[go: up one dir, main page]

JPH04265962A - Projection type liquid crystal display device - Google Patents

Projection type liquid crystal display device

Info

Publication number
JPH04265962A
JPH04265962A JP3027246A JP2724691A JPH04265962A JP H04265962 A JPH04265962 A JP H04265962A JP 3027246 A JP3027246 A JP 3027246A JP 2724691 A JP2724691 A JP 2724691A JP H04265962 A JPH04265962 A JP H04265962A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal display
display device
projection type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3027246A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamakura
鎌倉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3027246A priority Critical patent/JPH04265962A/en
Publication of JPH04265962A publication Critical patent/JPH04265962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Projection Apparatus (AREA)

Abstract

PURPOSE:To obtain a bright projected image with a high contrast ratio by lowering the brightness of the black display of the liquid crystal light valve of a projection type liquid crystal display device. CONSTITUTION:An optical anisotropic film 133 is provided on the incident side or the exiting side of a high polymer distributed type liquid crystal display element 131 which constitutes the projection type display device. The parallelism of incident light is enhanced by the film 133 and light distribution at the time of scattering light on the exiting side for the black display is controlled, so that scattered light is absorbed and exiting light is reduced. As a result, the contrast ratio is made high.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光の透過と散乱により表
示を行なう液晶表示素子を用いた投写型液晶表示装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection type liquid crystal display device using a liquid crystal display element that performs display by transmitting and scattering light.

【0002】0002

【従来の技術】従来、光の透過と散乱を用いた液晶表示
装置として、高分子分散型液晶(PDLC:Polym
er−Dispersed  Liquid Crys
tal)を用いた調光ガラスが実用化されている。これ
は図1に示すように高分子のスポンジ状三次元網目構造
の中に低分子液晶を保持した特殊な膜である。高分子分
散型液晶は、電圧印加にともなって光散乱状態から光透
過状態へと変化するので、この性質を利用して表示装置
としても用いられている。投写型液晶表示装置では光散
乱状態を黒とし光透過状態を白と表示するのが一般的で
あり、偏光板を必要としないので明るさを上げる手段と
して期待されている。
[Prior Art] Conventionally, polymer dispersed liquid crystal (PDLC) has been used as a liquid crystal display device that uses light transmission and scattering.
er-Dispersed Liquid Crys
Light control glass using tal) has been put into practical use. As shown in Figure 1, this is a special film that holds low-molecular liquid crystals within a spongy three-dimensional polymer network structure. Polymer-dispersed liquid crystals change from a light-scattering state to a light-transmitting state as voltage is applied, and this property is used as a display device. Projection type liquid crystal display devices generally display black in a light scattering state and white in a light transmitting state, and because they do not require a polarizing plate, they are expected to be a means of increasing brightness.

【0003】0003

【発明が解決しようとする課題】しかし前述の従来技術
を投写型表示装置に用いた場合、黒表示の散乱光を投写
レンズで呑込んでしまうためコントラスト比が低くなっ
てしまう。またコントラスト比を高くするには投写レン
ズのF値を大きくとり、呑込み角を小さくすれば良いが
画像が暗くなってしまう。
However, when the above-mentioned prior art is used in a projection type display device, the contrast ratio becomes low because the scattered light of black display is swallowed by the projection lens. Further, in order to increase the contrast ratio, the F value of the projection lens can be increased and the swallowing angle can be decreased, but the image becomes dark.

【0004】そこで本発明はこのような問題点を解決す
るもので、その目的とするところはコントラスト比が高
く、明るい表示が可能な投写型液晶表示装置を提供する
ところにある。
SUMMARY OF THE INVENTION The present invention aims to solve these problems, and its object is to provide a projection type liquid crystal display device that has a high contrast ratio and is capable of bright display.

【0005】[0005]

【課題を解決するための手段】本発明の投写型液晶表示
装置は光の透過もしくは散乱により表示を行なう液晶表
示素子を用いた投写型液晶表示装置において、前記液晶
表示素子の入射側もしくは出射側に、光の透過する層と
光の吸収する層が交互に積層させた光異方性膜を設けた
ことを特徴とする。
[Means for Solving the Problems] A projection type liquid crystal display device of the present invention is a projection type liquid crystal display device using a liquid crystal display element that performs display by transmitting or scattering light. The device is characterized in that an optically anisotropic film is provided in which layers that transmit light and layers that absorb light are alternately laminated.

【0006】[0006]

【実施例】(実施例1)以下本発明の一実施例を図面に
したがって説明する。
[Embodiment] (Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0007】図1は本発明の投写型表示装置の液晶表示
素子(100)の断面図で、(a)図が電界を印加しな
い場合の光散乱状態を示すもので(b)図は、電界を印
加したときの光透過状態を示す。
FIG. 1 is a cross-sectional view of a liquid crystal display element (100) of a projection display device according to the present invention, in which (a) shows the light scattering state when no electric field is applied, and (b) shows the state of light scattering when no electric field is applied. This shows the light transmission state when .

【0008】液晶表示素子(100)は、2枚の基板に
高分子分散型液晶(101)が挟まれて配置される。高
分子分散型液晶(101)は液晶及びスポンジ状高分子
からなり、電界に対しては無電界時には液晶分子が界面
に沿って配向するため例えば入射光(102)が液晶表
示素子(100)に入射した場合には、高分子分散型液
晶(101)の分子配列は散乱状態であるため、入射側
に戻る方向の後方散乱(103)と、透過して散乱する
前方散乱(104)とに散乱方向が分かれる。又電界を
印加した場合には、電界方向に液晶分子が整列するため
に透過光(105)は入射光(102)の強度に対して
減衰することなく前方に透過する。
A liquid crystal display element (100) is arranged such that a polymer dispersed liquid crystal (101) is sandwiched between two substrates. The polymer dispersed liquid crystal (101) is made of liquid crystal and a sponge-like polymer, and when there is no electric field, the liquid crystal molecules align along the interface, so that, for example, incident light (102) is directed to the liquid crystal display element (100). When incident, the molecular arrangement of the polymer dispersed liquid crystal (101) is in a scattering state, so the scattering is divided into back scattering (103) that returns to the incident side and forward scattering (104) that passes through and scatters. The direction is divided. Further, when an electric field is applied, the liquid crystal molecules are aligned in the direction of the electric field, so that the transmitted light (105) is transmitted forward without attenuating with respect to the intensity of the incident light (102).

【0009】これらの透過光の発散強度は、強度ベクト
ルを矢印(106)にて表わしたように、電界印加状態
においての強度と、散乱状態での発散強度の比が液晶表
示装置のコントラストとなるため散乱光が透過光に比べ
十分小さいことが望ましい。しかし散乱状態の強度ベク
トルI0は、液晶表示素子のセル厚や入射光の性質にも
よるが一般的には次の式のようになる。
As shown by the arrow (106) representing the intensity vector, the divergent intensity of these transmitted lights is such that the ratio of the intensity in the electric field application state to the divergent intensity in the scattered state becomes the contrast of the liquid crystal display device. Therefore, it is desirable that the scattered light be sufficiently smaller than the transmitted light. However, the intensity vector I0 of the scattered state is generally expressed by the following equation, although it depends on the cell thickness of the liquid crystal display element and the properties of the incident light.

【0010】I0=KIcosθ          
K;反射係数 図2は、本発明の投写型表示装置の液晶表示素子を示す
図で、図2(a)に液晶表示素子の入射側に光異方性膜
を光学接着剤などで張り合わせた液晶表示素子の実施例
の断面図,図2(b)は、光異方正膜の構造を分かりや
すく説明するための斜視図、図2(c)は、入射側及び
出射側に光異方性膜を張り合わせた液晶表示素子の実施
例を示す断面図である。
I0=KIcosθ
K: Reflection coefficient Figure 2 is a diagram showing a liquid crystal display element of a projection type display device of the present invention. Figure 2 (a) shows a liquid crystal display element in which an optically anisotropic film is attached to the incident side of the liquid crystal display element using an optical adhesive or the like. 2(b) is a cross-sectional view of an example of a liquid crystal display element, and FIG. 2(b) is a perspective view for explaining the structure of the optically anisotropic film in an easy-to-understand manner. FIG. 2(c) is a cross-sectional view of an embodiment of the liquid crystal display element. FIG. 2 is a cross-sectional view showing an example of a liquid crystal display element in which films are pasted together.

【0011】液晶表示素子(100)の入射光側には、
セルロ−スやアセテ−ト,ブチレ−ト等の素材で構成さ
れた光の透過する層と、光の吸収する層を交互に重ね合
わせた光異方性膜(120)を液晶表示素子(100)
のガラス面に密着させ液晶ライトバルブを構成する。 (以後液晶ライトバルブと呼ぶ。)この光異方性膜(1
20)の厚みに関しては、入射光の配光特性に関し平行
性を高めるための物で、厚みが厚くなることにより平行
性は増す。また光異方性膜の光吸収と光透過の重ね合わ
せのピッチも、数μmから数mmまで自由に選択でき光
の平行性をコントロ−ルすることが出来る。
[0011] On the incident light side of the liquid crystal display element (100),
A liquid crystal display element (100) is made of an optically anisotropic film (120) in which light-transmitting layers and light-absorbing layers made of materials such as cellulose, acetate, and butyrate are alternately laminated. )
to form a liquid crystal light valve. (Hereafter referred to as liquid crystal light valve.) This optically anisotropic film (1
Regarding the thickness 20), it is intended to improve parallelism regarding the light distribution characteristics of incident light, and as the thickness increases, parallelism increases. Furthermore, the pitch of the superimposition of light absorption and light transmission in the optically anisotropic film can be freely selected from several μm to several mm, and the parallelism of light can be controlled.

【0012】図2(c)に示す入射側と出射側のそれぞ
れに光異方性膜を張り合わせた実施例においては、入射
側の光異方性膜は入射光を平行光に制限するもので、出
射側の光異方性膜は、液晶表示素子(100)の散乱光
の光を吸収することにより透過光と散乱光の比、つまり
コントラストを高めるものである。この出射側の光異方
性膜の厚みに関しては投写レンズの開口角(呑込み角)
の大きさに合わせて厚みを選択することが出来る。
In the embodiment shown in FIG. 2(c) in which optically anisotropic films are laminated on each of the incident side and the output side, the optically anisotropic film on the incident side limits the incident light to parallel light. The light anisotropic film on the emission side absorbs the scattered light of the liquid crystal display element (100), thereby increasing the ratio of transmitted light to scattered light, that is, the contrast. The thickness of the optically anisotropic film on the exit side is determined by the aperture angle (swallowing angle) of the projection lens.
The thickness can be selected according to the size.

【0013】図3は、本発明の投射型表示装置の投写レ
ンズと液晶ライトバルブの構成を示した構成図である。
FIG. 3 is a block diagram showing the structure of the projection lens and liquid crystal light valve of the projection type display device of the present invention.

【0014】液晶を用いた投射型表示装置の投写レンズ
の仕様は、一般的には図3(a)にしめすような主光線
が光軸に対して平行であるテレセントリックのレンズを
用いている。
[0014] The projection lens of a projection type display device using liquid crystal generally uses a telecentric lens whose chief ray is parallel to the optical axis as shown in FIG. 3(a).

【0015】このレンズの場合に開口比のF値は、小さ
いほど開口角が大きく明るいレンズであるが、液晶表示
素子に高分子分散型液晶を用いた場合においては、散乱
状態の画像の非選択状態の時の光の散乱光は、投写レン
ズの開口角(呑込み角)が大きいほど光を呑込んでしま
うためコントラストが低下する。
In the case of this lens, the smaller the F value of the aperture ratio, the larger the aperture angle and the brighter the lens becomes. However, when a polymer dispersed liquid crystal is used for the liquid crystal display element, non-selection of images in the scattering state The contrast of the scattered light in this state decreases because the larger the aperture angle (swallowing angle) of the projection lens is, the more light is swallowed.

【0016】図3(a)に示すように投写レンズ(13
0)の開口角(135)は、液晶ライトバルブ(131
)に対して垂直な主光線(132)を有するレンズで、
液晶の画素電極(134)に結像されている。光異方性
膜(133)は、ひとつの画素電極(134)に対して
複数のひかり透過層を有する光異方性膜で、光異方性膜
の厚みとピッチにより開口数(N.A.;Numeri
cal  Aperture)が決定される。
As shown in FIG. 3(a), the projection lens (13
The aperture angle (135) of 0) is the same as that of the liquid crystal light valve (131
) with a chief ray (132) perpendicular to
The image is formed on the pixel electrode (134) of the liquid crystal. The optical anisotropic film (133) is an optical anisotropic film that has a plurality of light transmission layers for one pixel electrode (134), and has a numerical aperture (N.A. ;Numeri
cal Aperture) is determined.

【0017】図3(b)は、投写レンズ(130)が平
行シフトのあおり光学系の実施例を示すもので、光異方
性膜(133)は、投写レンズの主光線に対し連続的に
光透過層と光吸収層の角度が変化する様に構成されてい
る。従ってあおり光学系においてもコントラストを高く
することが可能である。この実施例においては出射側の
みに光異方性膜を設けたが、入射側に光異方性膜を入れ
ることにより更にコントラストは高めることが可能であ
る。また光異方性膜の材質に関してはセルロ−スやアセ
テ−ト、ブチレ−ト等の有機樹脂膜に限らず、たとえば
鏡面仕上げの金属ミラ−を複数層設けて構成することも
できる。
FIG. 3(b) shows an embodiment of the tilting optical system in which the projection lens (130) is shifted in parallel, and the optically anisotropic film (133) is continuously aligned with the principal ray of the projection lens. The structure is such that the angle between the light-transmitting layer and the light-absorbing layer changes. Therefore, it is possible to increase the contrast even in the tilting optical system. In this example, the optically anisotropic film was provided only on the output side, but the contrast can be further enhanced by providing an optically anisotropic film on the incident side. Furthermore, the material of the optically anisotropic film is not limited to organic resin films such as cellulose, acetate, butyrate, etc., but may also be composed of a plurality of layers of mirror-finished metal mirrors, for example.

【0018】本実施例では液晶表示素子に高分子分散型
液晶を用いたが、この高分子分散型液晶はスポンジ状高
分子の内部に不連続な状態で液晶が存在し、その基本動
作は、例えば日経エレクトロニクス1990年6月11
日号102頁に示されるように粒状の液晶の屈折率をス
ポンジ状高分子に合わせておく。すると電圧が印加され
ないときは、界面に沿って液晶分子が配向し光の入射方
向の屈折率が異なるため、反射を繰り返し光は散乱する
。また電圧が印加されるときは、液晶分子が光の入射方
向に配向し屈折率が等しくなるため光が透過する。
In this embodiment, a polymer-dispersed liquid crystal was used for the liquid crystal display element. In this polymer-dispersed liquid crystal, liquid crystal exists in a discontinuous state inside a sponge-like polymer, and its basic operation is as follows. For example, Nikkei Electronics June 11, 1990
As shown on page 102 of the issue, the refractive index of the granular liquid crystal is matched to that of the sponge-like polymer. Then, when no voltage is applied, the liquid crystal molecules are aligned along the interface and the refractive index in the direction of light incidence is different, so the light is repeatedly reflected and scattered. Furthermore, when a voltage is applied, the liquid crystal molecules are aligned in the direction of light incidence and the refractive index becomes equal, allowing light to pass through.

【0019】また高分子分散型液晶はPNLC(Pol
ymer−Network  Liquid Crys
tal)で置き換えてもよい。これは液晶層に高分子の
ネットワークを組んだ構造で、液晶が連続な状態で存在
し、液晶分子配向の不規則性を利用する。電圧印加しな
い状態では液晶分子の配向が不規則なため光は散乱し、
電圧印加状態では配向が均一となり光は透過する。
Furthermore, the polymer dispersed liquid crystal is called PNLC (Pol
ymer-Network Liquid Crys
tal). This has a structure in which a polymer network is assembled in the liquid crystal layer, where the liquid crystal exists in a continuous state and takes advantage of the irregular orientation of the liquid crystal molecules. When no voltage is applied, the orientation of liquid crystal molecules is irregular, so light is scattered.
When a voltage is applied, the orientation is uniform and light is transmitted.

【0020】図4は本発明の投写型投写型表示装置の構
成図である。基本的には光異方性膜をライトバルブの入
射側、もしくは出射側に設けた三枚の液晶ライトバルブ
(200)を用いている。投写光源(201)の光を色
分離系(202)において三原色に分離し、それぞれの
色ごとに三枚の液晶ライトバルブ(200)で変調し、
再び色合成系(203)によりフルカラーに合成され、
投写レンズ(204)により拡大投写され、スクリーン
(205)上に画像表示が行われる。色分離系(202
)及び色合成系(203)はそれぞれ二枚のダイクロイ
ックミラーと反射ミラーから構成されており、波長特性
は任意に決めることができる。
FIG. 4 is a block diagram of a projection type display device according to the present invention. Basically, three liquid crystal light valves (200) are used in which an optically anisotropic film is provided on the input side or the output side of the light valve. The light from the projection light source (201) is separated into three primary colors by a color separation system (202), and each color is modulated by three liquid crystal light valves (200).
The color composition system (203) synthesizes the images in full color again.
The image is enlarged and projected by a projection lens (204) and displayed on a screen (205). Color separation system (202
) and the color synthesis system (203) each consist of two dichroic mirrors and a reflecting mirror, and the wavelength characteristics can be arbitrarily determined.

【0021】なお、液晶ライトバルブ(200)はTF
Tや、MIM方式のアクティブ素子を用いたものや時分
割駆動等のマトリクスアドレス駆動方式に有効で、光や
熱によるアドレス駆動方式にも有効であることを付け加
えておく。
[0021] The liquid crystal light valve (200) is a TF
It should be added that this method is effective for matrix address driving methods such as those using T, MIM type active elements, and time division driving, and is also effective for address driving methods using light or heat.

【0022】[0022]

【発明の効果】以上述べたように本発明によれば、投写
型表示装置において高分子分散型液晶を用いた液晶表示
素子の入射側、もしくは出射側に光異方性膜を設けるこ
とにより、入射光の光の平行性を高め、また投写レンズ
の開口数に限定されることがなく高分子分散型液晶の光
散乱を的確に吸収することにより、液晶ライトバルブの
もっとも重要であるコントラスト特性を高めることがで
きる。また偏光板が不要となり非常に明るい画像表示が
行える。
As described above, according to the present invention, in a projection display device, by providing an optically anisotropic film on the incident side or the output side of a liquid crystal display element using polymer dispersed liquid crystal, By increasing the parallelism of the incident light and accurately absorbing the light scattering of the polymer-dispersed liquid crystal without being limited by the numerical aperture of the projection lens, we have achieved the most important contrast characteristic of a liquid crystal light valve. can be increased. Furthermore, a polarizing plate is not required, and a very bright image can be displayed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の投写型表示装置を構成する液晶表示素
子の一実施例を示す断面図で、(a)図は電界を印加し
ない場合の断面図、(b)図は電界を印加した場合の断
面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a liquid crystal display element constituting a projection display device of the present invention, in which (a) is a cross-sectional view when no electric field is applied, and (b) is a cross-sectional view when an electric field is applied. FIG.

【図2】本発明の投写型表示装置を構成する光異方性膜
を張り合わせた液晶表示素子の一実施例を示す図で(a
)図は断面図、(b)図は透視図、(c)図は断面図で
ある。
FIG. 2 is a diagram showing an embodiment of a liquid crystal display element laminated with an optically anisotropic film constituting the projection display device of the present invention.
) is a cross-sectional view, (b) is a perspective view, and (c) is a cross-sectional view.

【図3】本発明の投写型表示装置を構成する液晶ライト
バルブと投写レンズの構成を示した構成図で(a)図は
主光線が平行の時の構成図、(b)図は主光線があおり
光学系の時の構成図である。
FIG. 3 is a configuration diagram showing the configuration of a liquid crystal light valve and a projection lens that constitute the projection display device of the present invention; (a) is a configuration diagram when the principal rays are parallel; (b) is a configuration diagram when the principal rays are parallel; It is a block diagram in the case of a tilting optical system.

【図4】本発明の投写型表示装置を液晶表示素子を三枚
用いて、フルカラーとした場合の構成図である。
FIG. 4 is a configuration diagram of a projection type display device of the present invention in full color using three liquid crystal display elements.

【符号の説明】[Explanation of symbols]

100・・・液晶表示素子 101・・・高分子分散型液晶 102・・・入射光 103・・・後方散乱 104・・・全方散乱 105・・・透過光 106・・・強度ベクトル 120・・・光異方性膜 130・・・投写レンズ 131・・・液晶ライトバルブ 132・・・主光線 134・・・画素電極 135・・・開口角 201・・・投射光源 202・・・色分離系 203・・・色合成系 205・・・スクリ−ン 100...Liquid crystal display element 101...Polymer dispersed liquid crystal 102...Incoming light 103...Backscatter 104...All scattering 105...Transmitted light 106...Intensity vector 120...optical anisotropic film 130...projection lens 131...LCD light bulb 132...chief ray 134...pixel electrode 135...Aperture angle 201...Projection light source 202...Color separation system 203...Color synthesis system 205...Screen

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  光の透過もしくは散乱により表示を行
なう液晶表示素子を用いた投写型液晶表示装置において
、前記液晶表示素子の入射側もしくは出射側に、光の透
過する層と光の吸収する層を交互に積層させた光異方性
膜を設けたことを特徴とする投写型液晶表示装置。
1. A projection type liquid crystal display device using a liquid crystal display element that performs display by transmitting or scattering light, comprising a light transmitting layer and a light absorbing layer on an incident side or an output side of the liquid crystal display element. 1. A projection type liquid crystal display device comprising an optically anisotropic film formed by alternately laminating layers.
JP3027246A 1991-02-21 1991-02-21 Projection type liquid crystal display device Pending JPH04265962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3027246A JPH04265962A (en) 1991-02-21 1991-02-21 Projection type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3027246A JPH04265962A (en) 1991-02-21 1991-02-21 Projection type liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH04265962A true JPH04265962A (en) 1992-09-22

Family

ID=12215722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3027246A Pending JPH04265962A (en) 1991-02-21 1991-02-21 Projection type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH04265962A (en)

Similar Documents

Publication Publication Date Title
JP3457591B2 (en) Liquid crystal display
US5594561A (en) Flat panel display with elliptical diffuser and fiber optic plate
US6822707B2 (en) Optical sheet and display device having the optical sheet
EP0750209B1 (en) Light guiding sheet
US5543870A (en) Rear projection screen with high off-axis sunlight rejection
CA2107952C (en) High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays
KR100272875B1 (en) Diffusion optical guide plate, and backlight source and liquid crystal display apparatus using the same
JP2857159B2 (en) Gain reflector and liquid crystal display
JP4202429B2 (en) Reflective display
JP2002107519A (en) Reflection type display unit, retroreflector
JP2001174801A (en) Reflection and transmission type liquid crystal display device
TW202024758A (en) Viewing angle control film and display device using the same
JP3310569B2 (en) Reflective liquid crystal display
EP0864908B1 (en) Light valve apparatus and display system using the same
US6166789A (en) Liquid crystal display
JP3162762B2 (en) Display element
JP3082114B2 (en) Liquid crystal display
JPH04265962A (en) Projection type liquid crystal display device
JP3030900B2 (en) PROJECTION TYPE LIQUID CRYSTAL DISPLAY AND PROCESS FOR PRODUCING POLYMER DISPERSION LIQUID CRYSTAL DISPLAY ELEMENT
JP2884755B2 (en) Projection display device
JP2953084B2 (en) Projection display device
JP2001194660A (en) Liquid crystal display
JPH06347764A (en) Display device
JPH07152029A (en) Display element
JP2967067B2 (en) Projection display device