[go: up one dir, main page]

JPH04255946A - Magneto-optical recording and reproducing system - Google Patents

Magneto-optical recording and reproducing system

Info

Publication number
JPH04255946A
JPH04255946A JP3018072A JP1807291A JPH04255946A JP H04255946 A JPH04255946 A JP H04255946A JP 3018072 A JP3018072 A JP 3018072A JP 1807291 A JP1807291 A JP 1807291A JP H04255946 A JPH04255946 A JP H04255946A
Authority
JP
Japan
Prior art keywords
layer
reproducing
magneto
reproduction
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3018072A
Other languages
Japanese (ja)
Other versions
JP3106514B2 (en
Inventor
Masumi Ota
太田 真澄
Isamu Nakao
勇 中尾
Katsuhisa Araya
勝久 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP03018072A priority Critical patent/JP3106514B2/en
Priority to US07/815,330 priority patent/US5241520A/en
Priority to CA002060547A priority patent/CA2060547C/en
Priority to EP97104811A priority patent/EP0788099B1/en
Priority to EP92102091A priority patent/EP0498461B1/en
Priority to DE69222962T priority patent/DE69222962T2/en
Priority to DE69232052T priority patent/DE69232052T2/en
Priority to AT92102091T priority patent/ATE160045T1/en
Priority to KR1019920001724A priority patent/KR100214035B1/en
Priority to AT97104811T priority patent/ATE205326T1/en
Publication of JPH04255946A publication Critical patent/JPH04255946A/en
Application granted granted Critical
Publication of JP3106514B2 publication Critical patent/JP3106514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field

Abstract

PURPOSE:To propose a high resolution reproducing system and to make an improvement in resolution at the time of reproducing, i.e., an enhancment of S/N (C/N). CONSTITUTION:As for a magneto-optical recording medium 10 having at least a recording layer 13, a reproducing layer 11 and an intermediate layer 12 interposed between these individual layers, under the state of magnetizing one way the reproducing layer 11 excluding at least the recording layer 13 at the time of reproducing, a reproducing magnetic field Hr is given in the above magnetizing direction, and a read-out beam of light is projected, and then by this projection, at least a high temp. area 14 and a reproducible temp. area 16 are produced in a read-out light projecting area (beam spot) 6, where the intermediate layer 12 is raised in its temp. more than the Curie temp. in the high temp. area 14, and when coercive force of the layer of contribution to reproducing is denoted as HCA, and a magnetic field by a magnetic wall between the reproducing layer 11 and the intermediate layer 12 is HW1, Hr+HCA<HW1 must be proved in the reproducible temp. area 16.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、光磁気記録再生方式特
に例えば高密度記録がなされた光磁気記録媒体に対する
超解像度再生を行う光磁気記録再生方式に係わる。 【0002】 【従来の技術】レーザ光照射による局部的加熱によって
情報記録ピット即ちバブル磁区を形成し、この記録情報
を光磁気相互用即ちカー効果或いはファラデー効果によ
って読み出す光磁気記録再生方法を採る場合、その光磁
気記録の記録密度を上げるには、その記録ピットの微小
化をはかることになるが、この場合その再生時の解像度
(分解能)が問題となって来る。この解像度は、再生時
のレーザ波長、対物レンズの開口数N.A.によって決
定される。 【0003】通常一般の光磁気記録再生方式を図6を参
照して説明する。図6Aは記録パターンの模式的上面図
を示すもので、例えば両側が溝即ちグルーブ1によって
挟まれたランド部2に斜線を付して示す記録ピット4が
2値情報の“1”または“0”に応じて記録された光磁
気記録媒体3例えば光磁気ディスクについて、その再生
方法を説明する。いま読み出しレーザ光の光磁気記録媒
体3上でのビームスポットが符号6です円形スポットで
ある場合について見る。このとき、図6Aに示すように
1つのビームスポット6内に1個の記録ピット4しか存
在することができないようにピット間隔の選定がなされ
ている場合は、図6B或いは図6Cに示すように、スポ
ット6内に記録ピット4があるかないかの2態様をとる
ことになる。したがって記録ピット4が等間隔に配列さ
れている場合は、その出力波形は例えば図6Dに示すよ
うに、基準レベル0に対して正負に反転する例えば正弦
波出力となる。 【0004】ところが、図7Aに記録パターンの模式的
上面図を示すように、記録ピット4が高密度に配列され
ている場合はビームスポット6内に複数の記録ピット4
が入り込んでくる。いま例えば隣り合う3つの記録ピッ
ト4a,4b,4cについて見ると、図7B及び図7C
に示すように、1つのビームスポット6に隣り合う記録
ピット4aと4bが入り込んで来る場合と、4bと4c
が入り込んで来る場合とで、再生出力に変化が生じない
ため、その再生出力波形は図7Dに示すように、例えば
直線的になって、両者の識別ができない。 【0005】このように、従来一般の光磁気記録再生方
式では、光磁気記録媒体3上に記録された記録ピット4
をそのままの状態で読み出すことから、高密度記録、即
ち高密度記録ピットの形成が可能であったとしても、そ
の再生時の解像度の制約から、S/N(C/N)の問題
が生じ、十分な高密度記録再生ができない。 【0006】 【発明が解決しようとする課題】このようなS/N(C
/N)の問題を解決するには、再生時の解像度の改善を
はかることが必要となるが、この解像度はレーザ波長、
レンズの開口数等によって制約されるという問題がある
。このような問題点の解決をはかるものとして、本出願
人は先に超解像度(超分解能)光磁気記録再生方式(以
下MSRという)の提案をした(例えば特願平1−22
5685号出願「光磁気記録再生方法」。 【0007】このMSRについて説明すると、このMS
Rでは、光磁気記録媒体と再生用ビームスポット6との
相対的移動による温度分布を利用して光磁気記録媒体の
記録ピット4を、再生時においては、所定の温度領域に
おいてのみ発生させるようにして結果的に再生の高解像
度化をはかるものである。 【0008】このMSR方式の例としては、いわゆる浮
出し型の再生方式と、消滅型の再生方式とが考えられる
。 【0009】先ず浮出し型のMSR方式について図8を
参照して説明する。図8Aは光磁気記録媒体10の記録
パターンを示す模式的上面図で、図8Bはその磁化態様
を示す模式的断面図である。この場合図8Aに示すよう
に、レーザビームによるビームスポット6に対して光磁
気記録媒体10が矢印Dで示す方向に相対的に移動する
ようになされている。この場合、例えば図8Bに示すよ
うに、少なくとも垂直磁化膜より成る再生層11と、記
録層13とを有し、更に望ましくは両層11及び13間
に介在される中間層12とを有して成る光磁気記録媒体
10例えば光磁気ディスクが用いられる。図中実線矢印
は、その磁気モーメントの向きを模式的に示したもので
、図示の例では下向きが初期状態即ち2値の“0”また
は“1”で、これに図において上向きの磁化による磁区
をもって2値の“1”または“0”として、少なくとも
記録層13に情報記録ピット4が形成される。 【0010】このような光磁気記録媒体10において、
その再生態様を説明すると、先ず外部から初期化磁界H
iを印加して、再生層11を図において下向きに磁化し
て初期化する。即ち、再生層11において、記録ピット
4が消滅するが、このとき記録ピット4を有する部分に
おいて、再生層11と記録層13との磁化の向きが中間
層12に生じた磁壁によって逆向きに保持されるように
なされているので、記録ピット4は、潜像記録ピット4
1として残る。 【0011】一方光磁気記録媒体10には初期化磁界H
iとは逆向きの再生磁界Hrを少なくともその再生部で
与える。この状態で媒体10の移動に伴って初期化され
た潜像記録ピット41を有する領域がビームスポット6
下に入り、ビーム照射により昇温された部分がビームス
ポット6下の先端側、図8Aにおいて左側へと移行して
来ると、スポット5の先端側に破線aで囲んで斜線を付
して示すように、実質的に高温領域14が生じ、この領
域14では中間層12の磁壁が消滅し、交換力で記録層
11の磁化が再生層13に転写され、記録層13に存在
していた潜像記録ピット41が再生層11に再生し得る
記録ピット4として浮き出される。 【0012】従ってこの再生層11における磁化の向き
によるカー効果或いはファラデー効果によるビームスポ
ット6の偏光面の回転を検出すれば、この記録ピット4
を読み出すことができる。そしてこのときビームスポッ
ト6内の高温領域14以外の低温領域15においては、
潜像記録ピット41が再生層11に浮き出されず、結局
幅狭の高温領域14においてのみ読み出し可能な記録ピ
ット4が存在することになって、結果的にビームスポッ
ト6内に複数の記録ピット4が入り込む場合においても
、即ち高密度記録の光磁気記録媒体10においても単一
の記録ピット4のみを読み出すことができ、高解像度再
生を行うことができる。 【0013】このような再生を行うために、初期化磁界
Hi、再生磁界Hr、各磁性層の保磁力、厚さ、磁化、
磁壁エネルギー等が、ビームスポット6内の高温領域1
4及び低温領域15の温度に応じて選定される。即ち、
再生層11の保磁力をHC1、飽和磁化をMS1、膜厚
をh1 とすると、再生層11のみを初期化する条件と
しては、下記数2となる。 【0014】 【数2】Hi>HC1+σw2/2Ms1h1 ここに
σw2は、再生層11及び記録層13間の磁壁による磁
壁エネルギーを示す。 【0015】またその磁界で記録層13の情報が維持さ
れるための条件は、記録層13の保磁力をHC3、飽和
磁化をMS3、膜厚をh3とすると、下記数3となる。 【数3】Hi<HC3−σw2/2Ms3h3 【00
16】また初期化磁界Hi下を通過して後も再生層11
と記録層13間の中間層12による磁壁が維持されるた
めには、下記数4の条件が必要となる。 【数4】HC1>σw2/2Ms1h1 【0017】
そして高温領域14内で選定される温度TH において
、下記数5の条件が必要となる。 【数5】     HC1−σw2/2Ms1h1 <Hr <H
C1+σw2/2Ms1h1 【0018】このような
数5が成り立つ再生磁界Hrを印加することによって、
中間層12による磁壁が存在する部分のみに再生層11
に記録層13の潜像記録ピット41の磁化を転写即ち記
録ピット4として2値記録の“1”と“0”を浮き出さ
せることができる。 【0019】上述したMSR方式に用いた光磁気記録媒
体10は、再生層11と中間層12と記録層13の3層
構造を採る場合について説明したが、図9に略線的拡大
断面図を示すように、再生層11の中間層12側に再生
補助層17が設けられた4層構造とすることもできる。 【0020】この再生補助層17は、再生層11の特性
を補助するものであって、これによって再生層11の室
温での保磁力を補償し、初期化磁界Hiによって揃えら
れた再生層11の磁化が、磁壁の存在によっても安定に
存在し、また再生温度近傍では保磁力が急激に減少する
ようにして中間層12に閉じ込められていた磁壁が再生
補助層17に広がり、最終的に再生層11を反転させ磁
壁を消滅させて記録ピット4の浮出しが良好に行われる
ようにする。 【0021】そして、このように再生補助層17を有す
る4層構造を採るときは、再生層11の保磁力HC1は
、次の数6によるHCAに置き換えられ、σw2/Ms
1h1はσw2/(Ms1h1+Msshs)に置き換
えられる。 【0022】 【数6】   HCA=(MS1h1 HC1+MSShS HC
S)/(MS1h1 +MSShS )  (但し上述
の浮出し型MSRでは、HC1<HCA<HCS)【0
023】ここに、MSS、hS 、HCSはそれぞれ再
生補助層17の飽和磁化、膜厚、保磁力を表す。 【0024】次に消滅型のMSRについて図10を参照
して説明する。図10Aは光磁気記録媒体10の記録パ
ターンを示す模式的上面図で、図10Bはその磁化態様
を示す模式的断面図である。図10A及び図10Bにお
いて、図8A及び図8Bに対応する部分には同一符号を
付して重複説明を省略する。この場合においては初期化
磁界Hiを必要としないものである。 【0025】このような光磁気記録媒体10において、
その再生態様を説明すると、この場合高温領域14にお
いて下記数7が成り立つようにして、これによって、レ
ーザビームスポット6内においても、高温領域14にお
いては外部から印加する再生磁界Hrによって図におい
て下向きに磁化がそろえられて再生層11における記録
ピット4が消滅するようにする。つまり、この消滅型M
SR方式では、ビームスポット6の低温領域15内の記
録ピットについての再生を行うことができるようにして
解像度の向上をはかる。 【数7】Hr >HC1+σw2/2Ms1h1 【0
026】このとき、消滅状態においても記録層13にお
いては記録ピット4が潜像記録ピット41として残存す
るように、その保磁力等の諸条件を設定し、室温では、
再生層11に、記録層13の磁化、即ち記録ピット4が
転写して再生可能な状態で保持されるようになされる。 【0027】上述の浮出し型及び消滅型のMSR方式に
よれば、その再生レーザービームスポットの一部の領域
における記録ピットを再生するようにしたので、再生時
の解像度の向上がはかられる。 【0028】本発明は、このようなMSR再生方式にお
いて、更に高解像の再生方式を提案し、MSR方式によ
る再生時の解像度の改善、即ちS/N(C/N)の向上
をはかるものである。 【0029】 【課題を解決するための手段】本発明による光磁気記録
再生方式を示す模式的上面図を図1Aに、磁化態様を示
す模式的断面図を図1Bに、温度分布図を図1Cに示す
。本発明は、図1Bに示すように、少なくとも記録層1
3と、再生層11と、これら各層間に介在する中間層1
2とを有する光磁気記録媒体10に対して、再生時には
、少なくとも記録層13を除いて再生層11を一方向に
磁化させた状態で、図1Aに示すように、その磁化方向
に再生磁界Hrを与えて読み出し光Lを照射し、この照
射によって読み出し光照射領域6内に少なくとも高温領
域14と、再生可能温度領域16とを生じさせ、高温領
域14では、図1Cに示すように、中間層12をキュリ
ー温度Tc2 以上に昇温させ、再生に寄与する層の保
磁力をHCA、再生層11と中間層12との間の磁壁に
よる磁界をHW1とすると、再生可能温度領域16では
、Hr+HCA<HW1が成り立つようにする。 【0030】 【作用】上述した本発明光磁気記録方式は、読み出し光
を照射するために生じる光磁気記録媒体10上の温度分
布を利用するものであるが、図1Aにおいて光磁気記録
媒体10の進行方向を矢印Dで示す方向とすると、この
光磁気記録媒体10はビームスポット即ち読み出し光照
射領域6に入り込む直前から温度が上昇し、熱伝導の関
係により、照射強度の最も強い読み出し光照射領域6の
中心よりやや前方の領域が最高温度となるような温度分
布が生じる。この温度分布を図1Cに示す。そして上述
した本発明光磁気記録再生方式によれば、再生時に再生
層11を一方向に磁化させた状態とし、また光磁気記録
媒体10の、読み出し光を照射するときに生じる高温領
域14において中間層12のキュリー温度Tc2以上の
温度となるようにし、更にこれより温度の低い領域の再
生可能温度領域16では、上述した数1が成り立つよう
にするものであるが、このようにすることにより、光磁
気記録媒体10上の高温領域14では、中間層12の磁
化が消滅して、記録層13の記録磁化によらずに、再生
層11の磁化が再生磁界Hrと同方向に向くこととなる
。そして再生可能温度領域16では、上述の数1が成り
立つようにするため、再生磁界Hrの向きに逆らって再
生層11に記録層13の磁化の向きが転写される。そし
て、再生可能温度領域16よりも温度が低く、数1が成
立しない領域では再生層11の磁化は初期においてそろ
えられた磁化方向即ち再生磁界Hrと同方向に向いたま
まとなっている。 【0031】従って、読み出し光照射領域6下の光磁気
記録媒体10において、再生可能温度領域16以外の再
生層11の磁化は、全て再生磁界Hrと同方向に揃えら
れ、再生可能温度領域16内においてのみ、記録層13
の記録ピット4が再生層11に転写され、これにより2
値記録の“1”と“0”を読み取ることができる。 【0032】 【実施例】以下図1〜図5を参照して本発明光磁気記録
方式の一例について説明する。この例では、再生層11
と、補助層12aと、中間層12b及び記録層13とよ
り成る4層構造の磁性層を有する光磁気ディスク等の光
磁気記録媒体10を用いた場合で、再生に寄与する層即
ち再生層11と補助層12aとによって保磁力HCAの
所望の温度特性を有するようになされ、この場合更に、
補助層12aのキュリー温度を比較的低く選定する。 【0033】この光磁気記録媒体10は、例えば図2に
その要部の略線的拡大断面図を示すように、ポリカーボ
ネイトPC等より成る光透過性の基板21の一主面21
A上に、例えばSiN膜より成る誘電体膜22を例えば
厚さ800Åとしてスパッタリング等により被着し、再
生層11として、例えばGdFeCo系の例えばGd2
3(Fe85Co15)77を300Å、補助層12a
としてTbFeCoAl系のTb12(Fe95Co5
 )83Al5 等を80Å、中間層12として例えば
GdFeCo系のGd20(Fe95Co5 )80を
150Å、記録層13を例えばTbFeCo系のTb2
5(Fe85Co15)75を450Åとして、連続ス
パッタリング等により被着形成する。 そしてこれらの上にSiN等より成る表面保護膜23を
例えば厚さ800Åとしてスパッタリング等によって被
着形成する。 【0034】この場合再生層11、補助層12a、中間
層12b及び記録層13の各キュリー温度及び保磁力は
下記の表1に示す如く設定する。 【表1】 【0035】このような光磁気記録媒体10を用いた光
磁気記録再生方式について詳細に説明する。この場合、
図3に略線的斜視図を示すように、光磁気記録媒体10
の基板21側の上面から読み出し光Lを照射するための
光学系例えばレーザ光を集光する対物レンズ24が配置
され、光磁気記録媒体10を挟んでこの対物レンズ24
の直下に所要の再生磁界Hrを印加する再生磁石25が
配置される。一方これら対物レンズ24及び再生磁石2
5が読み取るトラックの上流側、再生磁界Hrに影響を
与えない位置に初期化磁界Hiを印加すべき初期化磁石
26を設け、この再生磁石25と初期化磁石26による
磁界は同方向に揃える。 【0036】このとき、各層の保磁力を上述したように
構成し、初期化磁界Hiを1〜4kOeの例えば4kO
eとすると、図4Aにその磁化態様の模式図を示すよう
に、初期化磁石26の下を通過した後、再生層11と補
助層12aとは初期化磁界Hiの方向に一様に磁化が揃
えられるようにする。このためには、 【数8】 Hi>HCA+σW2/2(MS1h1 +MSShS
 )が成り立つようにすればよい。ここでHCAは、再
生層11の保磁力HC1と補助層12aの保磁力HCS
との実効的な平均保磁力で、前述したHCA=(MS1
h1 HC1+MSShS HCS)/(MS1h1 
+MSShS )より求められる。 ここでMS1、MSSはそれぞれ再生層11、補助層1
2aの飽和磁化、h1 、hS はそれぞれ再生層11
、補助層12aの膜厚である。また数8においてσW2
は中間層12bの磁壁エネルギーである。上述の数8は
、前述のMSR再生方式における条件式数2に相当する
。 【0037】一方記録層13は、その保磁力を大として
、その磁化の向きが記録時に設定された方向に保持され
るようにする。このためには、 【数9】Hi<HC3−σW2/2MS3h3 であれ
ばよい。ここでHC3は記録層13の保磁力、MS3は
記録層13の飽和磁化、h3 は記録層13の膜厚であ
る。この条件は、前述の数3に相当する。 【0038】また無磁界中で記録層13の磁化の向きと
、初期化された再生層11及び補助層12aの磁化の向
きが互いに反対の向きを保持するためには、【数10】
HCA>σW2/2(MS1h1 +MSShS )で
あればよい。これは、前述の数4に相当する。 【0039】そして読み出し光による読み出し光照射領
域6下では初期化磁界Hiと同方向に再生磁界Hrが印
加される。図4Aに示すように光磁気記録媒体10が矢
印Dで示す方向に移行すると、この照射領域6内では光
磁気記録媒体10の温度は徐々に上昇して、読み出し光
照射領域6の中心よりやや前方が最も温度が高くなり、
これを頂点とする温度分布が生じる。この高温領域14
は、図4Bに示すように、読み出し光照射領域6内の図
において左側に片寄った領域となり、この領域14では
、中間層のキュリー温度Tc2 以上に昇温するように
なすものであるが、この例ではキュリー温度Tc2 が
140℃である補助層12aがキュリー点以上に昇温し
て磁化が消滅する。従って再生層11の磁化は再生磁界
Hrの向きに揃えられる。 【0040】そして高温領域14より低い温度の再生可
能温度領域16は、高温領域14と低温領域15とに挟
まれた円弧状の領域となる。この温度領域16は、図1
Cに斜線を付して示すように、補助層12aのキュリー
温度TC2未満で、所定の温度TB 以上の領域で、こ
の領域において、Hr+HCA<HW1が成り立つよう
になす。 ここでHCAは上述の数6により求められる。 【0041】このように、再生磁界Hrと、再生層11
と補助層12aとの平均保磁力HCAとの和よりも、中
間層12bとの間に生じる磁壁による磁界HW1を大と
すると、再生層11及び補助層12aの磁化が再生磁界
Hrに抗して記録層13の磁化の向きに平行に揃えられ
ることとなる。即ち、記録層13に再生磁界Hrの向き
と逆向きの記録磁化があるときは、再生層11にその磁
化が転写される。 【0042】そして、この再生可能温度領域16よりも
低温の即ち上述のTB 未満の温度領域はこの場合読み
出し光照射領域6内では三日月形に生じるが、この低温
領域15では、数1が成り立たないため、再生層11の
磁化は初期化磁界Hiによって揃えられた方向に一様に
向いた状態が保持され、これは高温領域14内での再生
層11の磁化の向きと同様である。従って、読み出し光
照射領域6内において、高温領域14及び低温領域15
下の記録ピットは図4A及びBに示すように、潜像ピッ
ト27として、記録層13には保持されるが再生層11
には転写されず、再生可能温度領域16の幅狭の領域の
みにおいて記録ピット4が再生層11に転写される。こ
の場合、上述したように再生可能温度領域16は高温領
域14と低温領域15とに挟まれた幅狭の領域であるた
め、より高密度の記録がなされても良好に高解像度をも
って再生することが可能となる。 【0043】このような4層構造を有する光磁気記録媒
体10を用いた場合の出力特性を図5に示す。図におい
て実線Cは信号出力、破線Nはノイズ出力である。この
例では、初期化磁界を4k〔Oe〕、読み出し光Lの出
力を3.3mWとし、光磁気記録媒体10を2400r
pmで回転し、光磁気記録媒体10の中心からの距離r
が30mmのトラックにおいて、10MHzの単一周波
数を記録した場合を示す。このとき再生層11及び補助
層12aの平均保磁力HCAは4k〔Oe〕、中間層1
2bの保磁力は1k〔Oe〕、記録層13の保磁力は1
5k〔Oe〕の光磁気記録媒体10を用いた。図5から
わかるように、本発明光磁気記録再生方式によれば、1
0MHzという高周波記録においても再生磁界Hrを、
線Cと線Nとの差が大であるように、即ちこの場合30
0〔Oe〕以下程度に選定することにより、良好なC/
N比を得ることができ、高密度記録を高解像に再生する
ことができる。 【0044】尚、上述した例においては初期化磁石26
を光磁気記録媒体10の読み出しを行う位置の上流に設
けた場合であるが、この初期化磁石26を設けずとも、
記録直後或いは再生直前に再生磁界Hrと同様の向きと
大きさの磁界を再生磁石25によって光磁気記録媒体1
0に印加することによって再生層11の磁化を一方向に
揃えることができ、この後上述した方法により高解像の
読み出しを行うことができる。 【0045】また、上述した例に限らず本発明はその他
種々の構成を採る光磁気記録媒体に適用することができ
る。即ち、補助層12aを設けずに、再生層11、中間
層12及び記録層13の3層構造より成る光磁気記録媒
体に本発明を適用することもできる。この場合は、例え
ば再生層11としてGd24(Fe85Co15)76
、中間層12として例えばTb18Fe82、また記録
層13としてTb25(Fe85Co15)75を用い
て、数1における再生に寄与する層の保磁力HCAを再
生層11の保磁力HC1に置き換えて、数1が成り立つ
ようにし、また上述した数6は前述の数2に、数9は数
3に、数10は数4に置き換えて各層の保磁力、膜厚、
磁化、磁壁エネルギーを選定する。このように選定する
ことにより、3層構造の磁性層より成る光磁気記録媒体
においても、上述したような高解像の再生を行うことが
できる。 【0046】 【発明の効果】上述したように本発明光磁気記録再生方
式によれば、読み出し光照射領域6内の読み出し可能な
領域が高温領域14と低温領域15に挟まれて存在する
ため、先に述べたMSR再生方式に比して、読み出し可
能な領域が更に幅狭化することとなり、より多くの記録
ピット4が読み出し光照射領域6内に存在する高記録密
度の光磁気記録媒体10の読み出しを確実に行うことが
できる。また再生のレーザ出力を大として再生出力の増
大化をはかる場合において、そのスポット径即ち読み出
し光照射領域6の面積が大となった場合においても充分
高解像度を保つことができ、C/N(S/N)の向上を
はかることができて、従来の再生解像限度を越えた高解
像の再生を行うことができる。 【0047】また、特に初期化磁界発生手段を設けずに
再生磁界発生手段をもって再生直前に再生層の磁化を一
方向に揃える場合は、装置の簡単化をはかることができ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording and reproducing method, particularly a magneto-optical recording and reproducing method that performs super-resolution reproduction on a magneto-optical recording medium on which high-density recording has been performed. Involved. [0002] When using a magneto-optical recording and reproducing method in which information recording pits, that is, bubble magnetic domains are formed by local heating by laser beam irradiation, and this recorded information is read out by magneto-optical interaction, that is, by the Kerr effect or the Faraday effect. In order to increase the recording density of magneto-optical recording, it is necessary to make the recording pits smaller, but in this case, the resolution during reproduction becomes a problem. This resolution is determined by the wavelength of the laser during reproduction, the numerical aperture of the objective lens, and the numerical aperture of the objective lens. A. determined by A general magneto-optical recording and reproducing system will be explained with reference to FIG. FIG. 6A shows a schematic top view of a recording pattern. For example, recording pits 4 indicated by diagonal lines on land portions 2 sandwiched by grooves 1 on both sides are binary information "1" or "0". A method for reproducing a magneto-optical recording medium 3, such as a magneto-optical disk, recorded in accordance with the following will be described. Let us now consider the case where the beam spot of the readout laser beam on the magneto-optical recording medium 3 is a circular spot indicated by reference numeral 6. At this time, if the pit interval is selected so that only one recording pit 4 can exist in one beam spot 6 as shown in FIG. 6A, , there will be two modes: whether there is a recording pit 4 in the spot 6 or not. Therefore, when the recording pits 4 are arranged at equal intervals, the output waveform becomes, for example, a sine wave output whose polarity is inverted with respect to the reference level 0, as shown in FIG. 6D, for example. However, as shown in a schematic top view of a recording pattern in FIG.
comes in. For example, if we look at the three adjacent recording pits 4a, 4b, and 4c, FIGS. 7B and 7C
As shown in FIG.
Since there is no change in the reproduced output between the two cases, the reproduced output waveform becomes, for example, a straight line, as shown in FIG. 7D, and the two cannot be distinguished. As described above, in the conventional general magneto-optical recording and reproducing system, the recording pits 4 recorded on the magneto-optical recording medium 3
Even if high-density recording, that is, the formation of high-density recording pits, is possible because the data is read out in its original state, problems with S/N (C/N) arise due to resolution constraints during playback. Sufficient high-density recording and playback is not possible. Problem to be Solved by the Invention: Such S/N (C
/N), it is necessary to improve the resolution during playback, but this resolution depends on the laser wavelength,
There is a problem in that it is limited by the numerical aperture of the lens, etc. In order to solve these problems, the present applicant has previously proposed a super-resolution (super-resolution) magneto-optical recording and reproducing system (hereinafter referred to as MSR) (for example, in Japanese Patent Application No. 1-22
Application No. 5685 "Magneto-optical recording and reproducing method". [0007] To explain this MSR, this MS
In R, the recording pits 4 of the magneto-optical recording medium are generated only in a predetermined temperature range during reproduction by utilizing the temperature distribution caused by the relative movement between the magneto-optical recording medium and the beam spot 6 for reproduction. This results in higher resolution playback. [0008] Examples of this MSR system include a so-called embossed type reproduction system and a so-called annihilation type reproduction system. First, the embossed type MSR method will be explained with reference to FIG. FIG. 8A is a schematic top view showing a recording pattern of the magneto-optical recording medium 10, and FIG. 8B is a schematic cross-sectional view showing its magnetization mode. In this case, as shown in FIG. 8A, the magneto-optical recording medium 10 is moved relative to the beam spot 6 of the laser beam in the direction shown by arrow D. In this case, for example, as shown in FIG. 8B, it has at least a reproducing layer 11 made of a perpendicularly magnetized film and a recording layer 13, and more preferably an intermediate layer 12 interposed between both layers 11 and 13. A magneto-optical recording medium 10, such as a magneto-optical disk, is used. The solid line arrows in the figure schematically show the direction of the magnetic moment. In the illustrated example, the downward direction is the initial state, that is, the binary "0" or "1", and the upward direction in the figure indicates the magnetic domain due to magnetization. Information recording pits 4 are formed in at least the recording layer 13 as binary "1" or "0". [0010] In such a magneto-optical recording medium 10,
To explain the reproduction mode, first, the initializing magnetic field H is applied from outside.
i is applied to initialize the reproducing layer 11 by magnetizing it downward in the figure. That is, in the reproducing layer 11, the recording pits 4 disappear, but at this time, in the portion having the recording pits 4, the directions of magnetization of the reproducing layer 11 and the recording layer 13 are maintained in opposite directions by the magnetic domain walls generated in the intermediate layer 12. Therefore, the recording pit 4 is the latent image recording pit 4.
It remains as 1. On the other hand, an initializing magnetic field H is applied to the magneto-optical recording medium 10.
A reproducing magnetic field Hr in the opposite direction to i is applied at least to the reproducing section. In this state, as the medium 10 moves, the area having the latent image recording pits 41 that has been initialized becomes the beam spot 6.
When the temperature rises due to beam irradiation moves to the lower tip of the beam spot 6, which is to the left in FIG. 8A, the tip of the spot 5 is shown surrounded by a broken line a and shaded As a result, a high-temperature region 14 is substantially generated, the domain wall of the intermediate layer 12 disappears in this region 14, the magnetization of the recording layer 11 is transferred to the reproducing layer 13 by the exchange force, and the latent existing in the recording layer 13 is removed. The image recording pits 41 are embossed as recording pits 4 that can be reproduced on the reproduction layer 11. Therefore, if the rotation of the polarization plane of the beam spot 6 due to the Kerr effect or Faraday effect due to the direction of magnetization in the reproducing layer 11 is detected, this recording pit 4 can be detected.
can be read out. At this time, in the low temperature region 15 other than the high temperature region 14 within the beam spot 6,
The latent image recording pits 41 are not embossed on the reproducing layer 11, and there are recording pits 4 that can be read only in the narrow high temperature area 14. As a result, a plurality of recording pits 4 are formed within the beam spot 6. Even when the recording pit 4 enters the magneto-optical recording medium 10 for high-density recording, only a single recording pit 4 can be read out, and high-resolution reproduction can be performed. In order to perform such reproduction, the initialization magnetic field Hi, the reproduction magnetic field Hr, the coercive force, thickness, magnetization,
The domain wall energy, etc. is generated in the high temperature region 1 within the beam spot 6.
4 and the temperature of the low temperature region 15. That is,
Assuming that the coercive force of the reproducing layer 11 is HC1, the saturation magnetization is MS1, and the film thickness is h1, the condition for initializing only the reproducing layer 11 is the following equation 2. [Equation 2] Hi>HC1+σw2/2Ms1h1 Here, σw2 represents the domain wall energy due to the domain wall between the reproducing layer 11 and the recording layer 13. Further, the conditions for maintaining information in the recording layer 13 in the magnetic field are as follows, assuming that the coercive force of the recording layer 13 is HC3, the saturation magnetization is MS3, and the film thickness is h3. [Math. 3] Hi<HC3−σw2/2Ms3h3 00
16] Also, even after passing under the initializing magnetic field Hi, the reproducing layer 11
In order to maintain the domain wall created by the intermediate layer 12 between the recording layer 13 and the recording layer 13, the following condition 4 is required. [Formula 4] HC1>σw2/2Ms1h1 0017
At the temperature TH selected within the high temperature region 14, the following condition 5 is required. [Formula 5] HC1-σw2/2Ms1h1 <Hr <H
C1+σw2/2Ms1h1 By applying a reproducing magnetic field Hr that satisfies the equation 5,
The reproducing layer 11 is formed only in the portion where the domain wall due to the intermediate layer 12 exists.
It is possible to transfer the magnetization of the latent image recording pits 41 of the recording layer 13 to the recording layer 13, that is, to make the binary recording "1" and "0" stand out as the recording pits 4. The magneto-optical recording medium 10 used in the above-mentioned MSR method has been described as having a three-layer structure consisting of the reproducing layer 11, the intermediate layer 12, and the recording layer 13. FIG. As shown, a four-layer structure in which a reproduction auxiliary layer 17 is provided on the intermediate layer 12 side of the reproduction layer 11 can also be adopted. The reproduction auxiliary layer 17 assists the characteristics of the reproduction layer 11, thereby compensating the coercive force of the reproduction layer 11 at room temperature, and improving the reproduction layer 11 aligned by the initializing magnetic field Hi. Magnetization exists stably due to the presence of the domain wall, and the coercive force rapidly decreases near the reproduction temperature, so that the domain wall that was confined in the intermediate layer 12 spreads to the reproduction auxiliary layer 17, and finally the reproduction layer 11 is inverted to eliminate the magnetic domain walls, so that the recording pits 4 can be raised well. When a four-layer structure including the reproduction auxiliary layer 17 is adopted as described above, the coercive force HC1 of the reproduction layer 11 is replaced by HCA according to the following equation 6, and σw2/Ms
1h1 is replaced by σw2/(Ms1h1+Msshs). [Formula 6] HCA=(MS1h1 HC1+MSShS HC
S)/(MS1h1 +MSShS) (However, in the above-mentioned raised type MSR, HC1<HCA<HCS) 0
Here, MSS, hS, and HCS represent the saturation magnetization, film thickness, and coercive force of the reproduction auxiliary layer 17, respectively. Next, the annihilation type MSR will be explained with reference to FIG. FIG. 10A is a schematic top view showing a recording pattern of the magneto-optical recording medium 10, and FIG. 10B is a schematic cross-sectional view showing its magnetization mode. In FIGS. 10A and 10B, parts corresponding to those in FIGS. 8A and 8B are given the same reference numerals, and redundant explanation will be omitted. In this case, the initialization magnetic field Hi is not required. In such a magneto-optical recording medium 10,
To explain the reproduction mode, in this case, the following formula 7 is satisfied in the high temperature region 14, and as a result, even within the laser beam spot 6, the reproduction magnetic field Hr applied from the outside causes the reproduction magnetic field Hr to be applied downward in the figure. The magnetization is aligned so that the recording pits 4 in the reproducing layer 11 disappear. In other words, this annihilation type M
In the SR method, resolution is improved by making it possible to reproduce recorded pits within the low temperature region 15 of the beam spot 6. [Formula 7] Hr > HC1+σw2/2Ms1h1 0
At this time, various conditions such as coercive force are set so that the recording pits 4 remain as latent image recording pits 41 in the recording layer 13 even in the disappearing state, and at room temperature,
The magnetization of the recording layer 13, that is, the recording pits 4, are transferred to the reproduction layer 11 and held in a reproducible state. According to the above-mentioned raised type and disappearing type MSR methods, since the recorded pits in a part of the area of the reproduction laser beam spot are reproduced, the resolution at the time of reproduction can be improved. . The present invention proposes a reproduction method with even higher resolution in such an MSR reproduction method, and aims to improve the resolution during reproduction by the MSR method, that is, to improve the S/N (C/N). It is. [Means for Solving the Problems] FIG. 1A is a schematic top view showing the magneto-optical recording and reproducing system according to the present invention, FIG. 1B is a schematic cross-sectional view showing the magnetization mode, and FIG. 1C is a temperature distribution diagram. Shown below. The present invention provides at least a recording layer 1, as shown in FIG. 1B.
3, a reproduction layer 11, and an intermediate layer 1 interposed between these layers.
During reproduction, with respect to the magneto-optical recording medium 10 having the magneto-optical recording medium 10 having the magneto-optical recording medium 2, the reproduction magnetic field Hr is applied in the magnetization direction as shown in FIG. This irradiation creates at least a high temperature region 14 and a reproducible temperature region 16 in the read light irradiation region 6, and in the high temperature region 14, as shown in FIG. 1C, the intermediate layer 12 is heated to the Curie temperature Tc2 or higher, the coercive force of the layer contributing to reproduction is HCA, and the magnetic field due to the domain wall between the reproduction layer 11 and the intermediate layer 12 is HW1, then in the reproducible temperature region 16, Hr+HCA< Make sure that HW1 holds true. [Operation] The above-described magneto-optical recording method of the present invention utilizes the temperature distribution on the magneto-optical recording medium 10 that occurs due to the irradiation of read light. Assuming that the traveling direction is the direction shown by arrow D, the temperature of this magneto-optical recording medium 10 increases immediately before entering the beam spot, that is, the readout light irradiation area 6, and due to heat conduction, the temperature of this magneto-optical recording medium 10 increases until it reaches the readout light irradiation area where the irradiation intensity is strongest. A temperature distribution occurs in which the area slightly in front of the center of 6 has the highest temperature. This temperature distribution is shown in FIG. 1C. According to the above-described magneto-optical recording and reproducing method of the present invention, the reproducing layer 11 is magnetized in one direction during reproduction, and the high temperature region 14 of the magneto-optical recording medium 10 that occurs when irradiated with read light is The temperature is set to be equal to or higher than the Curie temperature Tc2 of the layer 12, and in the reproducible temperature range 16, which is a lower temperature range, the above-mentioned equation 1 is made to hold. In the high temperature region 14 on the magneto-optical recording medium 10, the magnetization of the intermediate layer 12 disappears, and the magnetization of the reproducing layer 11 becomes oriented in the same direction as the reproducing magnetic field Hr, regardless of the recording magnetization of the recording layer 13. . In the reproducible temperature region 16, the direction of magnetization of the recording layer 13 is transferred to the reproducing layer 11 in a direction opposite to the direction of the reproducing magnetic field Hr so that the above-mentioned equation 1 holds true. In a region where the temperature is lower than the reproducible temperature region 16 and Equation 1 does not hold, the magnetization of the reproducing layer 11 remains oriented in the initially aligned magnetization direction, that is, in the same direction as the reproducing magnetic field Hr. Therefore, in the magneto-optical recording medium 10 under the readout light irradiation region 6, the magnetization of the reproducing layer 11 other than the reproducible temperature region 16 is all aligned in the same direction as the reproducing magnetic field Hr, and the magnetization within the reproducible temperature region 16 is Only in the recording layer 13
The recording pits 4 of 2 are transferred to the reproduction layer 11, thereby
The “1” and “0” values in the value record can be read. [Embodiment] An example of the magneto-optical recording system of the present invention will be described below with reference to FIGS. 1 to 5. In this example, the reproduction layer 11
When using a magneto-optical recording medium 10 such as a magneto-optical disk having a four-layer magnetic layer consisting of an auxiliary layer 12a, an intermediate layer 12b and a recording layer 13, a layer that contributes to reproduction, that is, a reproduction layer 11. and the auxiliary layer 12a, the coercive force HCA is made to have the desired temperature characteristics, and in this case, further,
The Curie temperature of the auxiliary layer 12a is selected to be relatively low. This magneto-optical recording medium 10 has one main surface 21 of a light-transmitting substrate 21 made of polycarbonate PC or the like, as shown in FIG.
A dielectric film 22 made of, for example, a SiN film is deposited to a thickness of, for example, 800 Å by sputtering or the like, and the reproducing layer 11 is made of, for example, a GdFeCo-based dielectric film 22.
3(Fe85Co15)77 at 300 Å, auxiliary layer 12a
As TbFeCoAl-based Tb12 (Fe95Co5
)83Al5 etc. at 80 Å, the intermediate layer 12 is made of GdFeCo-based Gd20(Fe95Co5)80 at 150 Å, and the recording layer 13 is made of TbFeCo-based Tb2, for example.
5(Fe85Co15)75 with a thickness of 450 Å is deposited by continuous sputtering or the like. Then, a surface protection film 23 made of SiN or the like is deposited on these to a thickness of, for example, 800 Å by sputtering or the like. In this case, the Curie temperatures and coercive forces of the reproducing layer 11, auxiliary layer 12a, intermediate layer 12b, and recording layer 13 are set as shown in Table 1 below. [Table 1] A magneto-optical recording and reproducing method using such a magneto-optical recording medium 10 will be explained in detail. in this case,
As shown in a schematic perspective view in FIG. 3, the magneto-optical recording medium 10
An optical system for irradiating readout light L from the upper surface of the substrate 21 side, for example, an objective lens 24 that condenses laser light, is arranged, and this objective lens 24 is arranged with the magneto-optical recording medium 10 in between.
A reproducing magnet 25 that applies a required reproducing magnetic field Hr is placed directly below the magnetic field Hr. On the other hand, these objective lens 24 and reproduction magnet 2
An initialization magnet 26 to which an initialization magnetic field Hi is to be applied is provided at a position upstream of the track read by No. 5 and at a position that does not affect the reproduction magnetic field Hr, and the magnetic fields of the reproduction magnet 25 and the initialization magnet 26 are aligned in the same direction. At this time, the coercive force of each layer is configured as described above, and the initializing magnetic field Hi is set to 1 to 4 kOe, for example, 4 kO.
e, the reproduction layer 11 and the auxiliary layer 12a are uniformly magnetized in the direction of the initialization magnetic field Hi after passing under the initialization magnet 26, as shown in a schematic diagram of the magnetization mode in FIG. 4A. Make it possible to align. For this, [Formula 8] Hi>HCA+σW2/2(MS1h1 +MSShS
) should hold true. Here, HCA is the coercive force HC1 of the reproducing layer 11 and the coercive force HCS of the auxiliary layer 12a.
The above-mentioned HCA=(MS1
h1 HC1+MSShS HCS)/(MS1h1
+MSShS). Here, MS1 and MSS are the reproduction layer 11 and the auxiliary layer 1, respectively.
The saturation magnetization of 2a, h1 and hS are the reproduction layer 11, respectively.
, the thickness of the auxiliary layer 12a. Also, in equation 8, σW2
is the domain wall energy of the intermediate layer 12b. Equation 8 above corresponds to conditional expression Equation 2 in the MSR regeneration method described above. On the other hand, the recording layer 13 has a large coercive force so that its magnetization direction is maintained in the direction set during recording. For this purpose, it is sufficient that Hi<HC3-σW2/2MS3h3. Here, HC3 is the coercive force of the recording layer 13, MS3 is the saturation magnetization of the recording layer 13, and h3 is the thickness of the recording layer 13. This condition corresponds to Equation 3 above. Further, in order to maintain the direction of magnetization of the recording layer 13 and the direction of magnetization of the initialized reproduction layer 11 and auxiliary layer 12a opposite to each other in the absence of a magnetic field, the following formula is used:
It is sufficient if HCA>σW2/2 (MS1h1 +MSShS). This corresponds to Equation 4 above. A reproducing magnetic field Hr is applied in the same direction as the initializing magnetic field Hi under the readout light irradiation region 6 by the readout light. As the magneto-optical recording medium 10 moves in the direction indicated by the arrow D as shown in FIG. The temperature is highest at the front,
A temperature distribution occurs with this as the peak. This high temperature area 14
As shown in FIG. 4B, the readout light irradiation area 6 is a region that is biased to the left in the diagram, and in this region 14, the temperature is raised to the Curie temperature Tc2 or higher of the intermediate layer. In the example, the auxiliary layer 12a whose Curie temperature Tc2 is 140° C. is heated above the Curie point and its magnetization disappears. Therefore, the magnetization of the reproducing layer 11 is aligned in the direction of the reproducing magnetic field Hr. The regenerator temperature region 16 having a temperature lower than the high temperature region 14 is an arc-shaped region sandwiched between the high temperature region 14 and the low temperature region 15. This temperature region 16 is shown in FIG.
As shown by hatching C, in a region where the Curie temperature TC2 of the auxiliary layer 12a is lower than the predetermined temperature TB, Hr+HCA<HW1 is satisfied in this region. Here, HCA is determined by Equation 6 above. In this way, the reproducing magnetic field Hr and the reproducing layer 11
When the magnetic field HW1 due to the domain wall generated between the intermediate layer 12b and the intermediate layer 12b is made larger than the sum of the average coercive force HCA of the auxiliary layer 12a, the magnetization of the reproducing layer 11 and the auxiliary layer 12a resists the reproducing magnetic field Hr. It is aligned parallel to the direction of magnetization of the recording layer 13. That is, when there is recording magnetization in the recording layer 13 in a direction opposite to the direction of the reproducing magnetic field Hr, that magnetization is transferred to the reproducing layer 11. In this case, a temperature region lower than the reproducible temperature region 16, ie, less than the above-mentioned TB, occurs in a crescent shape within the readout light irradiation region 6, but in this low temperature region 15, Equation 1 does not hold. Therefore, the magnetization of the reproducing layer 11 is maintained uniformly oriented in the direction aligned by the initialization magnetic field Hi, which is the same as the magnetization direction of the reproducing layer 11 within the high temperature region 14. Therefore, within the readout light irradiation area 6, the high temperature area 14 and the low temperature area 15
As shown in FIGS. 4A and 4B, the lower recording pits are retained in the recording layer 13 as latent image pits 27, but are retained in the reproduction layer 11.
The recording pits 4 are not transferred to the reproducing layer 11, but are transferred to the reproducing layer 11 only in a narrow region of the reproducible temperature region 16. In this case, as described above, the reproducible temperature region 16 is a narrow region sandwiched between the high temperature region 14 and the low temperature region 15, so even if higher density recording is performed, it is possible to reproduce the data with high resolution. becomes possible. FIG. 5 shows the output characteristics when using the magneto-optical recording medium 10 having such a four-layer structure. In the figure, a solid line C represents a signal output, and a broken line N represents a noise output. In this example, the initialization magnetic field is 4k [Oe], the output of the readout light L is 3.3mW, and the magneto-optical recording medium 10 is heated at 2400 rpm.
pm, and the distance r from the center of the magneto-optical recording medium 10
This shows the case where a single frequency of 10 MHz was recorded on a track of 30 mm. At this time, the average coercive force HCA of the reproduction layer 11 and the auxiliary layer 12a is 4k [Oe], and the intermediate layer 1
The coercive force of 2b is 1 k [Oe], and the coercive force of the recording layer 13 is 1
A 5k [Oe] magneto-optical recording medium 10 was used. As can be seen from FIG. 5, according to the magneto-optical recording and reproducing method of the present invention, 1
Even in high frequency recording of 0MHz, the reproduction magnetic field Hr,
So that the difference between line C and line N is large, i.e. 30 in this case
Good C/C/
A high N ratio can be obtained, and high-density recording can be reproduced with high resolution. Note that in the above example, the initialization magnet 26
is provided upstream of the position where the magneto-optical recording medium 10 is read, but even if this initialization magnet 26 is not provided,
Immediately after recording or just before reproduction, a magnetic field having the same direction and magnitude as the reproduction magnetic field Hr is applied to the magneto-optical recording medium 1 by the reproduction magnet 25.
By applying 0, the magnetization of the reproducing layer 11 can be aligned in one direction, and then high-resolution reading can be performed by the method described above. Furthermore, the present invention is not limited to the above-mentioned example, and can be applied to magneto-optical recording media having various other configurations. That is, the present invention can also be applied to a magneto-optical recording medium having a three-layer structure of the reproducing layer 11, the intermediate layer 12, and the recording layer 13 without providing the auxiliary layer 12a. In this case, for example, as the reproduction layer 11, Gd24(Fe85Co15) 76
For example, using Tb18Fe82 as the intermediate layer 12 and Tb25 (Fe85Co15) 75 as the recording layer 13, and replacing the coercive force HCA of the layer contributing to reproduction in Equation 1 with the coercive force HC1 of the reproducing layer 11, Equation 1 holds. Also, the above-mentioned number 6 is replaced with the above-mentioned number 2, number 9 is replaced with number 3, and number 10 is replaced with number 4, and the coercive force and film thickness of each layer,
Select magnetization and domain wall energy. By making this selection, high-resolution reproduction as described above can be performed even in a magneto-optical recording medium consisting of a three-layered magnetic layer. As described above, according to the magneto-optical recording and reproducing system of the present invention, since the readable area in the readout light irradiation area 6 is sandwiched between the high temperature area 14 and the low temperature area 15, Compared to the above-mentioned MSR reproduction method, the readable area is further narrowed, and more recording pits 4 are present in the readout light irradiation area 6 in the magneto-optical recording medium 10 with high recording density. can be reliably read. Furthermore, when increasing the reproduction output by increasing the reproduction laser output, a sufficiently high resolution can be maintained even when the spot diameter, that is, the area of the readout light irradiation area 6 becomes large, and C/N ( This makes it possible to improve the signal-to-noise ratio (S/N) and perform high-resolution reproduction exceeding the conventional reproduction resolution limit. [0047] In particular, if the magnetization of the reproducing layer is aligned in one direction immediately before reproducing using the reproducing magnetic field generating means without providing the initializing magnetic field generating means, the apparatus can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明光磁気記録再生方式の一例を示す説明図
である。
FIG. 1 is an explanatory diagram showing an example of the magneto-optical recording and reproducing method of the present invention.

【図2】本発明光磁気記録媒体の一例の要部の略線的拡
大断面図である。
FIG. 2 is a schematic enlarged cross-sectional view of a main part of an example of the magneto-optical recording medium of the present invention.

【図3】本発明光磁気記録再生方式を示す略線的斜視図
である。
FIG. 3 is a schematic perspective view showing the magneto-optical recording and reproducing system of the present invention.

【図4】本発明光磁気記録再生方式の一例を示す説明図
である。
FIG. 4 is an explanatory diagram showing an example of the magneto-optical recording and reproducing method of the present invention.

【図5】本発明光磁気記録再生方式による光磁気記録媒
体の出力特性図である。
FIG. 5 is an output characteristic diagram of a magneto-optical recording medium using the magneto-optical recording and reproducing method of the present invention.

【図6】従来の光磁気記録再生方式を示す説明図である
FIG. 6 is an explanatory diagram showing a conventional magneto-optical recording and reproducing method.

【図7】従来の光磁気記録再生方式を示す説明図である
FIG. 7 is an explanatory diagram showing a conventional magneto-optical recording and reproducing method.

【図8】浮出し型MSR方式の説明図である。FIG. 8 is an explanatory diagram of an embossed MSR method.

【図9】光磁気記録媒体の模式的断面図である。FIG. 9 is a schematic cross-sectional view of a magneto-optical recording medium.

【図10】消滅型MSR方式の説明図である。FIG. 10 is an explanatory diagram of the annihilation type MSR method.

【符号の説明】[Explanation of symbols]

4  記録ピット 6  読み出し光照射領域 10  光磁気記録媒体 11  再生層 12  中間層 12a  補助層 12b  中間層 13  記録層 14  高温領域 15  低温領域 16  再生可能温度領域 21  基板 22  誘電体層 23  表面保護膜 4 Record pit 6 Readout light irradiation area 10 Magneto-optical recording medium 11 Reproduction layer 12 Middle class 12a Auxiliary layer 12b Middle class 13 Recording layer 14 High temperature area 15 Low temperature region 16 Renewable temperature range 21 Substrate 22 Dielectric layer 23 Surface protective film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも記録層と、再生層と、これ
ら各層間に介在する中間層とを有する光磁気記録媒体に
対して、再生時には、少なくとも記録層を除いて再生層
を一方向に磁化させた状態で、その磁化方向に再生磁界
Hrを与えて読み出し光を照射し、この照射によって読
み出し光照射領域内に少なくとも高温領域と、再生可能
温度領域とを生じさせ、上記高温領域では、上記中間層
をキュリー温度以上に昇温させ、再生に寄与する層の保
磁力をHCA、上記再生層と上記中間層との間の磁壁に
よる磁界をHW1とすると、上記再生可能温度領域では
、【数1】Hr+HCA<HW1 が成り立つようにしたことを特徴とする光磁気記録再生
方式。
Claim 1: For a magneto-optical recording medium having at least a recording layer, a reproduction layer, and an intermediate layer interposed between these layers, during reproduction, the reproduction layer, except for at least the recording layer, is magnetized in one direction. In this state, a readout magnetic field Hr is applied to the magnetization direction and readout light is irradiated, and by this irradiation, at least a high temperature region and a reproducible temperature region are generated in the readout light irradiation region, and in the high temperature region, the above intermediate temperature region is generated. When the layer is heated to a temperature higher than the Curie temperature, the coercive force of the layer that contributes to reproduction is HCA, and the magnetic field due to the domain wall between the reproduction layer and the intermediate layer is HW1, in the reproduction temperature range, [Equation 1] ] A magneto-optical recording and reproducing system characterized in that Hr+HCA<HW1 holds true.
JP03018072A 1990-12-28 1991-02-08 Magneto-optical recording / reproducing method Expired - Lifetime JP3106514B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP03018072A JP3106514B2 (en) 1991-02-08 1991-02-08 Magneto-optical recording / reproducing method
US07/815,330 US5241520A (en) 1990-12-28 1991-12-21 System and method of reproducing signals recorded on a magneto-optic recording medium
CA002060547A CA2060547C (en) 1991-02-08 1992-02-03 System and method of reproducing signals recorded on a magneto-optic recording medium
EP92102091A EP0498461B1 (en) 1991-02-08 1992-02-07 System and method of reproducing signals recorded on a magneto-optic recording medium
DE69222962T DE69222962T2 (en) 1991-02-08 1992-02-07 System and method for reproducing signals recorded on a magneto-optical recording medium
DE69232052T DE69232052T2 (en) 1991-02-08 1992-02-07 System and method for reproducing signals recorded on a magneto-optical recording medium
EP97104811A EP0788099B1 (en) 1991-02-08 1992-02-07 System and method of reproducing signals recorded on a magnetooptic recording medium
AT92102091T ATE160045T1 (en) 1991-02-08 1992-02-07 SYSTEM AND METHOD FOR REPRODUCING SIGNALS RECORDED ON A MAGNETOPTICAL RECORDING MEDIUM
KR1019920001724A KR100214035B1 (en) 1991-02-08 1992-02-07 Magneto-optical recording and playback method
AT97104811T ATE205326T1 (en) 1991-02-08 1992-02-07 SYSTEM AND METHOD FOR REPRODUCING SIGNALS RECORDED ON A MAGNETOPTICAL RECORDING MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03018072A JP3106514B2 (en) 1991-02-08 1991-02-08 Magneto-optical recording / reproducing method

Publications (2)

Publication Number Publication Date
JPH04255946A true JPH04255946A (en) 1992-09-10
JP3106514B2 JP3106514B2 (en) 2000-11-06

Family

ID=11961464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03018072A Expired - Lifetime JP3106514B2 (en) 1990-12-28 1991-02-08 Magneto-optical recording / reproducing method

Country Status (2)

Country Link
JP (1) JP3106514B2 (en)
KR (1) KR100214035B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686970A2 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method using the medium
EP0701251A1 (en) 1994-09-08 1996-03-13 Canon Kabushiki Kaisha Optical recording medium and method of recording and/or reproducing on the medium
US5790513A (en) * 1995-04-14 1998-08-04 Canon Kabushiki Kaisha Magneto-optical recording medium capable of super resolution reproduction and information reproduction method using the same
US5818811A (en) * 1994-09-08 1998-10-06 Canon Kabushiki Kaisha Information recording and reproducing method for recording information on and reproducing information from an optical recording medium including a land portion divided into a plurality of information tracks
US5879822A (en) * 1995-08-15 1999-03-09 Canon Kabushiki Kaisha Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
US5896365A (en) * 1995-04-28 1999-04-20 Canon Kabushiki Kaisha Optical information recording medium capable of recording in lands and grooves without a track-jumping operation; optical information recording/reproducing apparatus using, and master disk exposure apparatus for producing the same
US6096444A (en) * 1995-06-09 2000-08-01 Fujitsu Limited Magneto-optical recording medium capable of double mask readout
US6307816B1 (en) 1994-02-21 2001-10-23 Canon Kabushiki Kaisha Magneto-optical recording medium, and information reproducing method using the medium
US7420910B2 (en) 2002-02-06 2008-09-02 Sony Corporation Optical recording/reproducing method for multiple recording media with different recording density

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447159B1 (en) * 1998-08-21 2004-12-04 엘지전자 주식회사 magneto-optical recording medium
JP2001184801A (en) * 1999-12-24 2001-07-06 Sony Corp Optical recording medium and recording and reproducing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307816B1 (en) 1994-02-21 2001-10-23 Canon Kabushiki Kaisha Magneto-optical recording medium, and information reproducing method using the medium
EP0686970A2 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method using the medium
EP0686970A3 (en) * 1994-06-10 1996-07-24 Canon Kk Magneto-optical recording medium and reproducing method using the medium
US6125083A (en) * 1994-06-10 2000-09-26 Canon Kabushiki Kaisha Magneto-optical recording method and medium comprising three layers, whose middle layer has a lower curie temperature than the other layers
CN1066561C (en) * 1994-06-10 2001-05-30 佳能株式会社 Magneto-optical recording medium for realizing super resolution and reproducing method using the medium
EP0701251A1 (en) 1994-09-08 1996-03-13 Canon Kabushiki Kaisha Optical recording medium and method of recording and/or reproducing on the medium
US5818811A (en) * 1994-09-08 1998-10-06 Canon Kabushiki Kaisha Information recording and reproducing method for recording information on and reproducing information from an optical recording medium including a land portion divided into a plurality of information tracks
US5790513A (en) * 1995-04-14 1998-08-04 Canon Kabushiki Kaisha Magneto-optical recording medium capable of super resolution reproduction and information reproduction method using the same
US5896365A (en) * 1995-04-28 1999-04-20 Canon Kabushiki Kaisha Optical information recording medium capable of recording in lands and grooves without a track-jumping operation; optical information recording/reproducing apparatus using, and master disk exposure apparatus for producing the same
US6096444A (en) * 1995-06-09 2000-08-01 Fujitsu Limited Magneto-optical recording medium capable of double mask readout
US5879822A (en) * 1995-08-15 1999-03-09 Canon Kabushiki Kaisha Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
US7420910B2 (en) 2002-02-06 2008-09-02 Sony Corporation Optical recording/reproducing method for multiple recording media with different recording density

Also Published As

Publication number Publication date
JP3106514B2 (en) 2000-11-06
KR100214035B1 (en) 1999-08-02
KR920017049A (en) 1992-09-26

Similar Documents

Publication Publication Date Title
JP2910084B2 (en) Signal reproducing method in magneto-optical recording medium
KR970002341B1 (en) Signal reproduction method of magneto optical recording medium
JP3114204B2 (en) Recording / reproducing method for optical recording medium
JP2959586B2 (en) Magneto-optical disk playback method
KR100239812B1 (en) Magneto-optic recording method and magneto-optic recording/reproducing apparatus
JP2805746B2 (en) Signal reproducing method for magneto-optical recording medium
JP3111479B2 (en) Magneto-optical recording medium
JP4080538B2 (en) Method and apparatus for reproducing magneto-optical recording medium
JPH05101471A (en) Magneto-optical recording and reproducing method
JPH04255946A (en) Magneto-optical recording and reproducing system
JP3114205B2 (en) Recording / reproducing method for optical recording medium
CA1315880C (en) Method for reproducing signal from magneto-optical recording medium
JP2924204B2 (en) Magneto-optical recording medium
JP2910082B2 (en) Magneto-optical recording / reproducing method
JP3333389B2 (en) Magneto-optical information storage medium and reproducing method thereof
JPH04255936A (en) Production of high density magneto-optical recording medium
JPH11185312A (en) Magneto-optical recording medium
KR100565187B1 (en) Magneto-optical recording media and data recording / reproducing method
JPH1125529A (en) Information recording medium and reproducing method thereof
JP3264868B2 (en) Magneto-optical recording medium, reproducing method and reproducing apparatus
EP0539176B1 (en) Magneto-optical recording method and magneto-optical memory device
JPH04255938A (en) Magneto-optical recording medium
JP3035629B2 (en) Magneto-optical recording medium and magneto-optical recording method
JP2001195702A (en) Information recording method, information record reproducing method and information recording medium
JPH087384A (en) Magneto-optical information recording/reproducing apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11