JPH04260005A - Planar optical waveguide - Google Patents
Planar optical waveguideInfo
- Publication number
- JPH04260005A JPH04260005A JP4263791A JP4263791A JPH04260005A JP H04260005 A JPH04260005 A JP H04260005A JP 4263791 A JP4263791 A JP 4263791A JP 4263791 A JP4263791 A JP 4263791A JP H04260005 A JPH04260005 A JP H04260005A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- crystal substrate
- planar optical
- electro
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims description 73
- 239000000758 substrate Substances 0.000 claims description 40
- 239000013078 crystal Substances 0.000 claims description 24
- 230000005684 electric field Effects 0.000 claims description 6
- 229910003327 LiNbO3 Inorganic materials 0.000 description 7
- 230000005855 radiation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910012463 LiTaO3 Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】本発明は、平面光導波路に関する
。より詳細には、曲率半径の小さい湾曲部における放射
損失を低減させた新規な構成の平面光導波路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar optical waveguide. More specifically, the present invention relates to a planar optical waveguide with a novel configuration in which radiation loss in a curved portion with a small radius of curvature is reduced.
【0002】0002
【従来の技術】平面光導波路は、方向性光結合器、光ス
イッチ等の光素子に広く利用されている。平面光導波路
は、通常、LiNbO3 やLiTaO3 等の電気光
学効果を有する結晶基板の表面から、パターンに沿って
金属を拡散させたり、イオン交換を行って屈折率を周辺
部より高くすることで形成される。このような光素子に
使用されている平面光導波路は、一般に直線であること
はまれであり、湾曲部を有する形状となっている。特に
、各種の光素子の集積化のためには、湾曲部の曲率半径
を小さくすることが有利である。2. Description of the Related Art Planar optical waveguides are widely used in optical devices such as directional optical couplers and optical switches. A planar optical waveguide is usually formed by diffusing metal along a pattern from the surface of a crystal substrate such as LiNbO3 or LiTaO3, which has an electro-optic effect, or by performing ion exchange to make the refractive index higher than that of the surrounding area. Ru. Planar optical waveguides used in such optical devices are generally rarely straight, but have curved portions. Particularly, in order to integrate various optical elements, it is advantageous to reduce the radius of curvature of the curved portion.
【0003】平面光導波路は、上述のようにTi等の金
属の熱拡散、イオン交換等の方法で形成されるので、作
製方法の点から形状に関して受ける制限は比較的緩やか
である。しかしながら、オーム社刊:光集積回路、西原
他の47〜49頁に記載されているよう、LiNbO3
結晶基板にTiを拡散させて作製した平面光導波路は
、周囲との屈折率の差が小さいため、曲率半径を数十m
m以上にしないと放射損失が過大になってしまう。この
問題の対策として、湾曲部の外周沿いに、Mg等LiN
bO3結晶基板の屈折率を低下させる物質を拡散させた
平面光導波路が、特開昭63−157109号公報に開
示されている。[0003] Since the planar optical waveguide is formed by a method such as thermal diffusion of a metal such as Ti or ion exchange as described above, there are relatively loose restrictions on the shape from the viewpoint of the manufacturing method. However, as described in Ohmsha Publishing: Photonic Integrated Circuits, Nishihara et al., pages 47-49, LiNbO3
Planar optical waveguides fabricated by diffusing Ti into a crystal substrate have a radius of curvature of several tens of meters because the difference in refractive index with the surrounding area is small.
If it is not greater than m, radiation loss will become excessive. As a countermeasure to this problem, along the outer periphery of the curved part, LiN such as Mg
A planar optical waveguide in which a substance that lowers the refractive index of a bO3 crystal substrate is diffused is disclosed in JP-A-63-157109.
【0004】0004
【発明が解決しようとする課題】しかしながら、LiN
bO3 結晶基板に局部的に金属を拡散させてその部分
の屈折率を変化させた場合には、屈折率分布は拡散した
金属の濃度分布と相関するので、屈折率の急峻な変化は
得難い。従って、平面光導波路の湾曲部の外周沿いに基
板の屈折率を低下させる物質を拡散させても、所望の屈
折率分布は得られず、効果的ではなかった。また、拡散
したMgが平面光導波路に悪影響を与えることがあった
。[Problem to be solved by the invention] However, LiN
When a metal is locally diffused into a bO3 crystal substrate to change the refractive index of that portion, it is difficult to obtain a steep change in the refractive index because the refractive index distribution correlates with the concentration distribution of the diffused metal. Therefore, even if a substance that lowers the refractive index of the substrate is diffused along the outer periphery of the curved portion of the planar optical waveguide, a desired refractive index distribution cannot be obtained and it is not effective. Further, the diffused Mg may have an adverse effect on the planar optical waveguide.
【0005】そこで本発明の目的は、上記従来技術の問
題点を解決した湾曲部の曲率半径を小さくしても放射損
失が過大にならない新規な構成の平面光導波路を提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a planar optical waveguide having a novel configuration that solves the problems of the prior art and does not cause excessive radiation loss even when the radius of curvature of the curved portion is reduced.
【0006】[0006]
【課題を解決するための手段】本発明に従うと、電気光
学結晶基板表面に形成され、湾曲部を有する光導波路部
と、前記電気光学結晶基板の前記光導波路部の湾曲部の
外側部分の屈折率を低下させる電場を前記電気光学結晶
基板に印加することができるように配置された電極とを
具備することを特徴とする平面光導波路が提供される。[Means for Solving the Problems] According to the present invention, an optical waveguide portion is formed on the surface of an electro-optic crystal substrate and has a curved portion, and a refraction of an outer portion of the curved portion of the optical waveguide portion of the electro-optic crystal substrate is provided. and an electrode arranged to be able to apply an electric field to the electro-optic crystal substrate to reduce the rate.
【0007】上記本発明の平面光導波路は、電気光学結
晶基板の光学軸に垂直な表面に形成され、湾曲部を有す
る光導波路部と、前記光導波路部の湾曲部の外側に沿っ
て配置された第1の電極と、該第1の電極の直下部分を
含む前記電気光学結晶基板裏面に配置された第2の電極
とを具備する構成であることが好ましい。The planar optical waveguide of the present invention is formed on a surface perpendicular to the optical axis of an electro-optic crystal substrate, and includes an optical waveguide portion having a curved portion, and a planar optical waveguide arranged along the outside of the curved portion of the optical waveguide portion. It is preferable that the electro-optical crystal substrate has a structure including a first electrode and a second electrode disposed on the back surface of the electro-optic crystal substrate including a portion immediately below the first electrode.
【0008】[0008]
【作用】本発明の平面光導波路は、電気光学結晶基板表
面に形成されている光導波路部の湾曲部の外側部分の屈
折率を低下させる電場を、前記電気光学結晶基板に印加
することができるように配置された電極を具備するとこ
ろにその主要な特徴がある。本発明の平面光導波路では
、電気光学結晶基板の光導波路部の湾曲部の外側部分に
電場を印加して屈折率を小さくすることができる。従っ
て、湾曲部では、光導波路部とその外側部分との屈折率
の差が大きくなり、曲率半径を小さくしても放射損失が
過大にならない。[Operation] In the planar optical waveguide of the present invention, an electric field can be applied to the electro-optic crystal substrate to reduce the refractive index of the outer part of the curved part of the optical waveguide formed on the surface of the electro-optic crystal substrate. Its main feature is that it has electrodes arranged in this way. In the planar optical waveguide of the present invention, the refractive index can be reduced by applying an electric field to the outside portion of the curved portion of the optical waveguide portion of the electro-optic crystal substrate. Therefore, in the curved part, the difference in refractive index between the optical waveguide part and the outer part thereof becomes large, and even if the radius of curvature is made small, the radiation loss does not become excessive.
【0009】本発明の平面光導波路で、電極間に印加す
る電圧を小さくするためには、電気光学結晶基板の光学
軸の負の方向に電圧を印加することが好ましい。そのた
めには、電気光学結晶基板の光学軸に垂直な表面に光導
波路部が形成されていて、光導波路部の湾曲部の外側に
第1の電極を配置し、電気光学結晶基板の裏面の第1の
電極の直下を含む部分に第2の電極を配置することが好
ましい。In order to reduce the voltage applied between the electrodes in the planar optical waveguide of the present invention, it is preferable to apply the voltage in the negative direction of the optical axis of the electro-optic crystal substrate. For this purpose, an optical waveguide section is formed on the surface perpendicular to the optical axis of the electro-optic crystal substrate, a first electrode is arranged outside the curved section of the optical waveguide section, and a first electrode is placed on the outside of the curved section of the optical waveguide section. It is preferable to arrange the second electrode in a portion including directly below the first electrode.
【0010】本発明の平面光導波路は、LiNbO3
結晶基板のZ面にTiを熱拡散させて形成した光導波路
部と、蒸着により形成したCr/Au電極により実現す
ることが可能である。電気光学結晶基板には、他にもL
iTaO3 、GaAs等が使用できる。The planar optical waveguide of the present invention is made of LiNbO3
This can be realized using an optical waveguide section formed by thermally diffusing Ti on the Z plane of a crystal substrate and a Cr/Au electrode formed by vapor deposition. The electro-optic crystal substrate also has L
iTaO3, GaAs, etc. can be used.
【0011】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではない
。[0011] Hereinafter, the present invention will be explained in more detail with reference to examples, but the following disclosure is merely an example of the present invention and is not intended to limit the technical scope of the present invention in any way.
【0012】0012
【実施例】図1に、本発明の平面光導波路の一例を示す
。図1(a)は、本発明の平面光導波路の湾曲部の平面
図であり、図1(b)は、図1(a)のB−Bにおける
断面図である。図1(a)および(b)に示すように本
発明の平面光導波路は、光学軸に垂直に切り出したLi
NbO3 基板1上に形成された光導波路部2と、光導
波路部2の湾曲部の外側に光導波路部2に沿って配置さ
れた電極3とを具備する。光導波路部2は、LiNbO
3 基板1上にTiを蒸着させて厚さ80nm、幅7μ
mの導波路パターンを形成し、1000℃で5時間の熱
拡散を行って作製した。その後、光導波路部2の湾曲部
外側に幅7μmのCr/Au電極3を形成し、LiNb
O3 基板1の裏面の電極3の下側部分にも電極3と等
しい形状の電極4を形成した。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a planar optical waveguide according to the present invention. FIG. 1(a) is a plan view of the curved portion of the planar optical waveguide of the present invention, and FIG. 1(b) is a sectional view taken along line BB in FIG. 1(a). As shown in FIGS. 1(a) and 1(b), the planar optical waveguide of the present invention is made of Li cut out perpendicularly to the optical axis.
It includes an optical waveguide section 2 formed on a NbO3 substrate 1, and an electrode 3 disposed along the optical waveguide section 2 on the outside of the curved section of the optical waveguide section 2. The optical waveguide section 2 is made of LiNbO
3 Deposit Ti on the substrate 1 to a thickness of 80 nm and a width of 7 μm.
A waveguide pattern of m was formed and thermal diffusion was performed at 1000° C. for 5 hours. Thereafter, a Cr/Au electrode 3 with a width of 7 μm was formed on the outside of the curved part of the optical waveguide section 2, and a LiNb
An electrode 4 having the same shape as the electrode 3 was also formed on the lower side of the electrode 3 on the back surface of the O3 substrate 1.
【0013】上記本発明の平面光導波路を使用する際に
は、電極3、4間にLiNbO3 基板1の光学軸の負
の方向の電場5を発生させる。LiNbO3 基板1の
光導波路部2の湾曲部の外側の電場が印加された部分の
屈折率は、電気光学効果により小さくなる。この時の屈
折率分布を図1(c)に示す。図1(c)からわかるよ
うに、本発明の平面光導波路では、使用時に光導波路部
2の湾曲部の外側の屈折率がLiNbO3 基板1の屈
折率NS よりも小さくなるので、屈折率の差が大きく
なり光導波路部2の湾曲部の外側に放射される光が抑え
られる。従って、光導波路部2の湾曲部の曲率半径を小
さくしても損失が過大にならない。When using the planar optical waveguide of the present invention, an electric field 5 is generated between the electrodes 3 and 4 in the negative direction of the optical axis of the LiNbO3 substrate 1. The refractive index of the portion of the LiNbO3 substrate 1 to which the electric field is applied outside the curved portion of the optical waveguide portion 2 becomes smaller due to the electro-optic effect. The refractive index distribution at this time is shown in FIG. 1(c). As can be seen from FIG. 1(c), in the planar optical waveguide of the present invention, the refractive index on the outside of the curved part of the optical waveguide section 2 becomes smaller than the refractive index NS of the LiNbO3 substrate 1 during use, so the difference in refractive index becomes large, and light emitted to the outside of the curved portion of the optical waveguide section 2 is suppressed. Therefore, even if the radius of curvature of the curved portion of the optical waveguide section 2 is made small, the loss does not become excessive.
【0014】上記本発明の平面光導波路の湾曲部におけ
る放射損失を測定した。厚さ0.2mm のLiNbO
3 基板1を使用し、光導波路部2の湾曲部の曲率半径
を20mmとした。電極3、4間に電圧を印加しない場
合には、7dBの損失があったが、電極3、4間に10
Vの電圧を印加したところ、損失を2dBにまで低減さ
せることができた。The radiation loss at the curved portion of the planar optical waveguide of the present invention was measured. LiNbO with a thickness of 0.2 mm
3. The substrate 1 was used, and the radius of curvature of the curved portion of the optical waveguide section 2 was set to 20 mm. When no voltage was applied between electrodes 3 and 4, there was a loss of 7 dB, but there was a loss of 10 dB between electrodes 3 and 4.
When a voltage of V was applied, the loss could be reduced to 2 dB.
【0015】本実施例では、LiNbO3 基板に形成
した平面光導波路について説明したが、本発明は、電気
光学結晶基板に形成されたあらゆる平面光導波路に応用
可能である。例えば、LiTaO3 のような強誘電体
基板、GaAsのような半導体基板に形成された平面光
導波路に対して本発明は有効である。また、電極の配置
も本実施例に限定されない。特に基板の裏側に配置する
電極の形状はかなり変更可能であり、基板裏面全体に電
極を配置することもできる。さらに、基板の縁に近い部
分の光導波路部に対しては、基板の裏面に代えて側面に
電極を配置することも可能である。In this embodiment, a planar optical waveguide formed on a LiNbO3 substrate was explained, but the present invention can be applied to any planar optical waveguide formed on an electro-optic crystal substrate. For example, the present invention is effective for planar optical waveguides formed on ferroelectric substrates such as LiTaO3 and semiconductor substrates such as GaAs. Furthermore, the arrangement of the electrodes is not limited to this example. In particular, the shape of the electrodes arranged on the back side of the substrate can be varied considerably, and the electrodes can also be arranged on the entire back side of the substrate. Furthermore, for the optical waveguide section near the edge of the substrate, it is also possible to arrange electrodes on the side surface of the substrate instead of on the back surface.
【0016】[0016]
【発明の効果】以上説明したように、本発明に従うと、
湾曲部の放射損失を減少させた平面光導波路が実現でき
る。本発明の平面光導波路は、湾曲部の外周に沿って電
極を配置する構成であり、屈折率を低下させる物質を基
板中に拡散させたりしないので、作製が容易であり、平
面光導波路の特性を劣化させる恐れがない。本発明によ
り、平面光導波路の湾曲部の曲率半径を小さくすること
ができるので、光集積回路を高密度化が促進される。[Effects of the Invention] As explained above, according to the present invention,
A planar optical waveguide with reduced radiation loss at the curved portion can be realized. The planar optical waveguide of the present invention has a structure in which electrodes are arranged along the outer periphery of the curved part, and a substance that lowers the refractive index is not diffused into the substrate, so it is easy to manufacture and has characteristics of the planar optical waveguide. There is no risk of deterioration. According to the present invention, it is possible to reduce the radius of curvature of the curved portion of the planar optical waveguide, thereby facilitating higher density optical integrated circuits.
【図1】(a)は、本発明の平面光導波路の一例の平面
図であり、(b)は、(a)のB−Bにおける断面図で
あり、(c)は(b)に対応して屈折率分布を示したグ
ラフである。FIG. 1 (a) is a plan view of an example of a planar optical waveguide of the present invention, (b) is a cross-sectional view taken along BB in (a), and (c) corresponds to (b). 3 is a graph showing the refractive index distribution.
1 電気光学結晶基板 2 光導波路部 3、4 電極 1 Electro-optic crystal substrate 2 Optical waveguide section 3, 4 Electrode
Claims (2)
を有する光導波路部と、前記電気光学結晶基板の前記光
導波路部の湾曲部の外側部分の屈折率を低下させる電場
を前記電気光学結晶基板に印加することができるように
配置された電極とを具備することを特徴とする平面光導
波路。1. An optical waveguide portion formed on a surface of an electro-optic crystal substrate and having a curved portion, and an electric field that reduces the refractive index of an outer portion of the curved portion of the optical waveguide portion of the electro-optic crystal substrate. 1. A planar optical waveguide, comprising: an electrode arranged so as to be able to apply an electric voltage to a crystal substrate.
形成され、湾曲部を有する光導波路部と、前記光導波路
部の湾曲部の外側に沿って配置された第1の電極と、該
第1の電極の直下部分を含む前記電気光学結晶基板裏面
に配置された第2の電極とを具備することを特徴とする
請求項1に記載の平面光導波路。2. An optical waveguide portion formed on a surface perpendicular to the optical axis of an electro-optic crystal substrate and having a curved portion; a first electrode disposed along the outside of the curved portion of the optical waveguide portion; 2. The planar optical waveguide according to claim 1, further comprising a second electrode disposed on the back surface of the electro-optic crystal substrate including a portion directly below the first electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4263791A JPH04260005A (en) | 1991-02-14 | 1991-02-14 | Planar optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4263791A JPH04260005A (en) | 1991-02-14 | 1991-02-14 | Planar optical waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04260005A true JPH04260005A (en) | 1992-09-16 |
Family
ID=12641531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4263791A Withdrawn JPH04260005A (en) | 1991-02-14 | 1991-02-14 | Planar optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04260005A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11275207B2 (en) * | 2019-06-14 | 2022-03-15 | Globalfoundries U.S. Inc. | Multimode waveguide bends with features to reduce bending loss |
-
1991
- 1991-02-14 JP JP4263791A patent/JPH04260005A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11275207B2 (en) * | 2019-06-14 | 2022-03-15 | Globalfoundries U.S. Inc. | Multimode waveguide bends with features to reduce bending loss |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7310453B2 (en) | Optical modulator | |
CN100410732C (en) | Optical modulator | |
JPS6375725A (en) | Planar type waveguide | |
US7509003B2 (en) | Optical waveguide, optical device, and manufacturing method of the optical waveguide | |
JPH0452922B2 (en) | ||
JP5166450B2 (en) | Optical waveguide device | |
JP4544541B2 (en) | Light modulator | |
WO2005060522A2 (en) | Low-loss compact reflective turns in optical waveguides | |
JPH06186451A (en) | Optical waveguide device | |
JPH04260005A (en) | Planar optical waveguide | |
JPH07120631A (en) | Optical waveguide type part | |
JPH10239544A (en) | Optical waveguide device and method of manufacturing optical waveguide device | |
JP2000035555A (en) | Optical intensity modulator and its manufacture | |
JP4345490B2 (en) | Optical branching element | |
JP3481710B2 (en) | Method for manufacturing optical waveguide body | |
JP2765112B2 (en) | Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source | |
JPS59147322A (en) | Optical modulating element | |
JPH0815656A (en) | Optical waveguide type optical modulator | |
JP3735685B2 (en) | Integrated optical waveguide device | |
JPH0756036A (en) | Optical waveguide device and manufacturing method thereof | |
CN1240945A (en) | Optical intensity modulator and fabrication method therefor | |
JPS63250611A (en) | Method of manufacturing optical waveguide | |
JPH0886990A (en) | Waveguide type optical controlling element | |
JPH03252610A (en) | Production of optical waveguide | |
JP2016105199A (en) | Optical waveguide device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |