JPH0425744A - Test method for strength of aggregate - Google Patents
Test method for strength of aggregateInfo
- Publication number
- JPH0425744A JPH0425744A JP13036090A JP13036090A JPH0425744A JP H0425744 A JPH0425744 A JP H0425744A JP 13036090 A JP13036090 A JP 13036090A JP 13036090 A JP13036090 A JP 13036090A JP H0425744 A JPH0425744 A JP H0425744A
- Authority
- JP
- Japan
- Prior art keywords
- aggregate
- strength
- concrete
- time
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、例えば超高強度コンクリート等(こおける
骨材強度の試験法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for testing aggregate strength in, for example, ultra-high strength concrete.
(従来の技術)
従来、例えば超高強度コンクリートにおける骨材の圧縮
強度試験法は、骨材を容器内に入れて、加圧体を用いて
骨材を直接加圧することにより又は骨材に対して落下衝
撃を与えて、骨材を破砕して、この破砕状況から骨材の
強度を測定するものであった。(Prior art) Conventionally, for example, the compressive strength testing method for aggregate in ultra-high strength concrete has been carried out by placing the aggregate in a container and applying pressure directly to the aggregate using a pressurizing body, or by applying pressure to the aggregate using a pressurizing body. A falling impact was applied to the aggregate to crush it, and the strength of the aggregate was measured from this crushing condition.
(発明が解決しようとする課題)
上記試験法による問題点として、骨材への加圧が接点圧
力であるために、コンクリートとの付着強度は加味され
ておらず、実際使用する粒度分布と異なるため、コンク
リート中の骨材強度を表わしていないことである。そし
て現実には、超高強度コンクリートの圧縮強度はコンク
リート製造後4週間後に試験を行って品質管理確認を行
っている。(Problem to be solved by the invention) The problem with the above test method is that since the pressure applied to the aggregate is contact pressure, the adhesion strength with concrete is not taken into account, and the particle size distribution differs from that actually used. Therefore, it does not represent the strength of aggregate in concrete. In reality, the compressive strength of ultra-high strength concrete is tested four weeks after concrete production to confirm quality control.
この発明の目的は、コンクリート製造前に骨材の強度を
早期にかつ正確に判定できるようにすることにある。An object of the present invention is to enable early and accurate determination of aggregate strength before concrete production.
(課題を解決するための手段)
この発明では、セメントコンクリートと同様の状態を作
り出して、試験を行うものである。そのために熱硬化樹
脂と骨材とを混練し、二の混練時に充填材を入れて、試
験体を成形し、この試験体を圧縮試験するものである。(Means for Solving the Problems) In this invention, a test is conducted under conditions similar to those of cement concrete. For this purpose, thermosetting resin and aggregate are kneaded, a filler is added during the second kneading process, a test piece is formed, and this test piece is subjected to a compression test.
熱硬化性樹脂(レジン)には、ポリエステル系樹脂、ア
クリル系樹脂、エポキシ系樹脂等か含まれる。充填材と
しては、例えば炭酸カルシウム、石粉なとである。熱硬
化性樹脂の硬化を促進させるために、必要に応じて混練
時に硬化剤や硬化促進剤を添加して、試験体の硬化時間
を制御する。さらに、強度特性の異なる熱硬化性樹脂を
用いることにより、高強度から超高強度までの骨材強度
のランク付けを行うことかできる。Thermosetting resins include polyester resins, acrylic resins, epoxy resins, and the like. Examples of the filler include calcium carbonate and stone powder. In order to accelerate the curing of the thermosetting resin, a curing agent or a curing accelerator is added during kneading as necessary to control the curing time of the test specimen. Furthermore, by using thermosetting resins with different strength characteristics, it is possible to rank aggregate strengths from high strength to ultra-high strength.
(発明の効果)
この発明によれば、骨材をコンクリートに付着した状態
で強度試験が行え、細骨材と粗骨材の組合せによる正確
な骨材の強度を判定でき、かつ短時間で試験体を作成で
きるので、早期に強度試験ができて、従来の試験時間を
大幅に短縮できる。(Effects of the Invention) According to the present invention, strength tests can be performed with aggregates attached to concrete, the strength of aggregates can be determined accurately by a combination of fine aggregates and coarse aggregates, and the test can be performed in a short time. Since the body can be created, strength tests can be performed at an early stage, significantly shortening the conventional test time.
(実験例)
ポルエステル樹脂コンクリート試験体を作成して圧縮試
験を行った。(Experiment example) A polyester resin concrete test specimen was created and a compression test was conducted.
結合材としての液状樹脂にはポリエステル樹脂を使用し
、骨材として下記のもの使用して、充填材として炭酸カ
ルシウムを選択して、上記結合材に充填材を混練し、硬
化促進混和剤を添加したものを型に入れて、加熱して試
験体を2〜3時間後に完成し、完成から2〜3時間経過
後に圧縮試験を行い、別紙表1の結果を得た。Polyester resin is used as the liquid resin as the binder, the following is used as the aggregate, calcium carbonate is selected as the filler, the filler is kneaded with the binder, and a hardening accelerating admixture is added. The sample was placed in a mold, heated, and a test specimen was completed 2 to 3 hours later. A compression test was conducted 2 to 3 hours after completion, and the results shown in Table 1 were obtained.
骨 材コ粗骨材・・・砕石(硬質砂岩)、砕石(石灰石
)、
砕石(安山岩)、
川砂利、
細骨材・・・砕砂(硬質砂岩)、
砕砂(石灰石)、
山砂、
川砂、
この表1から、圧縮強度の変動範囲は、811〜107
2 k g f / c m 2であり、骨材強度トシ
て最も弱いのは、粗骨材では鬼怒川、細骨材としては鹿
島で、特に粗骨材強度のコンクリート圧縮強度の及はす
影響は大きい。Aggregate Coarse aggregate...crushed stone (hard sandstone), crushed stone (limestone), crushed stone (andesite), river gravel, fine aggregate...crushed sand (hard sandstone), crushed sand (limestone), mountain sand, river sand, From this Table 1, the variation range of compressive strength is 811 to 107
2 kg f / cm 2, and the weakest aggregate strength is Kinugawa for coarse aggregate and Kashima for fine aggregate.In particular, the influence of concrete compressive strength on coarse aggregate strength is big.
なお、別紙表2は、セメントコンクリートの4週圧縮強
度を示すものである。使用材料は、普通ポルトランドセ
メント、骨材及び混和剤はポルエステル樹脂セメント試
験体の場合と同様である。In addition, attached Table 2 shows the 4-week compressive strength of cement concrete. The materials used were ordinary Portland cement, and the aggregates and admixtures were the same as in the case of the polyester resin cement test specimen.
この表2から、圧縮強度の変動範囲は、874〜112
1 k g f / c m 2であり、骨材強度とし
て最も弱いのは、粗骨材では鬼怒川、細骨材としては木
更津で、特に粗骨材強度のコンクリート圧縮強度の及は
す影響は大きい。From this Table 2, the variation range of compressive strength is 874 to 112
1 kg f / cm 2, and the weakest aggregate strength is Kinugawa for coarse aggregate and Kisarazu for fine aggregate, and the influence of concrete compressive strength on coarse aggregate strength is particularly large. .
別紙表3は、ポリエステル樹脂コンクリートとセメント
コンクリートとの圧縮強度の関係を示すものである。こ
の表3がら判定できるように、ポリエステル樹脂コンク
リートとセメントコンクリートとの間に相関関係があり
、ポリエステル樹脂コンクリートを用いることにより超
高度コンクリートの骨材の強度が1日で判定できた。Attached Table 3 shows the relationship in compressive strength between polyester resin concrete and cement concrete. As can be determined from Table 3, there is a correlation between polyester resin concrete and cement concrete, and by using polyester resin concrete, the strength of the aggregate of ultra-high-grade concrete could be determined in one day.
以 上
特 許 出 願 人 株式会社長谷エコーポレーショ
ンPatent applicant Hase Corporation Co., Ltd.
Claims (1)
れて、試験体を形成し、この試験体を圧縮して骨材の強
度を測定することを特徴とする骨材強度試験法。An aggregate strength testing method characterized by kneading a thermosetting resin and aggregate, adding a filler during the kneading to form a test specimen, and measuring the strength of the aggregate by compressing the test specimen. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13036090A JPH0425744A (en) | 1990-05-22 | 1990-05-22 | Test method for strength of aggregate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13036090A JPH0425744A (en) | 1990-05-22 | 1990-05-22 | Test method for strength of aggregate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0425744A true JPH0425744A (en) | 1992-01-29 |
Family
ID=15032520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13036090A Pending JPH0425744A (en) | 1990-05-22 | 1990-05-22 | Test method for strength of aggregate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0425744A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010165751A (en) * | 2009-01-13 | 2010-07-29 | Mitsubishi Electric Corp | Method of manufacturing thin-film solar cell |
CN108519262A (en) * | 2018-04-03 | 2018-09-11 | 中钢集团郑州金属制品研究院有限公司 | A kind of technique and compaction apparatus preparing fine aggregate basic active detection sample |
-
1990
- 1990-05-22 JP JP13036090A patent/JPH0425744A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010165751A (en) * | 2009-01-13 | 2010-07-29 | Mitsubishi Electric Corp | Method of manufacturing thin-film solar cell |
JP4717122B2 (en) * | 2009-01-13 | 2011-07-06 | 三菱電機株式会社 | Method for manufacturing thin film solar cell |
CN108519262A (en) * | 2018-04-03 | 2018-09-11 | 中钢集团郑州金属制品研究院有限公司 | A kind of technique and compaction apparatus preparing fine aggregate basic active detection sample |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vinoth et al. | Early strength development in cement-treated sand using low-carbon rapid-hardening cements | |
Zhu et al. | Application of depth-sensing microindentation testing to study of interfacial transition zone in reinforced concrete | |
JP3461830B2 (en) | METHOD AND COMPOSITION FOR PRODUCING CONCRETE COMPONENTS WITH SIGNIFICANT COMPRESSION RESISTANCE AND FRACTURE ENERGY AND COMPONENTS OBTAINED BY THE SAME | |
Mahmood et al. | Effects of mixing duration on engineering properties of geopolymer concrete | |
CN107840629B (en) | A kind of coal-rock similar material suitable for hydraulic fracturing and preparation method | |
Koh et al. | Effect of re-vibration on the compressive strength and surface hardness of concrete | |
Aquino et al. | Mechanical properties of the aggregate and cement interface | |
Alonzo et al. | Guide for selecting proportions for high-strength concrete with portland cement and fly ash | |
Ukala | Effects of combined aggregate gradation on the compression strength and workability of concrete using fineness modulus | |
SONG et al. | Orthogonal test method for determination of the proportion of rock-like material based on properties of deformation and brittleness | |
JPH0425744A (en) | Test method for strength of aggregate | |
CN107406323B (en) | SBS latex for concrete modification | |
Yuan et al. | Effect of bond strength between aggregate and cement paste on the mechanical behaviour of concrete | |
Alonso et al. | Mechanical properties of concrete elaborated with igneous aggregates | |
Rustum et al. | The Effect of Partial Replacement of Polymethyl Methacrylate (PMMA) on the Compressive and Flexural Strength of Ordinary Cement Mortar | |
Cheung et al. | Engineering controlled low strength materials using scrap tire rubber | |
JP2012030981A (en) | Method for reducing drying shrinkage of concrete, and method for producing concrete | |
Kumar et al. | Experimental investigation on the compressive strength of concrete with different sizes of coarse aggregate | |
CN114740027A (en) | Characterization method for silicon ash dispersion effect in cement-based material with extremely low water-to-gel ratio | |
Safari | Early-age mechanical properties and electrical resistivity of geopolymer composites | |
Müller et al. | Behaviour of strain-hardening cement-based composites (SHCC) subject to cyclic loading | |
Ivanova et al. | Comparison of laboratory methods for the design of injection grouts based on microfine cements | |
Liang et al. | Mechanical Properties of Botanical Recycled Concrete under Different Production Conditions | |
CN117142832B (en) | Dihydrate gypsum artificial inorganic marble and preparation method thereof | |
Fahad et al. | Effect of Different Curing on Mechanical Properties of Polymer-Cement Composites |