JPH042655A - Burned high-alumina refractory brick - Google Patents
Burned high-alumina refractory brickInfo
- Publication number
- JPH042655A JPH042655A JP2103678A JP10367890A JPH042655A JP H042655 A JPH042655 A JP H042655A JP 2103678 A JP2103678 A JP 2103678A JP 10367890 A JP10367890 A JP 10367890A JP H042655 A JPH042655 A JP H042655A
- Authority
- JP
- Japan
- Prior art keywords
- quartz
- refractory
- al2o3
- brick
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011449 brick Substances 0.000 title claims abstract description 35
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000010453 quartz Substances 0.000 claims abstract description 23
- 239000002994 raw material Substances 0.000 claims abstract description 14
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 239000011819 refractory material Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 abstract description 9
- 238000004901 spalling Methods 0.000 abstract description 8
- 239000011230 binding agent Substances 0.000 abstract description 5
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052863 mullite Inorganic materials 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 2
- 235000013379 molasses Nutrition 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 229920002635 polyurethane Polymers 0.000 abstract description 2
- 239000004814 polyurethane Substances 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract 5
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 5
- 238000000465 moulding Methods 0.000 abstract 1
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011451 fired brick Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 241001131796 Botaurus stellaris Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- WHOPEPSOPUIRQQ-UHFFFAOYSA-N oxoaluminum Chemical compound O1[Al]O[Al]1 WHOPEPSOPUIRQQ-UHFFFAOYSA-N 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910021489 α-quartz Inorganic materials 0.000 description 1
- 229910000500 β-quartz Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高アルミナ質焼成耐火れんかに関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to high alumina calcined refractory bricks.
製鋼工場で受鋼容器の内張り材料として使用される耐火
物は、容易に損耗して大量に消耗されるため、従来は経
済的な理由により、ろう石質などの安価な低級粘土質原
料から製造されたものが使用されてきた。Refractories used as lining materials for steel-receiving vessels in steelmaking plants are easily worn out and consumed in large quantities, so traditionally, for economic reasons, they were manufactured from cheap, low-grade clay raw materials such as waxite. have been used.
しかしながら、近年の鋼の品質向上に対する需要者から
の厳しい要求に伴って、製鋼条件も極めて過酷なものと
なってきたがために、受鋼容器の内張り材料として、耐
食性に優れた高アルミナ質焼成れんがが使用されるよう
になっている。However, in recent years, steel manufacturing conditions have become extremely harsh in line with the strict demands from customers for improving the quality of steel. Bricks are now used.
しかるに、溶鋼温度の上昇とともに、使用時の耐火物内
部の温度勾配が大きくなってきたことから、上記高アル
ミナ質焼成れんがを使用する場合にも、熱スポーリング
によるれんがの剥離が問題となっている。この問題解決
のためには、高アルミナ質焼成れんかにスピネルを配合
し、両材料の熱膨張率の差により、れんが組織内部にマ
イクロクランクを発生させることにより、耐スポーリン
グ性を向上させる試みがなされているが、この様な耐火
物は、強度の低下およびMg0fiの増加に伴う酸性ス
ラグに対する耐食性の低下という新たな問題を引き起こ
している。However, as the temperature of molten steel rises, the temperature gradient inside the refractory during use has become larger, so even when using the above-mentioned high alumina fired bricks, flaking of the bricks due to thermal spalling has become a problem. There is. To solve this problem, an attempt was made to improve spalling resistance by blending spinel with high-alumina fired bricks and generating micro-cranks inside the brick structure due to the difference in thermal expansion coefficient between the two materials. However, such refractories have caused new problems such as a decrease in strength and a decrease in corrosion resistance against acid slag due to an increase in Mg0fi.
そこで、本発明は上記の事情に鑑み、耐食性に優れると
ともに、れんが組織の剥離を生じにくい耐スポーリング
性に優れる高アルミナ質焼成耐火れんがを提供すること
を目的とする。Therefore, in view of the above circumstances, an object of the present invention is to provide a high alumina fired refractory brick that has excellent corrosion resistance and spalling resistance that does not easily cause peeling of the brick structure.
上記の目的を達成するために本発明では、以下の手段を
採用する。In order to achieve the above object, the present invention employs the following means.
すなわち、Al2O2を主成分とする耐火材原料100
重量部と、粒径0.11〜5龍の石英0゜5〜10重量
部とを配合した後、成形、焼成した高アルミナ質焼成耐
火れんがである。That is, 100 refractory raw materials containing Al2O2 as a main component
This is a high alumina fired refractory brick that is formed and fired after blending 0.5 to 10 parts by weight of quartz with a grain size of 0.11 to 5.
本発明の高アルミナ質焼成耐火れんかにおいて、耐火材
原料中に配合する石英は573℃で低温型石英(α−石
英)から高温型石英(β−石英)に相転移する。上記低
温型石英の比重は2.56であるのに対して、高温型石
英の比重は2.53と小さく、上記相転移に伴って、石
英の体積はわずかながら膨張することとなる。従って、
れんが製造時の焼成工程において、耐火材原料中に配合
した石英の体積膨張によって、れんが組織中に極めて微
小なマイクロクラックを生成する。該マイクロクランク
は、稼働時にれんがMi織内で発生する熱応力を吸収し
て耐スポーリング性の向上に寄与する。また、マイクロ
クラックは、極めて微小であるため、れんがの強度、お
よび耐食性を低下させることがない。In the high alumina fired refractory brick of the present invention, the quartz blended into the refractory raw material undergoes a phase transition from low-temperature quartz (α-quartz) to high-temperature quartz (β-quartz) at 573°C. The low-temperature quartz has a specific gravity of 2.56, whereas the high-temperature quartz has a low specific gravity of 2.53, and the volume of the quartz expands slightly due to the phase transition. Therefore,
During the firing process during brick manufacturing, the volumetric expansion of quartz mixed into the refractory raw material generates extremely small microcracks in the brick structure. The microcrank absorbs thermal stress generated within the brick Mi weave during operation and contributes to improving spalling resistance. Moreover, since microcracks are extremely small, they do not reduce the strength and corrosion resistance of the brick.
本発明で耐火材原料としで使用する高純度アルミナ系材
料としては、通常アルミナれんがの原料として使用され
ている純度70%以上の仮焼ボーキサイト、合成ムライ
ト、焼結アルミナ、電融アルミナ、電融ムライトなどが
挙げられ、これらの一種または二種以上を使用する。上
記耐火材原料の粒径は、特に制限されないが、通常5鰭
以下程度であり、3.5mmmm以下色することがより
好ましく、常法通りに、粒径の異なる材料を適宜配合し
、粒度分布を調整して使用することが好ましい。The high-purity alumina-based materials used as raw materials for refractory materials in the present invention include calcined bauxite with a purity of 70% or more, which is usually used as a raw material for alumina bricks, synthetic mullite, sintered alumina, fused alumina, and fused alumina. Examples include mullite, and one or more of these may be used. The particle size of the above-mentioned refractory material raw material is not particularly limited, but it is usually about 5 fins or less, and it is more preferable to have a color of 3.5 mm or less, and the particle size distribution is It is preferable to adjust and use it.
石英の粒径も特に限定されず、適宜選択すれば良いが、
通常51以下程度であり、3〜11程度とすることがよ
り好ましい。石英の粒径が5mmを上回る場合には、れ
んが焼成時に発生するマイクロクラックが大きくなり過
ぎて、れんがの強度が低下するおそれがあり、またその
一方で、石英の粒径が0.5m未満の場合には、耐スポ
ーリング性向上への効果が小さい。実用上の観点からは
、石英の粒径は、3〜1fi程度とすることが最も好都
合である。The grain size of quartz is not particularly limited, and may be selected appropriately.
It is usually about 51 or less, and more preferably about 3 to 11. If the grain size of quartz exceeds 5 mm, microcracks that occur during brick firing may become too large and the strength of the brick may decrease. In some cases, the effect on improving spalling resistance is small. From a practical point of view, it is most convenient for the grain size of quartz to be approximately 3 to 1 fi.
石英の配合量は、A I! z Ozを主成分とする耐
火材原料100重量部に対し2O.5〜10重量部とす
る。石英の配合量が0.5重量部未満の場合には、マイ
クロクランクの発生量が不充分となり、一方、10重量
部を上回る場合には、過剰のマイクロクラックが発生し
、極端な強度低下が起こるので、いずれも好ましくない
。The amount of quartz mixed is A I! z 2O. The amount is 5 to 10 parts by weight. If the amount of quartz added is less than 0.5 parts by weight, the amount of microcranks will be insufficient, while if it exceeds 10 parts by weight, excessive microcracks will occur, resulting in an extreme decrease in strength. Both are undesirable because they occur.
本発明の高アルミナ質焼成耐火れんがは、常法に従って
製造することができる。例えば、所定の割合で配合した
耐火材原料と石英との混合物にバインダーを加えて、混
練し、成形し、必要に応じて乾燥した後、酸化雰囲気中
で1400〜1700℃程度の温度で焼成すれば良い。The high alumina fired refractory brick of the present invention can be manufactured according to a conventional method. For example, a binder is added to a mixture of refractory raw materials and quartz mixed in a predetermined ratio, kneaded, shaped, dried if necessary, and then fired at a temperature of about 1400 to 1700°C in an oxidizing atmosphere. Good.
バインダーとしては、この種の耐火れんがで使用される
公知の糖蜜、ポリウレタン、ポリプロピレン、苦汁など
が、いずれも使用可能である。バインダーの量も特に限
定されないが、通常耐火材原料100重量部に対し、1
〜5重量部程度が適当である。As the binder, any of the known molasses, polyurethane, polypropylene, bittern, etc. used in this type of refractory brick can be used. The amount of binder is also not particularly limited, but it is usually 1 part by weight per 100 parts by weight of the refractory material raw material.
Approximately 5 parts by weight is appropriate.
以下に実施例を示し、本発明の特徴とするところをより
一層明確にする。Examples will be shown below to further clarify the features of the present invention.
電融アルミナ100重量部(粒径3.5〜1■lのもの
25重量部、111未満のもの75重量部)に対し、以
下に示す所定の割合で石英c粒径3〜1曹璽のもの)を
配合するとともに、バインダーとしてW蜜2重量部を配
合して混練し、成形し、1650℃で焼成して、本発明
の高アルミナ質焼成耐火れんがを得た。To 100 parts by weight of fused alumina (25 parts by weight of particles with a particle size of 3.5 to 1 μl, 75 parts by weight of particles smaller than 111), quartz C particles with a particle size of 3 to 1 quartz were added in the prescribed proportions shown below. and 2 parts by weight of W honey as a binder, kneaded, molded, and fired at 1650°C to obtain a high alumina fired refractory brick of the present invention.
石英の配合量は、実施例1では1重量部、実施例2では
3重量部、実施例3では5重量部とした。The amount of quartz blended was 1 part by weight in Example 1, 3 parts by weight in Example 2, and 5 parts by weight in Example 3.
尚、比較例として、石英を配合しない耐火材原料を使用
して、実施例1〜3と同様の工程で高アルミナ質焼成耐
火れんがを製造した。As a comparative example, high alumina fired refractory bricks were manufactured in the same process as Examples 1 to 3 using a refractory raw material that did not contain quartz.
上記のようにして得られた4種類の焼成耐火れんがの特
性を測定し、結果を第1表に示す。The characteristics of the four types of fired refractory bricks obtained as described above were measured, and the results are shown in Table 1.
第1表に示す各特性を下記の試験方法で測定した。Each characteristic shown in Table 1 was measured by the following test method.
■気孔率(%)、JIS R2205による。■Porosity (%), according to JIS R2205.
■嵩比重、JIS R2205による。■Bulk specific gravity according to JIS R2205.
■圧縮強さ(krf/ad)、JIS R2206に
よる。■Compressive strength (krf/ad), according to JIS R2206.
■曲げ強さ(kgf/cj、常温)、JIS R22
13による。■Bending strength (kgf/cj, room temperature), JIS R22
According to 13.
■弾性率(X10’kgf/cd、常温)、超音波伝播
法による。■Modulus of elasticity (X10'kgf/cd, room temperature), based on ultrasonic propagation method.
■耐スポーリング性、耐火れんがを1200℃に維持し
た電気炉で15分間加熱の後、15分間冷却する試験を
1サイクルとし、れんが組織が剥落するまでのサイクル
数を調べた。■ Spalling resistance: One cycle was a test in which a refractory brick was heated for 15 minutes in an electric furnace maintained at 1200°C and then cooled for 15 minutes, and the number of cycles until the brick structure peeled off was determined.
第1表に示す結果から明らかなように、本発明による高
アルミナ質焼成耐火れんがは、気孔率、嵩比重、圧縮強
さ、曲げ強さ、弾性率等の特性については比較例1とし
て示す公知の高アルミナ質焼成耐火れんがと顕著な違い
はみられないが、極めて優れた耐スポーリング性を備え
ることを示している。As is clear from the results shown in Table 1, the high alumina fired refractory brick according to the present invention has better properties such as porosity, bulk specific gravity, compressive strength, bending strength, and elastic modulus than those of the known bricks shown as Comparative Example 1. Although there is no noticeable difference from the high alumina fired refractory bricks, it shows that it has extremely excellent spalling resistance.
また、本発明による高アルミナ質焼成耐火れんがでは、
スピネルを配合する公知のアルミナ質焼成耐火れんかに
おいて認められる強度の著しい低下も、生じていないこ
とが明らかである。Moreover, in the high alumina fired refractory brick according to the present invention,
It is also clear that the significant decrease in strength observed in known alumina calcined refractory bricks containing spinel does not occur.
尚、本発明は上記実施例に限られるものではなく、本発
明の趣旨を逸脱しない範囲で種々の応用が可能であるこ
とはいうまでもない。It goes without saying that the present invention is not limited to the above-mentioned embodiments, and that various applications are possible without departing from the spirit of the present invention.
く以下余白〉
本発明による実施例と比較例の特性
第 1 表
〔発明の効果〕
上記したように、本発明によれば、アルミナを主成分と
する耐火材原料に石英を配合することにより、れんが焼
成に伴う石英の相転移によってれんがm織中に極めて微
小なマイクロクランクを発生させることができる。そし
て、該マイクロクラックの存在により、耐食性およびれ
んが強度を低下させることなく、耐久ポーリング性を高
め、耐用性に優れる高アルミナ質焼成耐火れんがを提供
することができる。Table 1 Characteristics of Examples and Comparative Examples of the Present Invention [Effects of the Invention] As described above, according to the present invention, by blending quartz into the refractory material whose main component is alumina, Due to the phase transition of quartz that accompanies brick firing, extremely small microcranks can be generated in the brick weave. And, due to the presence of the microcracks, it is possible to provide a high alumina fired refractory brick that has improved poling resistance and excellent durability without reducing corrosion resistance and brick strength.
Claims (1)
重量部と、粒径0.1mm〜5mmの石英0.5〜10
重量部とを配合した後、成形、焼成したことを特徴とす
る高アルミナ質焼成耐火れんが。(1) Refractory material raw material 100 whose main component is Al_2O_3
Part by weight, 0.5 to 10 quartz with grain size of 0.1 mm to 5 mm
A high alumina fired refractory brick characterized by being formed and fired after blending parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2103678A JPH042655A (en) | 1990-04-19 | 1990-04-19 | Burned high-alumina refractory brick |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2103678A JPH042655A (en) | 1990-04-19 | 1990-04-19 | Burned high-alumina refractory brick |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH042655A true JPH042655A (en) | 1992-01-07 |
Family
ID=14360449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2103678A Pending JPH042655A (en) | 1990-04-19 | 1990-04-19 | Burned high-alumina refractory brick |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH042655A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017078016A (en) * | 2011-03-11 | 2017-04-27 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Refractory object used in forming glass object |
US10590041B2 (en) | 2012-01-11 | 2020-03-17 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object and process of forming a glass sheet using the refractory object |
US11814317B2 (en) | 2015-02-24 | 2023-11-14 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory article and method of making |
-
1990
- 1990-04-19 JP JP2103678A patent/JPH042655A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017078016A (en) * | 2011-03-11 | 2017-04-27 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Refractory object used in forming glass object |
US10590041B2 (en) | 2012-01-11 | 2020-03-17 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object and process of forming a glass sheet using the refractory object |
US11814317B2 (en) | 2015-02-24 | 2023-11-14 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory article and method of making |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01278469A (en) | Magnesia-calcia based refractory | |
CN101007730A (en) | Alumina-spinel flame-proof material for refining aluminium furnace and its production method | |
JPH042655A (en) | Burned high-alumina refractory brick | |
JP2641523B2 (en) | High alumina castable refractories | |
JP2003238250A (en) | Yttria refractory | |
JP3343297B2 (en) | Fired refractory brick for lining | |
US3247001A (en) | Fused cast refractory | |
JP4408552B2 (en) | Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source | |
JPH05117019A (en) | Basic refractory brick | |
JPH046150A (en) | Magnesia-chrome refractories | |
JP2999134B2 (en) | Magnesia chrome refractory and cement rotary kiln | |
JPH01278470A (en) | High-alumina based calcined refractory brick | |
KR20050064557A (en) | Magnesia-spinel-carbon basic refractory | |
US3337353A (en) | Mgo-b2o3 fused cast refractory | |
JPH01160862A (en) | Calcined firebrick of magnesia base | |
JPH0230656A (en) | Magnesia-calcia refractory | |
JP2872670B2 (en) | Irregular refractories for lining of molten metal containers | |
JPS6016866A (en) | Graphite-containing refractories | |
JP4058649B2 (en) | Basic brick for rotary kiln | |
JPH02141480A (en) | Castable refractory | |
JP3314983B2 (en) | High durability magnesia-spinel cement and refractory for lime burning kiln | |
CN119100814A (en) | Sol-bonded high thermal conductivity composite steel fiber toughened refractory castable and preparation method thereof | |
JPH0788259B2 (en) | Basic amorphous refractory | |
JP2003306388A (en) | Electromelted spinel raw material and refractory material using the same | |
Vasil'eva et al. | Formed refractories based on the bauxites of the Severo-Onega deposits |