後その方向に着磁された磁石(特開昭59−
61008号参照)が提案されている。第5図にこの
界磁用磁石の断面図を示す。磁石30は磁石粉末
と有機物との混合物を射出成形法等の成形法によ
り一体成形した磁石であつて、リング部31と該
リング部32の下端外周に突出したフランジ部3
2とからなつている。 As a field magnet for this type of control motor,
For example, a magnet that is integrally molded by injection molding or the like, and whose axis of easy magnetization is arranged in two different directions and then magnetized in that direction
61008) has been proposed. FIG. 5 shows a sectional view of this field magnet. The magnet 30 is a magnet that is integrally molded from a mixture of magnet powder and an organic substance by a molding method such as an injection molding method, and has a flange portion 3 protruding from the outer periphery of the lower end of the ring portion 31 and the ring portion 32.
It consists of 2.
上記磁石は、磁石の磁化容易軸がリング部31
では直径方向M1に、またフランジ部32では垂
直方向M2に各々配列され、各々二方向に着磁さ
れており、モーター駆動用磁石と回転検出用磁石
とを同時に兼ね備えたものである。 In the above magnet, the axis of easy magnetization of the magnet is located at the ring portion 31.
The magnets are arranged in the diametrical direction M 1 and in the vertical direction M 2 in the flange portion 32, respectively, and are magnetized in two directions, so that they serve as motor drive magnets and rotation detection magnets at the same time.
また以上の構成からなる磁石は、一例として第
6図に示す成形型によつて製造される(特開昭59
−61008号参照)。この成形型33は、上型34と
下型35とに分割できるようにしたもので、成形
型33の中心に上部細径にした段付き円柱体の磁
極コア36を設け、該磁極コア36の外周側に電
磁石コイル37を配設すると共に電磁石コイル3
7により誘起された磁束が図に示す矢印方向の経
路を形成するように電磁石コイル37の周辺に強
磁性材からなる成形型部材38,39,40を
各々配置する。また、成形型部材39内において
電磁石コイル37と成形型部材40との間に非磁
性材41を配設する。さらに磁極コア36と成形
型部材39,40と非磁性部材41,42との間
に第5図に示したフランジリングと同形の成形空
間43を形成するようにする。この電磁石コイル
37の上面に載置した非磁性部材41は電磁石コ
イル37により誘起された磁束を使つて、成形空
間43フランジ部43bに垂直方向の磁束を導く
役割をするものである。一方成形空間43の上面
に載置した非磁性部材42は磁極コア36の中央
を上昇する磁束を使つて、成形空間43のリング
部43bに直径方向に磁束を導く役割をするもの
である。第6図の成形型は以上のような構成を有
することによつて同一成形空間43内に二方向の
磁界を設定したものである。 Furthermore, the magnet having the above structure is manufactured by, for example, a mold shown in FIG.
-Refer to No. 61008). This mold 33 can be divided into an upper mold 34 and a lower mold 35. A stepped cylindrical magnetic pole core 36 with a narrow upper diameter is provided at the center of the mold 33. An electromagnetic coil 37 is disposed on the outer circumferential side, and the electromagnetic coil 3
Mold members 38, 39, and 40 made of a ferromagnetic material are arranged around the electromagnetic coil 37 so that the magnetic flux induced by the magnetic flux 7 forms a path in the direction of the arrow shown in the figure. Furthermore, a non-magnetic material 41 is disposed within the mold member 39 between the electromagnetic coil 37 and the mold member 40 . Furthermore, a molding space 43 having the same shape as the flange ring shown in FIG. 5 is formed between the magnetic pole core 36, mold members 39, 40, and non-magnetic members 41, 42. The non-magnetic member 41 placed on the upper surface of the electromagnetic coil 37 serves to guide vertical magnetic flux to the flange portion 43b of the molding space 43 using the magnetic flux induced by the electromagnetic coil 37. On the other hand, the non-magnetic member 42 placed on the upper surface of the molding space 43 serves to guide the magnetic flux diametrically to the ring portion 43b of the molding space 43 using the magnetic flux rising in the center of the magnetic pole core 36. The molding die shown in FIG. 6 has the above-described configuration, so that magnetic fields are set in two directions within the same molding space 43.
[発明が解決しようとする問題点]
上記のモーター用磁石は、磁石の磁化容易軸が
リング部では直径方向に、またフランジ部では垂
直方向に各々異方性化されるが、該磁石は各々の
異方性化されている面に多数の磁極を有するよう
に着磁される。故に、このモーター用磁石は、強
磁性粉末の磁化容易軸方向と着磁後の磁石内部の
磁力線方向とが一致しておらず、この磁石内磁気
構造は高い磁気特性を得る上で最も有利とはいえ
ないという問題点があつた。[Problems to be Solved by the Invention] In the motor magnet described above, the axis of easy magnetization of the magnet is anisotropic in the diametrical direction in the ring portion and in the vertical direction in the flange portion. It is magnetized so that it has many magnetic poles on its anisotropic surface. Therefore, in this motor magnet, the axis of easy magnetization of the ferromagnetic powder does not match the direction of the lines of magnetic force inside the magnet after magnetization, and this internal magnetic structure is the most advantageous for obtaining high magnetic properties. There was a problem that it was not possible.
また上記の製造方法では金型内に電磁コイルを
記載置するため、電磁コイル収容スペースが大と
なり設備が大型化してしまうという問題点があつ
た。 Further, in the above manufacturing method, since the electromagnetic coil is placed in the mold, there is a problem that the space for accommodating the electromagnetic coil becomes large, resulting in an increase in the size of the equipment.
本発明の目的は、上述の従来技術の問題点を解
消し、モーター用磁石として高い磁気特性を有す
る多極異方性円筒状磁石を提供することである。 An object of the present invention is to solve the problems of the prior art described above and to provide a multipolar anisotropic cylindrical magnet having high magnetic properties as a motor magnet.
また、本発明の他の目的は、その磁石を比較的
簡単な設備で所定の磁気特性を有する多極異方性
円筒状磁石を製造する方法を提供することであ
る。 Another object of the present invention is to provide a method for producing a multipolar anisotropic cylindrical magnet having predetermined magnetic properties using relatively simple equipment.
[問題点を解決するための手段]
本発明は、少なくとも2つの表面の各々に、交
互にN極とS極とを有する複数個の磁極を形成す
ると共に、強磁性体粉末の磁化容易軸をN極とS
極との間の磁力線の方向に沿つて配列させたこと
を特徴とする多極異方性円筒状磁石である。[Means for Solving the Problems] The present invention forms a plurality of magnetic poles having N poles and S poles alternately on each of at least two surfaces, and also forms an axis of easy magnetization of the ferromagnetic powder. N pole and S
This is a multipolar anisotropic cylindrical magnet characterized by being arranged along the direction of magnetic lines of force between the poles.
また、本発明の多極異方性円筒状磁石の製造方
法は、磁石成形用の円筒状キヤビテイの外(内)
周面および円筒状キヤビテイの端面部に、それぞ
れ円周方向に磁気異方性を付与した永久磁石およ
び軸方向に磁気異方性を付与した永久磁石を軟磁
性体ヨークを介してそれぞれ多数配置して前記円
筒状キヤビテイの少なくとも2つの表面に交互に
N極とS極とを有する多極静磁場を形成し、前記
円筒状キヤビテイ内に強磁性体粉末を含む混練物
を注入して所定時間異方性化成形を行なうことを
特徴としてするものである。 In addition, the method for manufacturing a multipolar anisotropic cylindrical magnet of the present invention includes a method for manufacturing a multipolar anisotropic cylindrical magnet.
A large number of permanent magnets with magnetic anisotropy in the circumferential direction and permanent magnets with magnetic anisotropy in the axial direction are arranged on the circumferential surface and the end face of the cylindrical cavity, respectively, via soft magnetic yokes. A multipolar static magnetic field having N and S poles alternately is formed on at least two surfaces of the cylindrical cavity, and a kneaded material containing ferromagnetic powder is injected into the cylindrical cavity for a predetermined period of time. It is characterized by performing orthogonal molding.
[作用]
本発明は、円筒状磁石を多面多極異方性リング
磁石とすることにより、少なくとも2つの着磁面
の磁石内部の磁気構造が改善され、高い磁気特性
を容易に確保できる。その理由は次の通りであ
る。[Function] By using the cylindrical magnet as a multifaceted, multipolar anisotropic ring magnet, the magnetic structure inside the magnet of at least two magnetized surfaces is improved, and high magnetic properties can be easily ensured. The reason is as follows.
第7図a及びbはそれぞれ、ラジアル異方性磁
石及び表面多極異方性磁石の磁化容易軸ならびに
強磁性体粉末(フエライト粒子)の配向状態を模
式的に示した図である。 FIGS. 7a and 7b are diagrams schematically showing the easy axis of magnetization and the orientation state of ferromagnetic powder (ferrite particles) of a radial anisotropic magnet and a surface multipolar anisotropic magnet, respectively.
同一面にN極とS極が交互に現出するように着
磁を行なつた場合、磁石内部ではS極からN極に
向つて磁束線φが流れ、一方磁石外部ではN極か
らS極に向つて磁束線が流れる。 When magnetized so that N and S poles appear alternately on the same surface, magnetic flux lines φ flow from the S pole to the N pole inside the magnet, while lines of flux flow from the N pole to the S pole outside the magnet. Lines of magnetic flux flow towards.
ラジアル異方性磁石おいては、第7図aに示す
ように磁化容易軸は図示矢印Xで示すように磁石
中心部から表面へと放射状に向う。これに垂直な
面がフエライト粒子の{0001}面Fである。着磁
磁界が極めて小さいとき、磁束線φはN極とS極
間を結ぶ最短磁路Cを通り、この部分の磁石を磁
化する。着磁磁界が暫時大となるに従い、磁束線
φは次第に磁石内部へと入り、磁路D,Eにも磁
束線φが流れるようになる。N極とS極間に流れ
る磁束線ベクトルφ→を中心部に向う成分φ→rとこ
れに垂直な成分φ→〓に分けた場合、φ→rが有効に
働くA近傍では大きな磁化エネルギーを流すこと
ができるが、両極間の中央部B近傍ではφ→〓成分
に相当する低い値の磁気エネルギーしか流すこと
ができない。従つて残留磁束密度は高くとも、モ
ータ性能に直接関係する表面磁束密度は低くな
る。 In a radially anisotropic magnet, as shown in FIG. 7a, the axis of easy magnetization extends radially from the center of the magnet to the surface as indicated by arrows X in the figure. The plane perpendicular to this is the {0001} plane F of the ferrite particle. When the magnetizing magnetic field is extremely small, the magnetic flux line φ passes through the shortest magnetic path C connecting the north pole and the south pole, and magnetizes the magnet in this part. As the magnetizing magnetic field increases for a while, the magnetic flux lines φ gradually enter the inside of the magnet, and the magnetic flux lines φ also begin to flow in the magnetic paths D and E. If we divide the magnetic flux line vector φ→ flowing between the north and south poles into a component φ→r directed toward the center and a component φ→〓 perpendicular to this, a large magnetization energy is generated near A where φ→r effectively acts. However, only a low value of magnetic energy corresponding to the φ→〓 component can flow near the center B between the two poles. Therefore, even though the residual magnetic flux density is high, the surface magnetic flux density, which is directly related to motor performance, is low.
これに対して本発明に係る表面多極異方性磁石
の場合、第7図bで示すように磁化容易軸は図示
矢印Y方向に向き、磁石中心部へ向うφ→rが大き
い領域ではその方向に、それぞれ磁化容易軸を配
した構造となつている。このため、フエライト粒
子の磁気エネルギーを磁束線方向に極力集中させ
ることが可能となる。したがつて各磁極上で残留
磁束密度に応じた磁気エネルギーを効率よく取出
せる磁気回路が構成されるので、高い表面磁束密
度が得られる。 On the other hand, in the case of the surface multipolar anisotropic magnet according to the present invention, as shown in FIG. It has a structure in which an axis of easy magnetization is arranged in each direction. Therefore, it is possible to concentrate the magnetic energy of the ferrite particles in the direction of the magnetic flux lines as much as possible. Therefore, a magnetic circuit is constructed that can efficiently extract magnetic energy according to the residual magnetic flux density on each magnetic pole, so that a high surface magnetic flux density can be obtained.
また、本発明では、環状の成形空間の周囲に、
軟磁性体のヨークと永久磁石とが、ヨークを介し
て隣接する磁極が同極性となるように配置されて
いる。したがつてヨークを介してN極が対向する
2つの永久磁石をとりあげると、2つのN極から
流出した磁束線は互いに反発するために、成形空
間の中を通つて、各々の永久磁石のS極に戻る。
このようにして成形空間の2つ以上の表面には交
互にN極とS極とが形成される。 Moreover, in the present invention, around the annular molding space,
A yoke of soft magnetic material and a permanent magnet are arranged so that adjacent magnetic poles with the yoke interposed therebetween have the same polarity. Therefore, if we take two permanent magnets whose N poles face each other via a yoke, the lines of magnetic flux flowing out from the two N poles repel each other, so they pass through the molding space and form the S of each permanent magnet. Return to the pole.
In this way, N poles and S poles are alternately formed on two or more surfaces of the molding space.
[実施例]
第1図は、本発明の一実施例に係る円筒状磁石
を示す図で、第1図aは平面図、第1図bは第1
図S1方向から見た図、第1図cは第1図bをS2方
向から見た図である。[Example] Fig. 1 is a diagram showing a cylindrical magnet according to an embodiment of the present invention, in which Fig. 1a is a plan view, and Fig. 1b is a first cylindrical magnet.
Figure 1c is a view of Figure 1b viewed from the S1 direction, and Figure 1c is a view of Figure 1b viewed from the S2 direction.
円筒状磁石1は強磁性体粉末を含む混練物を射
出成形等の成形法により一体成形してなるもの
で、リング部2とフランジ部3とからなるもので
ある。この円筒状磁石において、リング部2の内
周面にはN極とS極とが交互に着磁されている。
ここで、強磁性体粉末の磁化容易軸は、第1図c
に破線で示すように磁石内部の磁力線方向に沿つ
て配列されているので、高い表面磁束密度が得ら
れる。またフランジ部3の端面にも、第1図aに
示すようにN極とS極とが交互に着磁されてい
る。しかも強磁性体粉末の磁化容易軸は、第1図
bに破線で示すように磁石内部の磁力線の方向に
沿つて配列されているので、フランジ部3でも高
い表面磁束密度が得られる。 The cylindrical magnet 1 is formed by integrally molding a kneaded material containing ferromagnetic powder by a molding method such as injection molding, and consists of a ring part 2 and a flange part 3. In this cylindrical magnet, the inner peripheral surface of the ring portion 2 is alternately magnetized with N poles and S poles.
Here, the axis of easy magnetization of the ferromagnetic powder is Fig. 1c
Since the magnets are arranged along the direction of the lines of magnetic force inside the magnet, as shown by the broken line, a high surface magnetic flux density can be obtained. Further, the end face of the flange portion 3 is also magnetized with alternating north and south poles, as shown in FIG. 1a. Moreover, since the axis of easy magnetization of the ferromagnetic powder is arranged along the direction of the lines of magnetic force inside the magnet, as shown by the broken line in FIG. 1b, a high surface magnetic flux density can also be obtained at the flange portion 3.
したがつてこの円筒状磁石1を前述したモータ
に組込んだ場合、モータ性能、特に回転数の検出
精度の向上が計れる。また上記の円筒状磁石にお
いて、リング部の内周面とフランジ部の端面とで
表面磁束密度は同じでもあるいは異なつていても
モータ性能に変りはない。 Therefore, when this cylindrical magnet 1 is incorporated into the above-mentioned motor, the motor performance, especially the detection accuracy of the rotation speed, can be improved. Furthermore, in the above cylindrical magnet, the motor performance remains the same even if the surface magnetic flux density is the same or different between the inner circumferential surface of the ring portion and the end surface of the flange portion.
次に本発明の製造方法の実施例を添付素面を参
照して説明する。 Next, embodiments of the manufacturing method of the present invention will be described with reference to the attached drawings.
第2図は、本発明の製造方法に用いる金型の一
例を示す断面図である。 FIG. 2 is a sectional view showing an example of a mold used in the manufacturing method of the present invention.
金型4は、固定型5、可動型6、および環状体
7,8を有する。環状体7はコア10に、又、環
状体8は固定型5に設けられており、非磁性円板
24を介して可動型6と接している。固定型5、
可動型6、環状体7,8、コア受け板9により形
成される円筒状空間が磁石成形用キヤビテイ11
である。環状体7,8の周囲は非磁性からなるバ
ツクアツプ部材12、コア10、可動型6で包囲
されている。固定型5の上に固定型固定板13が
設けられていて、固定型固定板13上にノズル口
14が形成されている。ノズル口14の下のスプ
ルー15は固定型固定板13および固定型5を貫
通し、ランナー16を介して円筒状キヤビテイ1
1に連通している。 The mold 4 has a fixed mold 5, a movable mold 6, and annular bodies 7 and 8. The annular body 7 is provided on the core 10, and the annular body 8 is provided on the fixed mold 5, and is in contact with the movable mold 6 via a non-magnetic disc 24. Fixed type 5,
A cylindrical space formed by the movable mold 6, the annular bodies 7 and 8, and the core receiving plate 9 is a magnet molding cavity 11.
It is. The annular bodies 7 and 8 are surrounded by a non-magnetic backup member 12, a core 10, and a movable mold 6. A fixed mold fixing plate 13 is provided on the fixed mold 5, and a nozzle opening 14 is formed on the fixed mold fixing plate 13. The sprue 15 below the nozzle opening 14 passes through the fixed mold fixing plate 13 and the fixed mold 5, and connects to the cylindrical cavity 1 via the runner 16.
It is connected to 1.
可動型6はスペーサブロツク17を介して下板
18に固定されている。可動型6には円筒状キヤ
ビテイ11に開口する垂直孔があり、突出しピン
19が垂直移動自在に貫通している。突出しピン
19は、突出しピン固定用上板20に固定されて
おり、上板20に固定された下板21の下面中央
に連結されたロツド22は、下板18の中央孔2
3を貫通し、シリンダーのピストン(図示せず)
に連結している。 The movable mold 6 is fixed to a lower plate 18 via a spacer block 17. The movable mold 6 has a vertical hole opening into a cylindrical cavity 11, through which a projecting pin 19 is vertically movable. The ejecting pin 19 is fixed to the ejecting pin fixing upper plate 20, and the rod 22 connected to the center of the lower surface of the lower plate 21 fixed to the upper plate 20 is connected to the center hole 2 of the lower plate 18.
3 through the piston of the cylinder (not shown)
is connected to.
第3図aは環状体7およびコア10の構造を横
断面図で詳細に示す。非磁性体コア10は、その
外面に多数の突起24a,24b,24c,…を
有している。各突起間の溝に永久磁石25a,2
5b,25c,…を収容している。各永久磁石間
には、軟鋼、純鉄あるいはパーメンダ等の軟磁性
体からなるヨーク26a,26b,26c,…が
介装されている。環状体7を構成する永久磁石2
5a,25b,25c,…とヨーク26a,26
b,26c,…の外周面には非磁性体スリーブ2
7が設けられている。 FIG. 3a shows the structure of the annular body 7 and the core 10 in detail in a cross-sectional view. The non-magnetic core 10 has a large number of protrusions 24a, 24b, 24c, . . . on its outer surface. Permanent magnets 25a, 2 are placed in the grooves between each protrusion.
5b, 25c,... are accommodated. Interposed between each permanent magnet are yokes 26a, 26b, 26c, . . . made of a soft magnetic material such as mild steel, pure iron, or permenda. Permanent magnet 2 constituting the annular body 7
5a, 25b, 25c, ... and yokes 26a, 26
A non-magnetic sleeve 2 is provided on the outer peripheral surface of b, 26c,...
7 is provided.
第3図bは、同様に環状体8、およびスプルー
15、ランナー16の構造を詳細に示す。 FIG. 3b similarly shows the structure of the annular body 8, sprue 15, and runner 16 in detail.
非磁性バツクアツプ部材12には永久磁石28
a,28b,28c,…が収容され、各永久磁石
間には、前記と同様に軟磁性体からなるヨーク2
9a,29b,29c,…が介装されている。そ
れぞれの環状体7,8には、第3図に示されるよ
うに、各永久磁石は隣接対の対向する磁極が同極
性となるように配置されている。例えば永久磁石
25b,25cに注目すると、その間のヨーク2
6bにはいずれもN極が接しているので、両N極
から流出した磁束は、ヨーク26bを通つてS極
に流入しようとする。故にヨーク26bの先端は
N極となる。同様な原理により隣りのヨーク26
cの先端はS極となる。このようにして、ヨーク
26a,26b,26c,…の先端には、S、
N、S、…のように交互に反対極性の磁極が現れ
る。すなわち、永久磁石と軟磁性ヨークによる交
互の磁極により、成形空間11の表面に多極静磁
場が形成される。同様の原理により成形空間11
には、環状体8からも同時に多極静磁場を得るこ
とが可能となる。 A permanent magnet 28 is attached to the non-magnetic backup member 12.
a, 28b, 28c, .
9a, 29b, 29c, . . . are interposed. In each of the annular bodies 7, 8, as shown in FIG. 3, the permanent magnets are arranged such that adjacent pairs of opposing magnetic poles have the same polarity. For example, if we pay attention to the permanent magnets 25b and 25c, the yoke 2 between them
Since both N poles are in contact with 6b, the magnetic flux flowing out from both N poles tends to flow into the S pole through the yoke 26b. Therefore, the tip of the yoke 26b becomes the north pole. By the same principle, the adjacent yoke 26
The tip of c becomes the south pole. In this way, at the tips of the yokes 26a, 26b, 26c,...
Magnetic poles of opposite polarity appear alternately like N, S, etc. That is, a multipolar static magnetic field is formed on the surface of the molding space 11 by the alternating magnetic poles of the permanent magnet and the soft magnetic yoke. Molding space 11 according to the same principle
In this case, it becomes possible to simultaneously obtain a multipolar static magnetic field from the annular body 8.
本発明の望ましい実施例においては、十分なる
配向を行なうために3000Oe以上の磁場強度が必
要となる。このてめ永久磁石は、極めて多数の磁
極を小さな間隔で磁石表面に形成するために、高
い残留磁束密度を有する必要がある。このために
サマリウム・コバルト磁石、ネオジウム・鉄・ホ
ウ素磁石等の希土類磁石が望ましい。これらの希
土類磁石は8500G以上、好ましくは10000G以上
の残留磁束密度Brを有する(例えば特開昭55−
50100号、特開昭58−142507号参照)
金型の磁気回路を構成する永久磁石及びヨーク
の形状及び寸法等は、製造する異方性円筒状磁石
の極数、必要な磁気特性に応じて、有限要素法等
の解析手法により適宜設定することができる。 In a preferred embodiment of the invention, a magnetic field strength of 3000 Oe or more is required to achieve sufficient orientation. This permanent magnet needs to have a high residual magnetic flux density in order to form an extremely large number of magnetic poles at small intervals on the magnet surface. For this purpose, rare earth magnets such as samarium/cobalt magnets and neodymium/iron/boron magnets are desirable. These rare earth magnets have a residual magnetic flux density Br of 8500G or more, preferably 10000G or more (for example, in
50100, Japanese Patent Application Laid-open No. 58-142507) The shape and dimensions of the permanent magnet and yoke that make up the magnetic circuit of the mold are determined according to the number of poles of the anisotropic cylindrical magnet to be manufactured and the required magnetic properties. , can be set appropriately using an analysis method such as the finite element method.
第3図の装置は複合磁石の射出成形に特に適す
る。かかる射出成形は以下のように行なうことが
できる。 The apparatus of FIG. 3 is particularly suitable for injection molding of composite magnets. Such injection molding can be performed as follows.
まず強磁性粉末と樹脂との混練物を約250℃〜
約350℃の温度及び約600Kg/cm2〜約1000Kg/cm2の
圧力でノズル口14より注入し、スプルー15、
ランナー16を経て円筒状キヤビテイ11に射出
する。 First, mix the ferromagnetic powder and resin at about 250℃~
The sprue 15 is injected through the nozzle port 14 at a temperature of about 350°C and a pressure of about 600 Kg/cm 2 to about 1000 Kg/cm 2 .
The liquid is injected into the cylindrical cavity 11 via the runner 16.
異方化成形した複合磁石は、冷却後可動型6を
下方に移動し、シリンダーのピストン(図示せ
ず)によりロツド22を押し上げて突出しピン1
9を上昇させることにより、コア10より離脱さ
せ、回収することができる。引き続き突出しピン
19を元の位置に戻し、可動型6を上昇させるこ
とにより円筒状キヤビテイ11を復活させ、次の
成形サイクルを行なう。得られた複合磁石は、異
方性方向と同一方向に着磁する。 After cooling, the anisotropically molded composite magnet is moved downward through the movable mold 6, and the rod 22 is pushed up by the piston (not shown) of the cylinder, and the protruding pin 1
By raising the core 9, it can be separated from the core 10 and recovered. Subsequently, the ejecting pin 19 is returned to its original position and the movable mold 6 is raised to restore the cylindrical cavity 11 and perform the next molding cycle. The obtained composite magnet is magnetized in the same direction as the anisotropy direction.
上記複合磁石の成形の場合、強磁性粉末として
BaフエライトやSrフエライト等のフエライトの
粉末、アルニコ磁石粉末、Fe−Cr−Co系磁石粉
末、希土類コバルト磁石粉末等を使用することが
できる。樹脂として、スチレン−ブタジエン・コ
ポリマー、エチレン・酢酸ビニル・コポリマー、
ポリエチレン、ポリアミド等の熱可塑性脂を使用
することができる。強磁性粉末と樹脂との配合比
は、磁性特性の点から、60重量%以上の必要があ
るが、90重量%を越えると成形が困難となる。成
形性を改善するために、ポリエチレン、ステアリ
ン酸カルシウム等の滑材を少量(数重量%)添加
してもよい。また、強磁性粉末と樹脂との濡れ性
を改善するために、有機ケイ素化合物、有機チタ
ネート化合物等で強磁性粉末を被覆することもで
きる。 In the case of molding the above composite magnet, as ferromagnetic powder
Ferrite powder such as Ba ferrite and Sr ferrite, alnico magnet powder, Fe-Cr-Co magnet powder, rare earth cobalt magnet powder, etc. can be used. As resins, styrene-butadiene copolymer, ethylene-vinyl acetate copolymer,
Thermoplastic resins such as polyethylene and polyamide can be used. The blending ratio of ferromagnetic powder and resin needs to be 60% by weight or more from the viewpoint of magnetic properties, but if it exceeds 90% by weight, molding becomes difficult. In order to improve moldability, a small amount (several percent by weight) of a lubricant such as polyethylene or calcium stearate may be added. Further, in order to improve the wettability between the ferromagnetic powder and the resin, the ferromagnetic powder can be coated with an organic silicon compound, an organic titanate compound, or the like.
本発明は上記複合磁石の射出成形の他に、その
押出成形や、フエライト等の湿式成形にも適用可
能である。 In addition to the injection molding of the composite magnet described above, the present invention is also applicable to extrusion molding thereof and wet molding of ferrite and the like.
湿式成形は、フエライト等の磁性体の粉末約50
〜70重量%、ポリビニルアルコール、メチルセル
ロース等のバインダー約0.01〜約0.2重量%およ
び水等の溶媒約30〜50重量%を混練してスラリー
とし、本発明の金型内に注入する。この場合上述
した多極静磁場中にて多極異方化を行なう。 Wet molding is about 50% of the powder of magnetic material such as ferrite.
-70% by weight, about 0.01 to about 0.2% by weight of a binder such as polyvinyl alcohol or methyl cellulose, and about 30 to 50% by weight of a solvent such as water to form a slurry, and the slurry is poured into the mold of the present invention. In this case, multipolar anisotropy is performed in the above-mentioned multipolar static magnetic field.
本発明を以下の具体例によりさらに詳細に説明
する。 The present invention will be explained in more detail using the following specific examples.
平均粒度1.2μmのフエライト粒子(Sr・
6Fe2O3)7.65Kgに1.35Kgのナイロン12(宇部興
産製3014U)を加え、ヘンシエルミキサーで予備
混合した後2軸押出機を用いて235℃の温度でホ
ツトカツトを行ないペレツトを作成した。 Ferrite particles (Sr・
1.35 kg of nylon 12 (3014U, manufactured by Ube Industries) was added to 7.65 kg of 6Fe 2 O 3 ), premixed using a Henschel mixer, and then hot-cut at a temperature of 235° C. using a twin-screw extruder to create pellets.
このペレツトを第3図に示す金型を備えた成形
機に投入し、290℃の温度、800Kg/cm2の圧力で80
℃に加熱した金型内のキヤビテイ11に射出しつ
いで冷却固化した。キヤビテイ内の寸法は、内径
φ40mm、外径φ46mm、長さ10mmであつて、かつフ
ランジ部外径φ48mm、フランジ部厚み1.5mmであつ
た。多極静磁場発生用の各永久磁石はサマリウ
ム・コバルト磁石(日立金属製H−30CH)であ
り、Br10600G、Hc9000Oeであり、ヨークは
SS41材を使用した。 The pellets were put into a molding machine equipped with the mold shown in Figure 3, and heated to 80°C at a temperature of 290℃ and a pressure of 800Kg/ cm2.
The mixture was injected into a cavity 11 in a mold heated to .degree. C., and then cooled and solidified. The dimensions inside the cavity were an inner diameter of 40 mm, an outer diameter of 46 mm, and a length of 10 mm, and the flange part had an outer diameter of 48 mm and a flange part thickness of 1.5 mm. Each permanent magnet for generating a multipolar static magnetic field is a samarium cobalt magnet (Hitachi Metals H-30CH), Br10600G, Hc9000Oe, and the yoke is
SS41 material was used.
キヤビテイ11の内周面に表われる各磁極上の
磁場強度は約40000Oeであつた。本実施例ではキ
ヤビテイ11の内周面に18個の永久磁石を使用
し、キヤビテイ11のフランジ面に24個の永久磁
石を使用したので、キヤビテイ11の空間内に18
極と24極の多極静磁場を同時に有するものであ
る。 The magnetic field strength on each magnetic pole appearing on the inner peripheral surface of the cavity 11 was about 40,000 Oe. In this embodiment, 18 permanent magnets were used on the inner peripheral surface of the cavity 11, and 24 permanent magnets were used on the flange surface of the cavity 11, so there were 18 permanent magnets in the space of the cavity 11.
It has a multipolar static magnetic field with 24 poles and 24 poles at the same time.
このようにして第1図に示すように、リング部
の内周面に18極異方性化を施し、かつフランジ部
の端面に24極異方性化を施して、モータ駆動用磁
石と回転検出用磁石とを同時に兼ね備えた円筒状
磁石が得られた。この磁石を24極と18極の磁極を
有するコイル式の公知の構造の着磁装置に入れ、
8000Oeの磁場で前記異方性方向と同方向の着磁
を行つた。得られた円筒状磁石の表面磁束密度を
測定したところ、第4図aに示すように、磁石内
周面においては18極の平均で1500G、同図bに示
すように磁石フランジ部においては24極の平均で
1200Gであつた。 In this way, as shown in Figure 1, the inner circumferential surface of the ring part is made 18-pole anisotropic, and the end face of the flange part is given 24-pole anisotropy. A cylindrical magnet was obtained that also served as a detection magnet. This magnet is placed in a coil-type magnetizing device with a known structure having 24 magnetic poles and 18 magnetic poles,
Magnetization was performed in the same direction as the anisotropic direction using a magnetic field of 8000 Oe. When the surface magnetic flux density of the obtained cylindrical magnet was measured, as shown in Figure 4a, the average of the 18 poles on the inner peripheral surface of the magnet was 1500G, and as shown in Figure 4b, it was 24G at the magnet flange. at the average of the poles
It was 1200G.
これに対して、特開昭59−61008号に開示され
ているように上記と同様形状および同材質に一体
成形した磁石において、リング部は半径方向にフ
ランジ部は軸方向と磁化容易軸が異なる二方向配
列され、前記に示した着磁を施して得られた円筒
状磁石の場合、磁石内周面においては18極の平均
で1000G、磁石フランジ部においては24極の平均
で800G程度であつた。 On the other hand, in a magnet integrally molded with the same shape and the same material as the above, as disclosed in JP-A No. 59-61008, the ring part has a radial direction and the flange part has a different axis of easy magnetization from the axial direction. In the case of a cylindrical magnet arranged in two directions and obtained by magnetizing as shown above, the average of 18 poles on the inner peripheral surface of the magnet is 1000G, and the average of 24 poles on the magnet flange is about 800G. Ta.
本発明を実施例に基づき説明したが、本発明の
精神を逸脱することなく種々の変更を加えること
ができる。例えば、キヤビテイ11は実施例にお
いては完全に円筒状であるが、磁石の用途に応じ
半円筒状のように不完全な円筒でも可能である。 Although the present invention has been described based on examples, various changes can be made without departing from the spirit of the invention. For example, although the cavity 11 is completely cylindrical in the embodiment, it can also be an incomplete cylinder such as a semi-cylindrical shape depending on the use of the magnet.
また実施例においては、多極静磁場はキヤビテ
イ11の内周面上およびキヤビテイ11の外径面
上および両端面上と各キヤビテイ表面での各種組
合せも可能である。 Further, in the embodiment, various combinations of the multipole static magnetic field on the inner circumferential surface of the cavity 11, on the outer circumferential surface of the cavity 11, on both end surfaces, and on each cavity surface are also possible.
[発明の効果]
本発明により、一体成形リング磁石において強
磁性粉末の磁化容易軸方向と着磁後の磁石内部の
磁力線方向とが一致した面を少なくとも2つ有す
ることにより、従来より磁気特性が大幅に向上し
た、モーター駆動用磁石と回転検出用磁石とを同
時に兼ね備えた円筒状磁石を得ることができる。
したがつてこの磁石をモーターに組み込むことに
より、従来に比べてモーターの高性能、高精度、
小型軽量化を達成できる。また本発明の製造方法
によれば、電磁コイルを用いず、永久磁石を用い
た磁気回路を有する金型を使用するので、設備の
大幅な小型化が可能となる。[Effects of the Invention] According to the present invention, by having at least two surfaces in which the axis of easy magnetization of the ferromagnetic powder coincides with the direction of the lines of magnetic force inside the magnet after magnetization in an integrally molded ring magnet, the magnetic properties are improved compared to conventional ones. It is possible to obtain a cylindrical magnet that is significantly improved and functions as both a motor drive magnet and a rotation detection magnet at the same time.
Therefore, by incorporating this magnet into the motor, the motor's performance, precision, and
Smaller size and lighter weight can be achieved. Further, according to the manufacturing method of the present invention, a mold having a magnetic circuit using permanent magnets is used without using an electromagnetic coil, so that it is possible to significantly downsize the equipment.
第1図a,b,cは本発明に係る円筒状磁石の
一実施例を示す図、第2図は本発明に係る円筒状
磁石を製造するための成形金型の断面図、第3図
aは第2図のZ1−Z1断面図、第3図bは第2図を
Z2−Z2方向から見た図、第4図a及びbは、それ
ぞれ本発明に係る円筒状磁石の内周面及び端面の
表面磁束密度分布波形を示す図、第5図は従来の
円筒状磁石の断面図、第6図は、第5図の円筒状
磁石を製造するための成形金型の断面図、第7図
a及びbはそれぞれ、従来及び本発明に係る円筒
状磁石の配向状態を示す模式図である。
1:円筒状磁石、2:リング部、3:フランジ
部。
Figures 1a, b, and c are views showing an embodiment of a cylindrical magnet according to the present invention, Figure 2 is a cross-sectional view of a mold for manufacturing the cylindrical magnet according to the present invention, and Figure 3 a is a Z 1 - Z 1 sectional view of Fig. 2, and Fig. 3 b is a cross-sectional view of Fig. 2.
4a and 4b are diagrams showing the surface magnetic flux density distribution waveforms of the inner peripheral surface and end surface of the cylindrical magnet according to the present invention, respectively, and FIG. FIG. 6 is a cross-sectional view of a mold for manufacturing the cylindrical magnet of FIG. 5, and FIGS. It is a schematic diagram showing a state. 1: Cylindrical magnet, 2: Ring part, 3: Flange part.
Claims (1)
中で成形後着磁して得られた円筒状磁石におい
て、少なくとも2つの表面に交互にN極とS極と
を有する複数個の磁極を形成し、前記強磁性体粉
末の磁化容易軸をN極とS極との間の磁力線の方
向に沿つて配列させたことを特徴とする多極異方
性円筒状磁石。 2 各表面の磁気特性がほぼ同じである特許請求
の範囲第1項記載の多極異方性円筒状磁石。 3 各表面の磁気特性が互いに異なる特許請求の
範囲第1項記載の多極異方性円筒状磁石。 4 強磁性粉末を主体とする混練物を磁場中で成
形して、多極異方性円筒状磁石を製造する方法に
おいて、金型の円筒状キヤビテイの周囲の少なく
とも2つの表面に対向して、円周方向又は軸方向
に磁化した永久磁石を、軟磁性体のヨークを介し
て隣接する永久磁石の対向する磁極が同極性とな
るように多数配置して、前記表面の各々に交互に
N極とS極とを有する多極静磁場を形成し、前記
円筒状キヤビテイ内に前記混練物を注入して所定
時間異方化成形することを特徴とする多極異方性
円筒状磁石の製造方法。[Claims] 1. A cylindrical magnet obtained by molding and magnetizing a kneaded material containing at least ferromagnetic powder in a magnetic field, which has N poles and S poles alternately on at least two surfaces. 1. A multipolar anisotropic cylindrical magnet, characterized in that the ferromagnetic powder has a plurality of magnetic poles, and the axis of easy magnetization of the ferromagnetic powder is arranged along the direction of the line of magnetic force between the north pole and the south pole. 2. The multipolar anisotropic cylindrical magnet according to claim 1, wherein each surface has substantially the same magnetic properties. 3. The multipolar anisotropic cylindrical magnet according to claim 1, wherein each surface has different magnetic properties. 4. In a method for manufacturing a multipolar anisotropic cylindrical magnet by molding a kneaded material mainly composed of ferromagnetic powder in a magnetic field, facing at least two surfaces around a cylindrical cavity of a mold, A large number of permanent magnets magnetized in the circumferential direction or axial direction are arranged through soft magnetic yokes so that the opposing magnetic poles of adjacent permanent magnets have the same polarity, and N poles are alternately placed on each of the surfaces. A method for producing a multipolar anisotropic cylindrical magnet, characterized in that a multipolar static magnetic field having a south pole and a south pole is formed, and the kneaded material is injected into the cylindrical cavity and anisotropically formed for a predetermined period of time. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19706785A JPS6257203A (en) | 1985-09-06 | 1985-09-06 | Multiple-pole anisotropic cylindrical magnet and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19706785A JPS6257203A (en) | 1985-09-06 | 1985-09-06 | Multiple-pole anisotropic cylindrical magnet and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6257203A JPS6257203A (en) | 1987-03-12 |
JPH0426764B2 true JPH0426764B2 (en) | 1992-05-08 |
Family
ID=16368163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19706785A Granted JPS6257203A (en) | 1985-09-06 | 1985-09-06 | Multiple-pole anisotropic cylindrical magnet and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6257203A (en) |
-
1985
- 1985-09-06 JP JP19706785A patent/JPS6257203A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6257203A (en) | 1987-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0016960B1 (en) | Anisotropic polymeric magnet in the tubular form and process for producing the same | |
JPS6252913A (en) | Method and device for manufacture of multipolar anisotropic cylindrical magnet | |
JPH0426764B2 (en) | ||
JPH0220129B2 (en) | ||
JPS61125010A (en) | Method and device for manufacturing multipolar anisotropic cylindrical magnet | |
JPS62130813A (en) | Manufacture of cylindrical multipolar anisotropic magnet and device therefor | |
JPS62128511A (en) | Method and apparatus for manufacturing multipolar anisotropic cylindrical magnet | |
JPH071743B2 (en) | Magnetic field molding equipment for resin magnets | |
JP2000081789A (en) | Magnet roll | |
JP2500270Y2 (en) | Multi-pole anisotropic cylindrical or solid cylindrical magnet molding die | |
JP4013916B2 (en) | Orientation processing device for anisotropic bonded magnet for 4-pole motor | |
JPH04267308A (en) | Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold | |
JPS62130812A (en) | Manufacture of cylindrical multipolar anisotropic magnet and device therefor | |
JPH071727B2 (en) | Anisotropic resin magnet and manufacturing method thereof | |
JPS61125011A (en) | Method and device for manufacturing multipolar anisotropic cylindrical magnet | |
JPS62247512A (en) | Manufacture of multipolar anisotropy cylindrical magnet and device therefor | |
JPS61125009A (en) | Method and device for manufacturing multipolar anisotropic cylindrical magnet | |
JPS62130811A (en) | Manufacture of cylindrical multipolar anisotropic magnet and device therefor | |
JPS62232107A (en) | Anisotropic resin magnet | |
JPH0138903Y2 (en) | ||
JPS5849012B2 (en) | Manufacturing method of anisotropic cylindrical polymer magnet | |
JPS62133705A (en) | Manufacture and device of multipolar anisotropic cylindrical magnet | |
JPS60220917A (en) | Manufacture for anisotropic magnetic roll | |
JPH0343707Y2 (en) | ||
JPS5849011B2 (en) | Manufacturing method of anisotropic cylindrical polymer magnet |