[go: up one dir, main page]

JPH04261067A - How to manufacture solar cells - Google Patents

How to manufacture solar cells

Info

Publication number
JPH04261067A
JPH04261067A JP3008449A JP844991A JPH04261067A JP H04261067 A JPH04261067 A JP H04261067A JP 3008449 A JP3008449 A JP 3008449A JP 844991 A JP844991 A JP 844991A JP H04261067 A JPH04261067 A JP H04261067A
Authority
JP
Japan
Prior art keywords
substrate
conductivity type
layer
junction
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3008449A
Other languages
Japanese (ja)
Inventor
Fumitaka Tamura
田村 文孝
Yoshinori Okayasu
良宣 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP3008449A priority Critical patent/JPH04261067A/en
Publication of JPH04261067A publication Critical patent/JPH04261067A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は太陽電池の製造方法に係
り、より詳しくは、太陽電池のpn接合を固相成長法で
形成する太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solar cell, and more particularly to a method of manufacturing a solar cell in which a pn junction of the solar cell is formed by solid phase growth.

【0002】0002

【従来の技術】シリコン多結晶を用いた太陽電池は知ら
れている。シリコン多結晶はシリコン単結晶よりも大面
積化が容易であり、かつ安価である利点があり、太陽電
池用半導体基板として非常に有望である。
2. Description of the Related Art Solar cells using polycrystalline silicon are known. Polycrystalline silicon has the advantage of being easier to grow in area and cheaper than single crystal silicon, and is very promising as a semiconductor substrate for solar cells.

【0003】シリコン多結晶基板にpn接合を形成する
方法としては、一般的に、n型シリコン基板上にCVD
法でp型シリコン層をエピタキシャル成長するか、また
はn型シリコン基板に拡散法でp型拡散層を形成する方
法がとられている。
[0003] Generally, as a method for forming a pn junction on a silicon polycrystalline substrate, CVD is used on an n-type silicon substrate.
Methods used include epitaxially growing a p-type silicon layer using a method, or forming a p-type diffusion layer on an n-type silicon substrate using a diffusion method.

【0004】0004

【発明が解決しようとする課題】しかしながら、CVD
法でシリコン層をエピタキシャル成長する方法は高温を
必要とし、用いうる基板に制約があり、プラズマCVD
法では低温成長できるが、その後高温の熱処理を経るた
め膜質が低下する(デバイス特性が低下する)欠点があ
る。また、拡散法では1020cm−3以上の高濃度の
拡散層を形成することが困難であり、しかも高濃度にす
ると拡散深さが深くなる、拡散層形成の制御性が低いと
いう欠点がある。
[Problem to be solved by the invention] However, CVD
The method of epitaxially growing a silicon layer using the plasma CVD method requires high temperatures and there are restrictions on the substrates that can be used.
Although this method allows low-temperature growth, it has the disadvantage that the film quality deteriorates (device characteristics deteriorate) because it is then subjected to high-temperature heat treatment. Further, the diffusion method has the disadvantage that it is difficult to form a diffusion layer with a high concentration of 1020 cm-3 or more, and that the diffusion depth becomes deeper when the concentration is increased, and the controllability of the formation of the diffusion layer is low.

【0005】そこで、本発明は、低温で、浅い高濃度の
pn接合を形成する方法を提供し、よって高品質の太陽
電池を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method for forming a shallow high-concentration pn junction at a low temperature, thereby providing a high-quality solar cell.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、少なくとも表面が第一導電型シリコン結
晶層からなる基板上に該第一導電型と反対の導電型であ
る第二導電型のアモルファスシリコン層を堆積し、該第
二導電型アモルファスシリコン層を熱処理して第二導電
型の結晶質シリコン層に変換し、よってpn接合を形成
することを特徴とする太陽電池の製造方法を提供する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a substrate having at least a first conductivity type silicon crystal layer, and a second conductivity type silicon crystal layer having a conductivity type opposite to the first conductivity type. Manufacture of a solar cell, characterized in that an amorphous silicon layer of a second conductivity type is deposited, and the amorphous silicon layer of a second conductivity type is heat-treated to convert it into a crystalline silicon layer of a second conductivity type, thereby forming a pn junction. provide a method.

【0007】簡単に述べると、本発明は固相成長法でp
n接合を形成することを特徴とする太陽電池の製造方法
である。固相成長法によれば低温で高濃度層の導電型結
晶層を形成できる可能性があるので、本発明者らは固相
成長法によりpn接合を形成して太陽電池として使用で
きる品質のものが得られるか否かを検討した結果、太陽
電池として充分に実用できるpn接合を形成することが
できることを見出し、本発明を完成した。
Briefly stated, the present invention provides p
This is a method for manufacturing a solar cell characterized by forming an n-junction. Since it is possible to form a conductive crystal layer with a high concentration layer at a low temperature using the solid phase growth method, the present inventors formed a p-n junction using the solid phase growth method to create a material of a quality that can be used as a solar cell. As a result of examining whether or not this could be obtained, it was discovered that it was possible to form a pn junction that could be sufficiently put to practical use as a solar cell, and the present invention was completed.

【0008】基板は、少なくとも表面が第一導電型シリ
コン結晶層からなるものである。第一導電型シリコン結
晶層は、基板自体でもよいし、または基板表面に成長さ
せた層でもよい。低温プラズマCVD法では基板の面方
位による膜質の差が大きいが、固相成長法ではそのよう
な制約はない。
[0008] At least the surface of the substrate is made of a first conductivity type silicon crystal layer. The first conductivity type silicon crystal layer may be the substrate itself, or may be a layer grown on the surface of the substrate. In the low-temperature plasma CVD method, there is a large difference in film quality depending on the plane orientation of the substrate, but in the solid phase growth method, there is no such restriction.

【0009】基板表面の第一導電型シリコン結晶層は1
017〜1015/cm3程度のドーパント濃度、抵抗
率で0.1〜10Ωcm程度のn− 型あるいはp− 
型の結晶層とする。基板の表面は、アモルファスシリコ
ン層の堆積前に清浄化処理を行うことが良質のpn接合
を固相成長法で形成するために極めて望ましい。具体的
には、有機洗浄後アルカリ性溶液または混酸によるエッ
チングにより清浄な基板表面を出す。この他インサイト
でのプラズマによるエッチングによっても可能である。
The first conductivity type silicon crystal layer on the substrate surface is 1
n- type or p- type with a dopant concentration of about 017 to 1015/cm3 and a resistivity of about 0.1 to 10 Ωcm.
Let it be the crystal layer of the mold. It is highly desirable to perform a cleaning treatment on the surface of the substrate before depositing the amorphous silicon layer in order to form a high quality pn junction by solid phase growth. Specifically, after organic cleaning, a clean substrate surface is exposed by etching with an alkaline solution or mixed acid. In addition, in-situ plasma etching is also possible.

【0010】この表面が第一導電型シリコン結晶層から
なる基板上に、先ず、第一導電型と反対の導電型である
第二導電型のアモルファスシリコン層を堆積する。この
堆積の一般的条件は下記の如くである。 シリコン源:SiH4 ドーパント(p型):B2H6 ドーパント(n型):PH3  ドーパント濃度:0.1〜3% ガス流量:10〜50 SCCM  基板温度: 150℃〜 350℃ 圧力:200mTorr プラズマRF電力:10〜20W 膜厚:100 〜2000Å或いはそれ以上この堆積法
によれば、低温で、高濃度にドープしたアモルファスシ
リコン層を所望の厚さに形成することができる。
[0010] First, an amorphous silicon layer of a second conductivity type, which is a conductivity type opposite to the first conductivity type, is deposited on the substrate whose surface is made of a first conductivity type silicon crystal layer. The general conditions for this deposition are as follows. Silicon source: SiH4 Dopant (p type): B2H6 Dopant (n type): PH3 Dopant concentration: 0.1 to 3% Gas flow rate: 10 to 50 SCCM Substrate temperature: 150°C to 350°C Pressure: 200mTorr Plasma RF power: 10 ~20W Film thickness: 100~2000 Å or more According to this deposition method, a highly doped amorphous silicon layer can be formed to a desired thickness at a low temperature.

【0011】次に、堆積したアモルファスシリコン層を
熱処理して結晶化させる。この熱処理は熱CVD法など
による結晶シリコン層の堆積の場合(一般に900 〜
1100℃) と比べて低温でよく、アモルファスシリ
コン層の膜質等によるが、典型的には600 〜 70
0℃でよい。 500℃未満では良好な結晶が得られに
くく、一方より高温にするとランダム結晶核発生により
エピタキシャル成長せずに粒径の小さな多結晶となる。 熱処理雰囲気は不活性雰囲気、例えばアルゴンであれば
よい。
Next, the deposited amorphous silicon layer is heat treated to crystallize it. This heat treatment is used in the case of depositing a crystalline silicon layer by thermal CVD method etc. (generally 900 ~
(1100℃), and typically 600 to 70℃ depending on the quality of the amorphous silicon layer.
0°C is sufficient. If the temperature is lower than 500° C., it is difficult to obtain good crystals, while if the temperature is higher than that, epitaxial growth will not occur due to random crystal nucleation, resulting in polycrystals with small grain sizes. The heat treatment atmosphere may be an inert atmosphere, such as argon.

【0012】この熱処理により、アモルファスシリコン
層は結晶化し、pn接合が形成される。この方法によれ
ば、低温でpn接合が形成できるので、半導体膜或いは
層の品質を低下させることがない。また、低温であるの
でドーパントが基板中に深く拡散することもない。結晶
化されるシリコン層の厚さは 200Å程度までは薄く
することができる。従来の熱拡散法では高濃度に拡散し
ようとすると少なくとも5000Å程度まで達したが、
本発明ではドーパント濃度と無関係に薄くすることがで
きる。但し、 100Åより薄くすると開放電圧、短絡
光電流ともに減少し,太陽電池の変換効率が低下する。 結晶化したシリコン層のドーパント濃度としては少なく
とも1021cm−3程度までは容易に実現できる。従
って、浅くかつ急峻な濃度勾配を持つpn接合が得られ
る。そして、重要なことは、この固相成長法で形成した
pn接合は、基板の前処理等さえ充分に制御すれば、そ
のままで充分に太陽電池として実用できるpn接合であ
ることである。その結果、従来よりも高濃度でより浅い
pn接合を持ちかつ結晶品質の低下のない太陽電池を得
ることができ、表面電流の増加等、太陽電池の特性改善
にも寄与する。
[0012] Through this heat treatment, the amorphous silicon layer is crystallized and a pn junction is formed. According to this method, a pn junction can be formed at a low temperature, so the quality of the semiconductor film or layer is not degraded. Furthermore, since the temperature is low, the dopant does not diffuse deeply into the substrate. The thickness of the crystallized silicon layer can be as thin as 200 Å. In the conventional thermal diffusion method, when trying to diffuse to a high concentration, it reaches at least about 5000 Å.
In the present invention, the thickness can be reduced regardless of the dopant concentration. However, if the thickness is made thinner than 100 Å, both the open circuit voltage and the short circuit photocurrent will decrease, and the conversion efficiency of the solar cell will decrease. The dopant concentration of the crystallized silicon layer can easily be at least about 1021 cm-3. Therefore, a pn junction having a shallow and steep concentration gradient can be obtained. What is important is that the pn junction formed by this solid phase growth method can be used as a solar cell for practical use as long as the pretreatment of the substrate is sufficiently controlled. As a result, it is possible to obtain a solar cell having a higher concentration and a shallower p-n junction than before and without deterioration in crystal quality, which also contributes to improving the characteristics of the solar cell, such as increasing the surface current.

【0013】pn接合の形成以外の電極等の形成は、通
常の太陽電池と同様にすることができる。
[0013] Formation of electrodes and the like other than the formation of the pn junction can be carried out in the same manner as in ordinary solar cells.

【0014】[0014]

【作用】一導電型基板上に固相成長法で反対導電型導電
層を形成するので、高濃度でかつ浅いpn接合を形成で
きる。また、低温処理であるので、基板等の結晶品質を
低下させることもない。
[Operation] Since a conductive layer of an opposite conductivity type is formed on a substrate of one conductivity type by solid phase growth, a high concentration and shallow pn junction can be formed. Furthermore, since the process is performed at a low temperature, the crystal quality of the substrate etc. will not be degraded.

【0015】[0015]

【実施例】図1に示した如き成長装置を用いた。同図中
、1はシリコン基板、2は基板ホルダー兼RF電極、3
はヒータ、4はガスノズル、5はRF電極、6はガス導
入管、7はプラズマ発生領域、8は真空チャンバーであ
る。
EXAMPLE A growth apparatus as shown in FIG. 1 was used. In the figure, 1 is a silicon substrate, 2 is a substrate holder and RF electrode, and 3 is a silicon substrate.
4 is a heater, 4 is a gas nozzle, 5 is an RF electrode, 6 is a gas introduction tube, 7 is a plasma generation region, and 8 is a vacuum chamber.

【0016】図2を参照すると、(100)または(1
11)Cz 単結晶シリコン(抵抗率2〜6Ωcm)あ
るいはキャスト多結晶シリコンを用い、アルカリエッチ
ングした後、製膜前処理として、アセトンによる超音波
有機洗浄、純水洗浄、フッ酸による酸化膜除去、純水リ
ンス、そして乾燥窒素ブローを行った。
Referring to FIG. 2, (100) or (1
11) Cz Single crystal silicon (resistivity 2 to 6 Ωcm) or cast polycrystalline silicon is used, and after alkali etching, pretreatment for film formation includes ultrasonic organic cleaning with acetone, pure water cleaning, and oxide film removal with hydrofluoric acid. A pure water rinse and a dry nitrogen blow were performed.

【0017】この基板11を成長装置中に搭載し、下記
の条件でアモルファスシリコン層12を堆積した。 ソースガス:PH3 を1%含むSiH4ガスガス流量
:25SCCM 基板温度: 170℃ 圧力:200mToor 電力:10W 膜厚: 250Å
This substrate 11 was mounted in a growth apparatus, and an amorphous silicon layer 12 was deposited under the following conditions. Source gas: SiH4 gas containing 1% PH3 Gas flow rate: 25SCCM Substrate temperature: 170°C Pressure: 200mToor Power: 10W Film thickness: 250Å

【0018】次いで、アモルファスシリコン層12を堆
積した基板11をイメージ炉中で、 120℃/分の速
度で昇温し、600 ℃に5分間保持した後、徐冷した
。得られた結晶化膜の特性として、結晶構造を紫外表面
反射及びR−HEED(反射型高エネルギー電子線回折
)により、また電気特性をホール効果測定および拡がり
抵抗測定により観測した。
Next, the substrate 11 on which the amorphous silicon layer 12 was deposited was heated in an image furnace at a rate of 120° C./min, held at 600° C. for 5 minutes, and then slowly cooled. As for the characteristics of the obtained crystallized film, the crystal structure was observed by ultraviolet surface reflection and R-HEED (reflection type high energy electron diffraction), and the electrical properties were observed by Hall effect measurement and spreading resistance measurement.

【0019】その結果、キャリア濃度10−21 cm
−1、抵抗率10−4Ωcm程度の結晶性シリコン膜が
得られていることが分った。
As a result, the carrier concentration was 10-21 cm
It was found that a crystalline silicon film with a resistivity of -1 and a resistivity of about 10 -4 Ωcm was obtained.

【0020】それから、太陽電池を図3を参照して説明
すると、次の如く作成した。図3中、21は透明電極、
22はくし型表面電極、23はn+ 型結晶質シリコン
層、24はp− 型シリコン結晶基板、25は裏面電極
である。太陽電池の特性はAM1.5による測定で、開
放電圧0.56V、短絡光電流は単結晶基板上で32m
A/cm2 多結晶基板上で28mA/cm2 変換効
率はそれぞれ14%と12.5%であった。
Next, the solar cell will be explained with reference to FIG. 3. It was prepared as follows. In FIG. 3, 21 is a transparent electrode;
22 is a comb-shaped front electrode, 23 is an n+ type crystalline silicon layer, 24 is a p− type silicon crystal substrate, and 25 is a back electrode. The characteristics of the solar cell were measured using AM1.5, with an open circuit voltage of 0.56V and a short circuit photocurrent of 32m on a single crystal substrate.
The 28 mA/cm2 conversion efficiency on the A/cm2 polycrystalline substrate was 14% and 12.5%, respectively.

【0021】[0021]

【発明の効果】本発明によれば、低温プロセスで、高キ
ャリア濃度でかつ浅いpn接合を持ちしかも膜質の優れ
た太陽電池が得られる。
According to the present invention, a solar cell having a high carrier concentration, a shallow pn junction, and excellent film quality can be obtained using a low temperature process.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】アモルファスシリコン層のCVD堆積装置の模
式図である。
FIG. 1 is a schematic diagram of a CVD deposition apparatus for an amorphous silicon layer.

【図2】実施例のpn接合の形成を示す模式断面図であ
る。
FIG. 2 is a schematic cross-sectional view showing the formation of a pn junction in an example.

【図3】実施例の太陽電池の模式図である。FIG. 3 is a schematic diagram of a solar cell of an example.

【符号の説明】[Explanation of symbols]

1…基板 2…基板ホルダー兼RF電極 3…ヒータ 4…ガスノズル 5…RF電極 6…ガス導入管 7…プラズマ発生領域 8…真空チャンバー 11…p− 型シリコン結晶基板 12…n+ 型アモルファスシリコン層       
                         
        21…透明電極 22…くし形表面電極 23…n+ 型結晶質シリコン層 24…p− 型シリコン結晶基板 25…裏面電極
1... Substrate 2... Substrate holder and RF electrode 3... Heater 4... Gas nozzle 5... RF electrode 6... Gas introduction tube 7... Plasma generation region 8... Vacuum chamber 11... P- type silicon crystal substrate 12... N+ type amorphous silicon layer

21... Transparent electrode 22... Comb-shaped front electrode 23... N+ type crystalline silicon layer 24... P- type silicon crystal substrate 25... Back electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも表面が第一導電型シリコン
結晶層からなる基板上に該第一導電型と反対の導電型で
ある第二導電型のアモルファスシリコン層を堆積し、該
第二導電型アモルファスシリコン層を熱処理して第二導
電型の結晶質シリコン層に変換し、よってpn接合を形
成することを特徴とする太陽電池の製造方法。
1. An amorphous silicon layer of a second conductivity type, which is a conductivity type opposite to the first conductivity type, is deposited on a substrate having at least a surface of a first conductivity type silicon crystal layer, 1. A method of manufacturing a solar cell, comprising heat-treating a silicon layer to convert it into a crystalline silicon layer of a second conductivity type, thereby forming a pn junction.
JP3008449A 1991-01-28 1991-01-28 How to manufacture solar cells Pending JPH04261067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008449A JPH04261067A (en) 1991-01-28 1991-01-28 How to manufacture solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008449A JPH04261067A (en) 1991-01-28 1991-01-28 How to manufacture solar cells

Publications (1)

Publication Number Publication Date
JPH04261067A true JPH04261067A (en) 1992-09-17

Family

ID=11693437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008449A Pending JPH04261067A (en) 1991-01-28 1991-01-28 How to manufacture solar cells

Country Status (1)

Country Link
JP (1) JPH04261067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518136A (en) * 2017-04-27 2020-06-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Low dielectric constant oxide and low resistance OP stack for 3D NAND applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518136A (en) * 2017-04-27 2020-06-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Low dielectric constant oxide and low resistance OP stack for 3D NAND applications

Similar Documents

Publication Publication Date Title
JPH04245683A (en) Manufacture of solar cell
JP2740337B2 (en) Photovoltaic element
JP3578539B2 (en) Solar cell manufacturing method and solar cell structure
CN1720356A (en) Method for fabricating crystalline semiconductor thin films on heterogeneous substrates
JPH04184979A (en) Solar cell and manufacture of solar cell
CN114975643A (en) N-TOPCon photovoltaic solar cell preparation method and solar cell
CN115692545A (en) Method for improving doping concentration of polycrystalline silicon active phosphorus of N-type TOPCon battery in PECVD route
JP2962918B2 (en) Method of forming silicon thin film and method of manufacturing solar cell
CN105870253B (en) A kind of WS2/ Si heterojunction solar battery preparation methods
Kuraseko et al. Inverted aluminum-induced layer exchange method for thin film polycrystalline silicon solar cells on insulating substrates
JP4314716B2 (en) Crystalline silicon thin film photovoltaic device
CN109616550B (en) Improve Sb2Se3Method for film crystal grain columnar growth trend
CN103367480B (en) Gaas tunnel junction and preparation method thereof
JPH04261067A (en) How to manufacture solar cells
CN111933738B (en) Self-junction photodetector based on molecular beam epitaxy technology and preparation method thereof
KR100777717B1 (en) Method of manufacturing silicon solar cell
JPH04261069A (en) Manufacture of solar cell
JPH04261068A (en) How to manufacture solar cells
JP3245100B2 (en) Method for manufacturing semiconductor element and method for manufacturing solar cell
CN109768102A (en) A kind of crystalline silicon heterojunction solar cell and preparation method thereof
JP2002217433A (en) Semiconductor device
JP2892922B2 (en) Method for manufacturing photovoltaic element
CN110970523B (en) Silicon-based heterojunction solar cell and manufacturing method thereof
CN115663064A (en) Preparation method of semiconductor device based on silicon-doped hexagonal boron nitride
JP2833924B2 (en) Crystal solar cell and method of manufacturing the same