JPH04259265A - thermoelectric device - Google Patents
thermoelectric deviceInfo
- Publication number
- JPH04259265A JPH04259265A JP3020834A JP2083491A JPH04259265A JP H04259265 A JPH04259265 A JP H04259265A JP 3020834 A JP3020834 A JP 3020834A JP 2083491 A JP2083491 A JP 2083491A JP H04259265 A JPH04259265 A JP H04259265A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- heat
- insulating film
- film substrate
- exchange means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ペルチェ効果を利用し
て冷房または暖房を行う空調装置、ゼーベック効果によ
り温度差を用いて発電を行う発電装置等に使用する熱電
装置に関する。
【0002】
【従来の技術】従来、この種の熱電装置はまだ実用化に
至っていないが、図3に示すようなものが提案されてい
た。図に示すように、絶縁性フィルム基板1の片面にN
型半導体2、導電体3、P型半導体4が順次成膜されて
いる。二つのコルゲートフィン5は絶縁性フィルム基板
1の両側に位置し、一方の面には一つおきに導電体3に
熱的に接するように設け、他方の面は絶縁性フィルム基
板1に接合されている。そしてN型半導体2、導電体3
、P型半導体4は各々の端部が重なり合う構造になって
おり、接触部の電気抵抗および熱抵抗が大きくならない
構造となっている。
【0003】上記構成により、熱電装置に流れ込んだ電
流はN型半導体2またはP型半導体4と導電体3の界面
でペルチェ効果により発熱もしくは吸熱する。このとき
、N型半導体2とP型半導体4は交互に並んでいること
から、導電体3は交互に発熱部または吸熱部となり、導
電体3の一つおきに接するコルゲートフィン5は、一方
が発熱フィン、他方が吸熱フィンとなる。したがって、
絶縁性フィルム基板1上部の空気から熱を吸収(もしく
は空気への熱の発散)、絶縁性フィルム基板1の下部の
空気への熱の発散(もしくは空気からの熱の吸収)とな
る。
【0004】
【発明が解決しようとする課題】しかしながら上記従来
の構成では、N型半導体2とP型半導体4の特性が異な
った場合に特性が大きく低下し、またN型半導体2とP
型半導体4の二つの成膜が必要なため製造コストが高く
なる等の欠点を有していた。
【0005】本発明は上記問題を解決するもので、熱流
による特性の低下を抑制し、工程を簡略化して製造コス
トを低減する熱電装置を提供することを目的とする。
【0006】
【課題を解決するための手段】本発明は上記目的を達成
するために、絶縁性フィルム基板の一方の面上に端部が
電気的に接触するように交互に設けた複数個の半導体お
よび導電体と、前記導電体に熱的に接合された第1の熱
交換手段と、前記絶縁性フィルム基板の他方の面上に熱
的に接合された第2の熱交換手段とを備え、前記導電体
は中央部の膜厚を薄く成膜したものであり、また導電体
は中央部の面積を小さく成膜したものである。 【00
07】
【作用】上記構成により、導電体は半導体への電流の確
保とともに半導体の端部に生ずる温度差を第1の熱交換
手段に伝える機能を有している。一般に用いられている
半導体と導電体の導電率の比は1/1000程度である
ことから、電流の確保のみを考慮すると半導体の膜厚に
比較して導電体の膜厚を薄くできる。しかしながら、熱
交換手段への伝熱を考慮すると導電体の膜厚を無制限に
薄くできなく、第1の熱交換手段の間に位置する導電体
の中央部は、伝熱を考慮する必要がなく膜厚を小さくす
るか、または中央部の面積を小さく成膜することにより
熱の流入は最小限に抑えられる。
【0008】
【実施例】以下、本発明の実施例について図1を参照し
ながら説明する。図に示すように、熱電装置は絶縁性フ
ィルム基板11の片面には半導体12、導電体13が順
に成膜されている。導電体13の左端部に接するように
第1の熱交換手段14が熱的に接触するように配置され
ており、また絶縁性フィルム基板11の他の面には第2
の熱交換手段15が熱的に接触するように配置されてい
る。第1の熱交換手段14および第2の熱交換手段15
はアルミプレートからなるコルゲートフィンを使用して
いる。半導体12と導電体13は、各々の端部が重なり
合う構造になっており、接触部の電気抵抗および熱抵抗
が大きくならない構造となっている。そして導電体13
の中央部16のみ薄く成膜しており、導電体13の材料
は電気抵抗の小さい銅またはアルミ等を使用している。
【0009】上記構成により、冷却装置として使用する
場合には、絶縁性フィルム基板11と平行に半導体12
および導電体13に電流を流す。この結果、半導体12
と導電体13の界面でペルチェ効果により発熱もしくは
吸熱を生じる。このとき、半導体12がP型半導体であ
るとすると、半導体12の右界面は吸熱、左界面は発熱
となる。導電体13は熱に対しても良導体であることか
ら、第1の熱交換手段14は半導体12の右界面に隣接
する箇所は吸熱部となり、半導体12の左界面に隣接す
る箇所は発熱部となる。したがって、絶縁性フィルム基
板11の上部の空気へ熱を発散し、下部の空気を冷却す
るヒートポンプを形成する。このとき、導電体13の両
端には温度差が生じており、導電体13の中央部16を
介して、発熱部から吸熱部へ熱が流れるが、中央部16
の膜厚は小さくなっていることから、熱の流入は最小限
に抑えられる。また、冷却能力の低下もあまり生じなく
発電装置として使用する場合には、第1の熱交換手段1
4および第2の熱交換手段15に接する空気に温度差を
つけることにより、半導体12の両端は高温と低温とな
り、ゼーベック効果により起電力を生ずる。
【0010】以上のように本発明によれば、半導体はP
型またはN型の一方の半導体材料で熱電回路が構成でき
る。
【0011】図2は他の実施例を示すものであり、前述
の実施例と相違する点は、中央部の膜厚を薄く成膜した
導電体に代えて、導電体は中央部の面積を小さく成膜し
たものである。すなわち、導電体17の中央部には電流
と垂直な方向に未製膜部18を設けているので熱流によ
る性能の低下を最小限に抑えられる。
【0012】なお、本実施例では、熱交換手段としてコ
ルゲートフィンを用いて説明したが、熱交換手段の形状
はコルゲートフィン以外のものでもよく、伝熱促進用の
フィン加工を施したものや、液体や他の輻射熱を利用し
たもの等、必要に応じて自由に選択しても同様の作用効
果が得られる。
【0013】
【発明の効果】上記実施例から明らかなように本発明の
熱電装置は、絶縁性フィルム基板の一方の面上に端部が
電気的に接触するように交互に設けた複数個の半導体お
よび導電体と、前記導電体に熱的に接合された第1の熱
交換手段と、前記絶縁性フィルム基板の他方の面上に熱
的に接合された第2の熱交換手段とを備え、前記導電体
は中央部の膜厚を薄く成膜したしたものであり、この構
成とすることにより、熱流による性能の低下を抑制し、
またP型またはN型半導体のいずれかの半導体で熱電回
路を構成することができ、製造の簡略化によりコストを
低減できる。Detailed Description of the Invention [0001] [Industrial Application Field] The present invention is applicable to air conditioners that perform cooling or heating using the Peltier effect, power generation devices that generate electricity using temperature differences due to the Seebeck effect, etc. Regarding the thermoelectric device used. [0002] Conventionally, this type of thermoelectric device has not yet been put into practical use, but one as shown in FIG. 3 has been proposed. As shown in the figure, N is applied to one side of the insulating film substrate 1.
A type semiconductor 2, a conductor 3, and a P-type semiconductor 4 are sequentially formed. The two corrugated fins 5 are located on both sides of the insulating film substrate 1, and are provided on one side so as to be in thermal contact with every other conductor 3, and the other side is bonded to the insulating film substrate 1. ing. and N-type semiconductor 2, conductor 3
, the P-type semiconductor 4 has a structure in which each end portion overlaps, so that the electrical resistance and thermal resistance of the contact portion do not increase. With the above configuration, the current flowing into the thermoelectric device generates or absorbs heat at the interface between the N-type semiconductor 2 or P-type semiconductor 4 and the conductor 3 due to the Peltier effect. At this time, since the N-type semiconductors 2 and the P-type semiconductors 4 are arranged alternately, the conductors 3 alternately act as heat generating parts or heat absorbing parts, and the corrugated fins 5 that are in contact with every other conductor 3 have one side One is a heat generating fin, and the other is a heat absorbing fin. therefore,
Heat is absorbed from the air above the insulating film substrate 1 (or heat is radiated to the air), and heat is radiated to the air below the insulating film substrate 1 (or heat is absorbed from the air). [0004]However, in the conventional configuration described above, when the characteristics of the N-type semiconductor 2 and the P-type semiconductor 4 are different, the characteristics deteriorate significantly.
Since two films of the type semiconductor 4 are required to be formed, the manufacturing cost is high. The present invention solves the above-mentioned problems, and aims to provide a thermoelectric device that suppresses deterioration of characteristics due to heat flow, simplifies processes, and reduces manufacturing costs. Means for Solving the Problems [0006] In order to achieve the above object, the present invention provides a plurality of insulating film substrates that are alternately provided on one surface of the insulating film substrate so that their ends are in electrical contact with each other. A semiconductor and an electric conductor, a first heat exchange means thermally bonded to the electric conductor, and a second heat exchange means thermally bonded to the other surface of the insulating film substrate. The conductor is formed by forming a thin film at the center, and the conductor is formed by forming a thin film at the center. 00
[07] With the above structure, the conductor has the function of ensuring a current to the semiconductor and transmitting the temperature difference occurring at the end of the semiconductor to the first heat exchange means. Since the ratio of the electrical conductivity of a commonly used semiconductor and a conductor is about 1/1000, the thickness of the conductor can be made thinner than that of the semiconductor, considering only the securing of current. However, considering heat transfer to the heat exchange means, the film thickness of the conductor cannot be made infinitely thin, and there is no need to consider heat transfer in the central part of the conductor located between the first heat exchange means. The inflow of heat can be minimized by reducing the film thickness or forming the film with a small area in the center. [Embodiment] An embodiment of the present invention will be described below with reference to FIG. As shown in the figure, in the thermoelectric device, a semiconductor 12 and a conductor 13 are sequentially formed on one side of an insulating film substrate 11. A first heat exchange means 14 is disposed so as to be in thermal contact with the left end of the conductor 13, and a second heat exchange means 14 is disposed on the other surface of the insulating film substrate 11.
The heat exchange means 15 are arranged so as to be in thermal contact with each other. First heat exchange means 14 and second heat exchange means 15
uses corrugated fins made of aluminum plates. The semiconductor 12 and the conductor 13 have a structure in which their respective ends overlap, so that the electrical resistance and thermal resistance of the contact portions do not increase. and conductor 13
A thin film is formed only at the central portion 16 of the conductor 13, and the conductor 13 is made of copper, aluminum, or the like, which has low electrical resistance. With the above configuration, when used as a cooling device, the semiconductor 12 is placed parallel to the insulating film substrate 11.
And a current is passed through the conductor 13. As a result, the semiconductor 12
Heat generation or heat absorption occurs at the interface between the conductor 13 and the conductor 13 due to the Peltier effect. At this time, if the semiconductor 12 is a P-type semiconductor, the right interface of the semiconductor 12 absorbs heat, and the left interface emits heat. Since the conductor 13 is a good conductor for heat, the first heat exchange means 14 has a portion adjacent to the right interface of the semiconductor 12 as a heat absorbing portion, and a portion adjacent to the left interface of the semiconductor 12 as a heat generating portion. Become. Therefore, a heat pump is formed that radiates heat to the air above the insulating film substrate 11 and cools the air below. At this time, there is a temperature difference between both ends of the conductor 13, and heat flows from the heat generating part to the heat absorbing part via the central part 16 of the conductor 13.
Since the film thickness is small, the inflow of heat is minimized. In addition, when used as a power generation device without causing much decrease in cooling capacity, the first heat exchange means 1
By creating a temperature difference between the air in contact with 4 and the second heat exchange means 15, both ends of the semiconductor 12 become high and low temperature, and an electromotive force is generated due to the Seebeck effect. As described above, according to the present invention, the semiconductor is P
A thermoelectric circuit can be constructed using either type or N type semiconductor material. FIG. 2 shows another embodiment, and the difference from the above-mentioned embodiment is that instead of the conductor having a thinner film in the center, the conductor has a smaller area in the center. This is a small film formed. That is, since the unformed portion 18 is provided in the center of the conductor 17 in a direction perpendicular to the current, deterioration in performance due to heat flow can be minimized. In this embodiment, corrugated fins are used as the heat exchange means, but the shape of the heat exchange means may be other than corrugated fins, such as those with fin processing for promoting heat transfer, Similar effects can be obtained by freely selecting a liquid or other type of radiant heat as required. Effects of the Invention As is clear from the above embodiments, the thermoelectric device of the present invention comprises a plurality of thermoelectric devices arranged alternately on one surface of an insulating film substrate so that their ends are in electrical contact with each other. A semiconductor and an electric conductor, a first heat exchange means thermally bonded to the electric conductor, and a second heat exchange means thermally bonded to the other surface of the insulating film substrate. , the conductor is formed by forming a film with a thinner film thickness in the center, and by adopting this structure, a decrease in performance due to heat flow is suppressed,
Furthermore, the thermoelectric circuit can be constructed using either a P-type or an N-type semiconductor, and the cost can be reduced by simplifying manufacturing.
【図1】本発明の一実施例における熱電装置の断面図FIG. 1 is a cross-sectional view of a thermoelectric device according to an embodiment of the present invention.
【
図2】同他の実施例における熱電装置の外観斜視図[
FIG. 2: External perspective view of a thermoelectric device in another embodiment
【図
3】
従来の熱電装置における外観斜視図[Figure 3]
External perspective view of a conventional thermoelectric device
11 絶縁性フィルム基板 12 半導体 13 導電体 14 第1の熱交換手段 15 第2の熱交換手段 16 中央部 11 Insulating film substrate 12 Semiconductor 13 Conductor 14 First heat exchange means 15 Second heat exchange means 16 Central part
Claims (2)
ィルム基板の一方の面上に端部が電気的に接触するよう
に交互に設けた複数個の半導体および導電体と、前記導
電体に熱的に接合された第1の熱交換手段と、前記絶縁
性フィルム基板の他方の面上に熱的に接合された第2の
熱交換手段とを備え、前記導電体は中央部の膜厚を薄く
成膜した熱電装置。1. An insulating film substrate, a plurality of semiconductors and conductors alternately provided on one surface of the insulating film substrate so that their ends are in electrical contact, and a plurality of semiconductors and conductors provided alternately on one surface of the insulating film substrate; a first heat exchange means thermally bonded to the other surface of the insulating film substrate; and a second heat exchange means thermally bonded to the other surface of the insulating film substrate; A thermoelectric device made of a thin film.
代えて、導電体は中央部の面積を小さく成膜した請求項
1記載の熱電装置。2. The thermoelectric device according to claim 1, wherein instead of the conductor having a thinner film thickness in the center, the conductor has a smaller area in the center.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3020834A JPH04259265A (en) | 1991-02-14 | 1991-02-14 | thermoelectric device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3020834A JPH04259265A (en) | 1991-02-14 | 1991-02-14 | thermoelectric device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04259265A true JPH04259265A (en) | 1992-09-14 |
Family
ID=12038091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3020834A Pending JPH04259265A (en) | 1991-02-14 | 1991-02-14 | thermoelectric device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04259265A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035907A (en) * | 2005-07-27 | 2007-02-08 | Kyocera Corp | Thermoelectric module |
-
1991
- 1991-02-14 JP JP3020834A patent/JPH04259265A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035907A (en) * | 2005-07-27 | 2007-02-08 | Kyocera Corp | Thermoelectric module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6385976B1 (en) | Thermoelectric module with integrated heat exchanger and method of use | |
JP2014204123A (en) | Printed circuit board integrated thermoelectric cooler/heater | |
WO2004001865A1 (en) | Thermoelectric element and electronic component module and portable electronic apparatus using it | |
JPH06151979A (en) | Thermoelectric device | |
KR101753322B1 (en) | Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same | |
JPH11233837A (en) | Thermoelectric conversion module | |
JPH0430586A (en) | Thermoelectric device | |
JPH04101472A (en) | Cooler | |
JPH04259265A (en) | thermoelectric device | |
JPH02103969A (en) | Thermoelectric apparatus | |
KR101177266B1 (en) | Heat Exchanger using Thermoelectric Modules | |
WO2018061462A1 (en) | Thermoelectric conversion device | |
JPH08153898A (en) | Thermoelectric element | |
JP2011082272A (en) | Thermoelectric cooling device | |
JPH02130878A (en) | thermoelectric device | |
JPH0555639A (en) | Thermoelectric device | |
JPH08236819A (en) | Thermal electronic element | |
JPH02155281A (en) | thermoelectric device | |
KR100414379B1 (en) | Cooling element | |
WO2018158980A1 (en) | Thermoelectric conversion device | |
JP7565844B2 (en) | Thermoelectric conversion device | |
JPH0430585A (en) | thermoelectric device | |
JPH02198180A (en) | thermoelectric device | |
JP2000227821A (en) | Cooling device for electronic component | |
JPH02288378A (en) | Thermoelectric device |