JPH04259815A - Measured value processing method - Google Patents
Measured value processing methodInfo
- Publication number
- JPH04259815A JPH04259815A JP4293491A JP4293491A JPH04259815A JP H04259815 A JPH04259815 A JP H04259815A JP 4293491 A JP4293491 A JP 4293491A JP 4293491 A JP4293491 A JP 4293491A JP H04259815 A JPH04259815 A JP H04259815A
- Authority
- JP
- Japan
- Prior art keywords
- thickness
- time
- band
- measurements
- rank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title claims description 4
- 235000012149 noodles Nutrition 0.000 abstract description 32
- 238000005259 measurement Methods 0.000 abstract description 17
- 230000003287 optical effect Effects 0.000 abstract description 9
- 238000009826 distribution Methods 0.000 abstract description 4
- 230000010355 oscillation Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は定常状態を乱す程度の外
乱を受ける系から得られる物理量の測定値を処理する方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing measured values of physical quantities obtained from a system subjected to disturbances that disturb its steady state.
【0002】0002
【従来技術】運転中のある系の物理量(温度や速度ある
いは厚みなど)を測定し、その測定値を処理して系の運
転状態を制御するような系がいくつか知られている。BACKGROUND OF THE INVENTION Several systems are known that measure physical quantities (temperature, speed, thickness, etc.) of a system during operation and process the measured values to control the operating state of the system.
【0003】このような系においては、何らかの外から
の影響で予測測定値をはるかに越える測定値を示すこと
がよくある。このような場合操作すべき量を決定するた
めの測定値としてこのとび出した測定値を平均化した測
定値を使うと、制御すべき量が適当でなく正確な制御が
できなくなるおそれがある。このため、このとび出した
測定値の影響を受けないような処理が好ましい。[0003] Such systems often exhibit measured values that far exceed predicted measured values due to some external influence. In such a case, if a measured value obtained by averaging these protruding measured values is used as a measured value for determining the amount to be manipulated, the amount to be controlled may not be appropriate and accurate control may not be possible. Therefore, it is preferable to perform processing that is not affected by this protruding measurement value.
【0004】図1はこのような系の一例で、うどんやそ
ばのような麺帯の製造に用いられる麺帯の厚さ制御装置
である。FIG. 1 shows an example of such a system, which is a noodle sheet thickness control device used for manufacturing noodle sheets such as udon and soba noodles.
【0005】図において、1は麺帯、2は麺帯1の厚さ
を調節するための一対の圧延ローラ、3は厚さが調節さ
れた麺帯1を案内するガイドローラ、4a,4bは麺帯
1の各側近傍に配置された厚さ測定用の光学センサ、5
は麺帯1を一定長さごとに切断するカッター、6は切断
された麺帯から麺線1′を作るための切刃ロールである
。In the figure, 1 is a noodle strip, 2 is a pair of rolling rollers for adjusting the thickness of the noodle strip 1, 3 is a guide roller that guides the noodle strip 1 whose thickness has been adjusted, and 4a and 4b are guide rollers. Optical sensors for thickness measurement arranged near each side of the noodle strip 1, 5
6 is a cutter for cutting the noodle strips 1 into predetermined lengths, and 6 is a cutting blade roll for making noodle strings 1' from the cut noodle strips.
【0006】7は光学センサ4aおよび4bの出力から
麺帯1の厚さ値を算出し、厚さ設定値との差分を出力す
るコントローラ、8はコントローラ7から出力される厚
さ調整信号に応じて回転するモータ、9はモータ8によ
り回転されるスクリューであり、厚さ調節ローラ2はこ
のスクリュー9の回転量に応じた距離だけ接近または離
間して麺帯の厚さを調節するようになっている。7 is a controller that calculates the thickness value of the noodle strip 1 from the outputs of the optical sensors 4a and 4b and outputs the difference from the thickness setting value; 8 is a controller that responds to the thickness adjustment signal output from the controller 7; 9 is a screw rotated by the motor 8, and the thickness adjusting roller 2 approaches or separates by a distance corresponding to the amount of rotation of the screw 9 to adjust the thickness of the noodle strip. ing.
【0007】次に図2を参照して麺帯の厚さ測定の原理
を説明する。Next, the principle of measuring the thickness of a noodle strip will be explained with reference to FIG.
【0008】図示したように、麺帯1(厚さd)の両側
でそれぞれ距離x1 ,x2 だけ離れた位置に光学セ
ンサ4a,4bを配置し、各光学センサ4a,4bから
麺帯1に向けてパルス光を発光し、その反射光を受光す
ると、発光と受光の時間のずれから距離x1 とx2
を求めることができる。そこで両光学センサ4aと4b
の間の距離をyとすると、麺帯の厚さdは次の式から算
出できる。As shown in the figure, optical sensors 4a and 4b are arranged at distances x1 and x2 on both sides of the noodle strip 1 (thickness d), and the optical sensors 4a and 4b are directed toward the noodle strip 1. When the pulsed light is emitted and the reflected light is received, the distances x1 and x2 are
can be found. Therefore, both optical sensors 4a and 4b
When the distance between the noodle strips is y, the thickness d of the noodle strip can be calculated from the following formula.
【0009】d=y−(x1 +x2 )[0009]d=y-(x1+x2)
【0010】0010
【発明が解決しようとする課題】図1の厚さ制御装置に
おいては、このような方法で検出した麺帯の厚さdを利
用して厚さ調節ローラ2の間隙を調節することにより麺
帯の厚さを制御しているが、麺帯1はカッター5により
一定の長さで切断されるため、その切断時の麺帯の揺れ
が外乱となって光学センサ4a,4bの出力から算出し
た厚さdはほぼ一定のタイミングで外乱の影響を受けて
第3図に示すようにその時点t1 ,t2 ,t3 で
大きく変動する。そのために、コントローラ7では外乱
を受けたときの厚さの測定値はローラ2による厚さ制御
には用いないように信号処理する必要があるが、そのた
めの処理回路が必要になるし、外乱を受けるタイミング
が不規則になると信号処理が厄介になる。Problem to be Solved by the Invention In the thickness control device shown in FIG. However, since the noodle strip 1 is cut at a constant length by the cutter 5, the shaking of the noodle strip during cutting causes a disturbance, which is calculated from the outputs of the optical sensors 4a and 4b. The thickness d is influenced by disturbances at almost constant timing and varies greatly at time points t1, t2, and t3, as shown in FIG. For this reason, the controller 7 needs to perform signal processing so that the measured value of the thickness when subjected to the disturbance is not used for thickness control by the roller 2, but a processing circuit for this is required, and the If the timing of reception becomes irregular, signal processing becomes difficult.
【0011】本発明は上記の点にかんがみてなされたも
ので、定常状態を乱す程度の外乱が不規則に与えられる
系から得られる測定値から外乱による影響を排除するこ
とを目的とする。The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to eliminate the influence of disturbances from measured values obtained from a system in which disturbances that disturb the steady state are irregularly applied.
【0012】0012
【課題を解決するための手段】本発明において、上記目
的を達成するために、時間的に変化する物理量を測定す
る際に、予想される測定値の最大幅を適宜数にランク分
けし、短時間に連続して得られた測定値に対応するラン
クの頻度を数え、最大頻度を有するランクに相当する物
理量をこの時間の測定値と定めるようにした。[Means for Solving the Problems] In order to achieve the above object, in the present invention, when measuring a physical quantity that changes over time, the maximum width of expected measured values is ranked appropriately and shortened. The frequency of the rank corresponding to the measured values obtained continuously over time was counted, and the physical quantity corresponding to the rank having the maximum frequency was determined as the measured value for this time.
【0013】[0013]
【作用】連続して得られる複数個の測定値についてラン
クごとの頻度分布を求めることにより、短時間の外乱に
よる測定値への影響を結果として排除することができる
。[Operation] By determining the frequency distribution for each rank of a plurality of continuously obtained measured values, it is possible to eliminate the influence of short-term disturbances on the measured values.
【0014】[0014]
【実施例】以下に本発明による測定値処理について第4
図を参照して説明する。[Example] Below is a fourth explanation of the measured value processing according to the present invention.
This will be explained with reference to the figures.
【0015】実施例として麺帯の厚さを測定して得られ
る測定値の処理について説明するが、本発明は他の同種
の外乱を含む測定値の処理にも適用できることは言うま
でもない。As an example, processing of measured values obtained by measuring the thickness of noodle strips will be described, but it goes without saying that the present invention can also be applied to processing of measured values that include other disturbances of the same type.
【0016】麺帯の厚さデータは、図1に示した系にお
いて、光学センサ4aおよび4bの出力を一定ごとに処
理することにより得られる。The thickness data of the noodle strip is obtained by processing the outputs of the optical sensors 4a and 4b at regular intervals in the system shown in FIG.
【0017】処理に当って、まず縦がM、横がNの配列
D(N,M)を用意し(F−1)、配列の変数をX,Y
とする(ただし0<X≦N、0<Y≦M)。ここでMは
測定値と予想されるばらつきとを考えて適当な数に分割
する。このMは測定精度に関係する数である。Nは総測
定回数を分割した数でデータの変動の周期を考慮してき
める。区間測定回数Nに対してその区間の順序数j(1
≦j≦N)はそれまでの総測定回数AよりA=N・k+
j(ただしkは繰り返し周期の回数で0を含む整数)
として求められる。次に厚さデータを初期化するために
配列の各マス目M×N個を0とする(F−2)。For processing, first prepare an array D (N, M) with M length and N width (F-1), and set variables of the array to X, Y
(However, 0<X≦N, 0<Y≦M). Here, M is divided into an appropriate number considering the measured value and expected variations. This M is a number related to measurement accuracy. N is a number obtained by dividing the total number of measurements, and is determined by taking into account the period of data fluctuation. The ordinal number j(1
≦j≦N) is A=N・k+ from the total number of measurements A
j (where k is the number of repetition periods and is an integer including 0). Next, to initialize the thickness data, each M×N grid in the array is set to 0 (F-2).
【0018】さて、測定開始後一定時間ごとに得られる
厚さデータN個を順次コントローラ7内のレジスタに記
憶する(F−3)。いまj番目の厚さデータをSk(j
)とし、このSk(j)に対する変数X,Yのうち変数
Yの値を次のようにして求める(F−4)。外乱による
最大予測厚さデータをSk(MAX)とすると、Y値は
次の式で求めることができる。
なお、INT[B]は値Bの整数部分を求める演算であ
る。こうして求めたY値と測定順序を表わすXとで配列
D(j,Yj )上の位置が求まる。たとえば1番目の
厚さデータSk(1)を用いて上式から求めた値をY1
とすると、配列上の位置(1,Y1 )が定まる(F
−5)。そしてこの位置に1を入れる。この演算をN番
目の厚さデータまで繰り返し行なう(F−6)。Now, N pieces of thickness data obtained at regular intervals after the start of measurement are sequentially stored in a register in the controller 7 (F-3). Now, the j-th thickness data is expressed as Sk(j
), and among the variables X and Y for this Sk(j), the value of variable Y is determined as follows (F-4). If the maximum predicted thickness data due to disturbance is Sk(MAX), the Y value can be determined by the following formula. Note that INT[B] is an operation to obtain the integer part of the value B. The position on the array D(j, Yj) is determined from the Y value thus determined and the X representing the measurement order. For example, the value obtained from the above formula using the first thickness data Sk(1) is Y1
Then, the position (1, Y1) on the array is determined (F
-5). And put 1 in this position. This calculation is repeated until the Nth thickness data (F-6).
【0019】いまN=10、M=8とすると、配列D(
10,8)は第5図に示すようなマス目となり、ステッ
プ(F−4)から(F−6)で求めたY値に相当するマ
ス目に“1”を埋めていく。Now, if N=10 and M=8, then the array D(
10, 8) becomes a square as shown in FIG. 5, and "1" is filled in the square corresponding to the Y value obtained in steps (F-4) to (F-6).
【0020】次にこうしてj=1〜NについてN個の厚
みデータのYj 値が求まり、第5図に示したD配列表
のマス目が埋まったところで、今度はD配列のマス目の
各横欄(k=1〜M)についてj=1〜Nまでを合計し
、得られた値を第5図に示すような別に用意したD′配
列に格納する(F−7)。すなわち
k=1〜8についてD′( k)を求めると、上のD配
列の右側に並べたようになる。このD′配列は頻度分布
を表わす。Next, when the Yj values of N pieces of thickness data for j=1 to N are found and the squares in the D array table shown in FIG. 5 are filled, it is time to For the columns (k=1 to M), values for j=1 to N are totaled, and the obtained values are stored in a separately prepared D' array as shown in FIG. 5 (F-7). That is, if D'(k) is found for k=1 to 8, it will be arranged on the right side of the D array above. This D' array represents a frequency distribution.
【0021】こうして作成されたD′配列の中から最大
頻度を与えるkを求める(F−9)。上の例では、D′
配列の最大頻度「4」を与えるkの値は「4」である。
そこでYMAX =4とし(F−9)、厚さデータSk
を次の式から求める(F−10)。From the D' array thus created, k that gives the maximum frequency is determined (F-9). In the above example, D′
The value of k that gives the maximum frequency of the array "4" is "4". Therefore, YMAX = 4 (F-9) and thickness data Sk
is obtained from the following formula (F-10).
【0022】Sk=(YMAX /M)×予想最大値こ
の厚さデータSkをプロットする(F−11)。Sk=(YMAX/M)×expected maximum value This thickness data Sk is plotted (F-11).
【0023】その後はjを1だけ増して(F−12)j
=2〜11までの厚さデータについて同様にD′配列を
求め、最大頻度を与えるkの値を求め、厚さデータSk
を算出し、プロットする。なお、D′配列としては、上
述したj=2〜11までの厚さデータと、a=3〜12
までの厚さデータとをj=1〜10までの厚さデータの
D′配列に並べて示した。こうしてプロットの連続で麺
帯の厚さが得られる。測定値の精度は測定間隔を増やす
だけでなく、ばらつき幅を分割するMの値を大きくする
ことにより上げることができる。[0023] After that, increase j by 1 (F-12) j
Similarly, the D' array is found for the thickness data from =2 to 11, the value of k that gives the maximum frequency is found, and the thickness data Sk
Calculate and plot. In addition, the D' array includes the thickness data of j=2 to 11 mentioned above and the thickness data of a=3 to 12.
The thickness data up to j=1 to 10 are arranged in a D' arrangement. In this way, the thickness of the noodle strip can be obtained from a series of plots. The accuracy of the measured values can be increased not only by increasing the measurement interval but also by increasing the value of M that divides the variation width.
【0024】図6(a)は本発明により処理して得られ
た麺帯の厚さを、処理しない従来の場合(b)と比較し
て示しており、本発明による処理を行なった場合は外乱
の影響をほとんど受けないのに対して、処理を行なわな
い場合は外乱の影響を受けることがよくわかる。FIG. 6(a) shows the thickness of the noodle strip obtained by the treatment according to the present invention in comparison with that in the conventional case without treatment (b). It can be clearly seen that it is almost unaffected by disturbances, whereas it is affected by disturbances when no processing is performed.
【0025】上記実施例は、麺帯の厚さ制御に関するも
のであるが、これは一例であって、本発明は不規則な外
乱により測定値が影響を受ける系であれば、いかなる系
にも適用することができる。[0025] The above embodiment relates to the thickness control of the noodle strip, but this is just an example, and the present invention can be applied to any system in which measured values are affected by irregular disturbances. Can be applied.
【0026】[0026]
【発明の効果】以上説明したように、本発明においては
、時間的に変化する物理量を測定し、該物理量の変化の
予想最大値に対する各測定値の割合を求め、前記予想最
大値に対応させて予めランク分けした所定数のランクの
うち前記割合に該当するランクの頻度を各測定値ごとに
単位量だけ高め、連続して得られる複数個の測定値につ
いてランクごとの頻度分布を求め、最大頻度を有するラ
ンクに相当する物理量を測定値と定めるようにしたので
、測定値が不規則な外乱により受ける影響を信号処理だ
けで簡単に排除することができる。As explained above, in the present invention, a physical quantity that changes over time is measured, the ratio of each measured value to the expected maximum value of change in the physical quantity is determined, and the ratio is determined to correspond to the expected maximum value. Among the predetermined number of ranks ranked in advance, the frequency of the ranks corresponding to the above ratio is increased by a unit amount for each measured value, and the frequency distribution for each rank is calculated for multiple consecutively obtained measured values, and the maximum Since the physical quantity corresponding to the rank having the frequency is determined as the measured value, the influence of irregular disturbances on the measured value can be easily eliminated only by signal processing.
【図1】本発明による測定値処理方法を適用する系の一
例としての麺帯の厚さ制御装置の要部を示す線図である
。FIG. 1 is a diagram showing the main parts of a noodle strip thickness control device as an example of a system to which a measured value processing method according to the present invention is applied.
【図2】麺帯の厚さ測定の原理を説明する図である。FIG. 2 is a diagram illustrating the principle of measuring the thickness of a noodle strip.
【図3】麺帯の厚さ測定値を表わす図である。FIG. 3 is a diagram showing the measured thickness of a noodle strip.
【図4】本発明による測定値処理方法のフローチャート
である。FIG. 4 is a flowchart of a measurement value processing method according to the invention.
【図5】本発明で用いられるデータの配列を示す配列表
である。FIG. 5 is an arrangement table showing the arrangement of data used in the present invention.
【図6】(a)は本発明方法により処理された麺帯の厚
さ、(b)は従来の麺帯の厚さを示す。FIG. 6(a) shows the thickness of a noodle strip treated by the method of the present invention, and FIG. 6(b) shows the thickness of a conventional noodle strip.
1 麺帯 2 厚さ調節ローラ 3 ガイドローラ 4a,4b 光学センサ 5 カッター 6 切刃ローラ 7 コントローラ 8 モータ 1 Noodle belt 2 Thickness adjustment roller 3 Guide roller 4a, 4b Optical sensor 5 Cutter 6 Cutting blade roller 7 Controller 8 Motor
Claims (1)
に、予想される測定値の最大幅を適宜数にランク分けし
、短時間に連続して得られた測定値に対応するランクの
頻度を数え、最大頻度を有するランクに相当する物理量
をこの時間の測定値と定めることを特徴とする測定値処
理方法。Claim 1: When measuring a physical quantity that changes over time, the maximum range of expected measured values is ranked into an appropriate number, and the frequency of ranks corresponding to measured values obtained continuously in a short period of time. 1. A measured value processing method characterized by counting the number of times and determining the physical quantity corresponding to the rank having the maximum frequency as the measured value for this time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3042934A JP2791447B2 (en) | 1991-02-15 | 1991-02-15 | Measured value processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3042934A JP2791447B2 (en) | 1991-02-15 | 1991-02-15 | Measured value processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04259815A true JPH04259815A (en) | 1992-09-16 |
JP2791447B2 JP2791447B2 (en) | 1998-08-27 |
Family
ID=12649845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3042934A Expired - Lifetime JP2791447B2 (en) | 1991-02-15 | 1991-02-15 | Measured value processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2791447B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06186060A (en) * | 1992-12-18 | 1994-07-08 | Hitachi Ltd | Data display method and device |
JP2012202962A (en) * | 2011-03-28 | 2012-10-22 | Toshiba Corp | In-reactor apparatus shape measuring instrument and in-reactor apparatus shape measurement method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59135321A (en) * | 1983-01-21 | 1984-08-03 | Nippon Denso Co Ltd | Liquid level meter for moving object |
JPH01259209A (en) * | 1988-04-08 | 1989-10-16 | Hitachi Ltd | Method for measuring the length of a measurement target part that has a width |
-
1991
- 1991-02-15 JP JP3042934A patent/JP2791447B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59135321A (en) * | 1983-01-21 | 1984-08-03 | Nippon Denso Co Ltd | Liquid level meter for moving object |
JPH01259209A (en) * | 1988-04-08 | 1989-10-16 | Hitachi Ltd | Method for measuring the length of a measurement target part that has a width |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06186060A (en) * | 1992-12-18 | 1994-07-08 | Hitachi Ltd | Data display method and device |
JP2012202962A (en) * | 2011-03-28 | 2012-10-22 | Toshiba Corp | In-reactor apparatus shape measuring instrument and in-reactor apparatus shape measurement method |
Also Published As
Publication number | Publication date |
---|---|
JP2791447B2 (en) | 1998-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0647017B1 (en) | Synchronization circuit using a high speed digital slip counter | |
JPH04277801A (en) | Process controlling method and process controller, and method for controlling size in mask region | |
EP0037196B1 (en) | Method and apparatus for determining physical quantities, particularly quantities related to length | |
JPH04259815A (en) | Measured value processing method | |
JP2604052B2 (en) | Optical wavelength measurement device | |
US2641956A (en) | Film-perforation pitch gauge | |
US3355973A (en) | Automatic size pre-set and automatic length adjustment system for cut-off machines and the like | |
US4029250A (en) | Photographic strip transport interval control | |
JPH0525607B2 (en) | ||
JP2002243415A (en) | Film thickness measuring method and sheet manufacturing method | |
US3431760A (en) | Analog measuring apparatus | |
SU1434247A1 (en) | Device for measuring and checking sizes of parts | |
US3158863A (en) | Hyperbolic radio navigation system | |
SU588623A1 (en) | Wide-band pulse frequency multiplier | |
SU849002A2 (en) | Device for hairline certification | |
SU951229A1 (en) | Time interval meter | |
SU1525436A1 (en) | Method and apparatus for measuring area of opaque plane figures | |
SU771463A1 (en) | Device for certification of stroke measures | |
SU870928A2 (en) | Multi-channel measuring instrument | |
SU1204953A1 (en) | Belt-conveyer weigher | |
SU656990A1 (en) | Device for cutting continuously moving glass sheet | |
SU819585A1 (en) | Thickness gauge of interference type | |
SU660194A2 (en) | Broad-band pulse frequency multiplier | |
SU935808A1 (en) | Device for automatic measuring of amplifier frequency characteristic and tone adjustment | |
SU1002815A1 (en) | Device for counting moving web area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980421 |