JPH04252080A - Photoelectric conversion device - Google Patents
Photoelectric conversion deviceInfo
- Publication number
- JPH04252080A JPH04252080A JP3008771A JP877191A JPH04252080A JP H04252080 A JPH04252080 A JP H04252080A JP 3008771 A JP3008771 A JP 3008771A JP 877191 A JP877191 A JP 877191A JP H04252080 A JPH04252080 A JP H04252080A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- layer
- conversion device
- layers
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 93
- 239000004065 semiconductor Substances 0.000 claims abstract description 31
- 239000010409 thin film Substances 0.000 claims abstract description 15
- 238000010521 absorption reaction Methods 0.000 claims abstract description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 13
- 239000012535 impurity Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、光電変換層が複数重
ね合わされてなる所謂タンデムタイプの光電変換装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called tandem type photoelectric conversion device in which a plurality of photoelectric conversion layers are stacked one on top of the other.
【0002】0002
【従来の技術】タンデムタイプの光電変換装置として、
発明者らは、図6に示す如く、L≦1/α(λ)となる
波長の光を光電変換する半導体薄膜を有する光電変換層
複数が重ね合わされてなるタンデムタイプの光電変換装
置を先に提案した(特願平1−044123号)。[Prior art] As a tandem type photoelectric conversion device,
As shown in FIG. 6, the inventors first developed a tandem-type photoelectric conversion device in which a plurality of photoelectric conversion layers having semiconductor thin films that photoelectrically convert light with a wavelength of L≦1/α(λ) are stacked one on top of the other. (Patent Application No. 1-044123).
【0003】図6の光電変換装置では、絶縁基板50の
表面に、例えば、Ni−CrやAl等の下電極51が形
成されており、その上に、アモルファスシリコン(a−
Si)等からなるL≦1/α(λ)の関係を満たす半導
体薄膜を有する光電変換層52、53、54が積層され
ている。すなわち、各光電変換層52〜54においては
、第1導電型不純物半導体層(例えばp層)61、比較
的価電子制御不純物濃度の少ない半導体層(例えばi層
:この発明の光電変換を行う半導体薄膜)62、および
、第2(逆)導電型不純物半導体層(例えばn層)63
がこの順序で積層されているのである。最も上の第3の
光電変換層54の表面には、In2 O3 等の透明電
極55が形成されている。In the photoelectric conversion device shown in FIG. 6, a lower electrode 51 such as Ni-Cr or Al is formed on the surface of an insulating substrate 50, and amorphous silicon (a-
Photoelectric conversion layers 52, 53, and 54 each having a semiconductor thin film made of Si) or the like and satisfying the relationship L≦1/α(λ) are laminated. That is, in each of the photoelectric conversion layers 52 to 54, a first conductivity type impurity semiconductor layer (e.g., p layer) 61, a semiconductor layer with a relatively low valence electron control impurity concentration (e.g., i layer: a semiconductor for performing photoelectric conversion of the present invention) thin film) 62, and a second (reverse) conductivity type impurity semiconductor layer (for example, n layer) 63
are stacked in this order. A transparent electrode 55 made of In2O3 or the like is formed on the surface of the uppermost third photoelectric conversion layer 54.
【0004】この光電変換装置は、キャリア収集長Lに
起因する光電変換率の低下や接続ロス、デッドスペース
等の不都合が解消されるため、光電変換率が比較的よく
、設計面での自由度が広く、しかも、光劣化し難くて信
頼性も高いといった利点を有する。[0004] This photoelectric conversion device has a relatively good photoelectric conversion rate and has a high degree of freedom in design since problems such as a decrease in photoelectric conversion rate, connection loss, and dead space caused by the carrier collection length L are eliminated. It has the advantage of being wide, resistant to photodegradation, and highly reliable.
【0005】[0005]
【発明が解決しようとする課題】図6の光電変換装置は
、多くの利点を有するのであるが、光電変換率について
は十分に改善されているとは言いがたい。この光電変換
装置は、p層ないしn層の不純物濃度が余り高くない(
ドーピングガスがシランガスの流量の0.25%程度)
ため、図5に破線で示すようにI−V特性に屈曲歪みG
を生じており、その分、光電変換率が悪くなる。これは
、各光電変換層52〜54間は整流性コンタクトになっ
ており、図10の等価回路図にみるように、各光電変換
層52〜54の間に寄生ダイオードDが介在した状態に
なっているからである。図6の光電変換装置の半導体層
構成説明図である図7と対応させてあらわしたエネルギ
ーバンド説明図を図8に示す。このエネルギーバンド説
明図にみるように、pn接合のところではトンネル効果
による電子・正孔対の再結合が起こらないのである。Although the photoelectric conversion device shown in FIG. 6 has many advantages, it cannot be said that the photoelectric conversion rate has been sufficiently improved. In this photoelectric conversion device, the impurity concentration of the p-layer to n-layer is not very high (
Doping gas is approximately 0.25% of the flow rate of silane gas)
Therefore, as shown by the broken line in Fig. 5, there is a bending strain G in the IV characteristic.
occurs, and the photoelectric conversion rate deteriorates accordingly. This is because a rectifying contact is formed between each of the photoelectric conversion layers 52 to 54, and as shown in the equivalent circuit diagram of FIG. 10, a parasitic diode D is interposed between each of the photoelectric conversion layers 52 to 54. This is because FIG. 8 shows an energy band explanatory diagram corresponding to FIG. 7, which is an explanatory diagram of the semiconductor layer structure of the photoelectric conversion device of FIG. 6. As seen in this energy band explanatory diagram, recombination of electron-hole pairs due to the tunnel effect does not occur at the pn junction.
【0006】隣接するp層、n層の両方の不純物濃度を
高くすれば、図9のエネルギーバンド説明図にみるよう
に、pn接合のところでトンネル効果による電子・正孔
対の再結合が起こるため整流性コンタクトは解消できる
が、しかし、この場合には、i層以外の半導体層で吸収
される無効光吸収量が増えて光電変換率の改善が出来な
いばかりか、以下のような不都合も生じる。If the impurity concentration of both the adjacent p-layer and n-layer is increased, recombination of electron-hole pairs occurs at the pn junction due to the tunnel effect, as shown in the energy band diagram in FIG. The rectifying contact can be eliminated, but in this case, the amount of ineffective light absorbed by semiconductor layers other than the i-layer increases, making it impossible to improve the photoelectric conversion rate, and also causing the following problems. .
【0007】光電変換層52〜54を形成のために、必
要な半導体膜を全て積層してから湿式エッチングにより
所定のパターンにするフォトリソグラフィ工程を経るの
であるが、不純物高濃度p層は他の半導体層に比べエッ
チングされ難く、図11(a)にみるように、光電変換
層52〜54側面に不純物高濃度p層が突出する事態が
生じ、続いて形成する透明電極55が、図11(b)に
みるように、途切れがちで信頼性が薄くなってしまうの
である。In order to form the photoelectric conversion layers 52 to 54, all necessary semiconductor films are laminated and then subjected to a photolithography process to form a predetermined pattern by wet etching. It is difficult to be etched compared to a semiconductor layer, and as shown in FIG. 11(a), a situation occurs in which the high impurity concentration p layer protrudes from the side surfaces of the photoelectric conversion layers 52 to 54, and the subsequently formed transparent electrode 55 is As shown in b), it tends to be interrupted and becomes less reliable.
【0008】この発明は、上記の事情に鑑み、上記光電
変換装置において、信頼性を低下させずに各光電変換層
間の整流性コンタクトを解消し光電変換率を十分に改善
することを課題とする。In view of the above circumstances, it is an object of the present invention to sufficiently improve the photoelectric conversion rate in the photoelectric conversion device by eliminating the rectifying contact between each photoelectric conversion layer without reducing reliability. .
【0009】[0009]
【課題を解決するための手段】前記課題を解決するため
、この発明にかかる光電変換装置では、L≦1/α(λ
)となる波長の光を光電変換する半導体薄膜を有する光
電変換層複数が重ね合わされてなる構成において、光電
変換層の間にオーミック性を有する層を設けるようにし
ている。但し、λ、α(λ)、Lは以下の通りである。[Means for Solving the Problems] In order to solve the above problems, in the photoelectric conversion device according to the present invention, L≦1/α(λ
) In a structure in which a plurality of photoelectric conversion layers each having a semiconductor thin film that photoelectrically converts light having a wavelength of 1 is stacked, a layer having ohmic properties is provided between the photoelectric conversion layers. However, λ, α(λ), and L are as follows.
【0010】λ・・・入射光の波長
α(λ)・・・波長λの光に対する半導体薄膜の吸収係
数
L・・・キャリア収集長
オーミック性を有する層(隣接する光電変換層同士の電
気的接触をオーミックのものとする層)としては、請求
項2のように、この層に注入される電子・正孔対の殆ど
を再結合させることのできる層があげられ、具体的には
、請求項3のような微結晶シリコン(μC−Si)層が
ある。また、オーミック性を有する層(以下、「オーミ
ック層」と言う)として、請求項4のように、禁止帯に
多数のエネルギー準位を有していて、注入される電子・
正孔対の殆どを前記エネルギー準位に捕捉できる層も挙
げられ、具体的には、請求項5のような水素未含有ない
し水素含有量の少ないアモルファスシリコン(a−Si
)層がある。その他、オーミック層として、クロムやア
ルミニウムからなる各種の金属層、ITO等からなる透
明導電層も挙げられる。λ... Wavelength of incident light α (λ)... Absorption coefficient of semiconductor thin film for light with wavelength λ L... Carrier collection length Layer with ohmic property (electrical resistance between adjacent photoelectric conversion layers Examples of the layer (which makes the contact ohmic) include a layer that can recombine most of the electron-hole pairs injected into this layer, as claimed in claim 2. There is a microcrystalline silicon (μC-Si) layer as in item 3. In addition, as claimed in claim 4, the layer having ohmic properties (hereinafter referred to as "ohmic layer") has a large number of energy levels in the forbidden band, and is capable of absorbing injected electrons.
There are also layers that can capture most of the hole pairs at the energy level, and specifically, amorphous silicon (a-Si) that does not contain hydrogen or has a low hydrogen content,
) There are layers. Other examples of the ohmic layer include various metal layers made of chromium and aluminum, and transparent conductive layers made of ITO and the like.
【0011】光電変換層としては、第1導電型不純物半
導体層(例えばp型a−Si層)、比較的価電子制御不
純物濃度の少ない半導体層(例えばi型a−Si層:こ
の発明の光電変換を行う半導体薄膜)、および、第2導
電型不純物半導体層(例えばn型a−Si層)がこの順
序で積層された光電池機能を有するpinタイプの光電
変換層が挙げられる。積層される光電変換層の数は、通
常、3以上、好ましくは、5以上である。The photoelectric conversion layer includes a first conductivity type impurity semiconductor layer (for example, a p-type a-Si layer), a semiconductor layer with a relatively low valence electron control impurity concentration (for example, an i-type a-Si layer: the photoelectric conversion layer of the present invention), Examples include a pin type photoelectric conversion layer having a photovoltaic function, in which a semiconductor thin film that performs conversion) and a second conductivity type impurity semiconductor layer (for example, an n-type a-Si layer) are laminated in this order. The number of photoelectric conversion layers stacked is usually 3 or more, preferably 5 or more.
【0012】なお、各光電変換層の光電変換を行う半導
体薄膜であるi型a−Si層の厚みが全てキャリア収集
長L以下であったり、全i型a−Si層の合計膜厚dが
光電変換層の積層数をnとするときL<d<nLであっ
たり、光電変換層の積層数が1/〔α(λ)・L〕以上
であったりすれば、より高い光電変換率が達成可能とな
る。It should be noted that if the thickness of the i-type a-Si layer, which is a semiconductor thin film that performs photoelectric conversion in each photoelectric conversion layer, is less than or equal to the carrier collection length L, or if the total thickness d of all the i-type a-Si layers is When the number of laminated photoelectric conversion layers is n, L<d<nL or the number of laminated photoelectric conversion layers is 1/[α(λ)・L] or more, a higher photoelectric conversion rate can be obtained. achievable.
【0013】[0013]
【作用】この発明の光電変換装置では、複数の光電変換
層の各光電変換を行う半導体薄膜ひとつひとつは、L≦
1/α(λ)であっても、各半導体薄膜の厚みを薄くす
ることにより、キャリア収集長Lに起因する光電変換率
の低下を解消させられる。半導体薄膜の厚みが薄くて光
が透過しやすくなるが、透過した光はその下側の半導体
薄膜で吸収され光電変換に寄与する。また、厚みの薄い
半導体薄膜は光劣化し難く信頼性が高い。光電変換層が
複数あっても積層されたタンデム構造であるため、接続
ロスやデッドスペースが少ない。[Function] In the photoelectric conversion device of the present invention, each semiconductor thin film that performs photoelectric conversion in a plurality of photoelectric conversion layers has L≦
Even if it is 1/α(λ), the decrease in photoelectric conversion rate caused by the carrier collection length L can be eliminated by reducing the thickness of each semiconductor thin film. The thin semiconductor film is thin, allowing light to pass through it easily, but the transmitted light is absorbed by the underlying semiconductor thin film and contributes to photoelectric conversion. In addition, a thin semiconductor film is less susceptible to photodeterioration and has high reliability. Even if there are multiple photoelectric conversion layers, the stacked tandem structure reduces connection loss and dead space.
【0014】さらに、この発明の光電変換装置の場合、
各光電変換層の間には、オーミック層が設けられている
ため、光電変換層に不純物濃度の高い半導体層を設けず
とも、整流性コンタクトを解消して寄生ダイオードを無
くすることができる。したがって、図5の実線で示すI
−V特性曲線にみるように、屈曲歪みはなくなり、取り
出せる最大電力が増大し、光電変換率を十分に改善する
ことができると同時に電極が途切れたりせず信頼性は低
下しない。Furthermore, in the case of the photoelectric conversion device of the present invention,
Since an ohmic layer is provided between each photoelectric conversion layer, rectifying contacts can be eliminated and parasitic diodes can be eliminated without providing a semiconductor layer with a high impurity concentration in the photoelectric conversion layer. Therefore, I shown by the solid line in FIG.
As seen in the -V characteristic curve, bending distortion is eliminated, the maximum power that can be taken out is increased, and the photoelectric conversion rate is sufficiently improved, and at the same time, the electrodes are not interrupted and reliability does not deteriorate.
【0015】オーミック層がμC−Si層の場合は、図
3にみるように、μC−Si層に注入される電子・正孔
対が再結合することでオーミック性が確保されると考え
られる。μC−Si層の場合は層自体の抵抗率も小さく
し易い。オーミック層が水素未含有ないし水素含有量の
少ないa−Si層の場合は、図4にみるように、禁止帯
に多数のエネルギー準位E1 ・・En ・・があって
、a−Si層に注入されてくる電子・正孔対がエネルギ
ー順位E1 ・・En ・・に捕獲されることによりオ
ーミック性が確保されると考えられる。When the ohmic layer is a μC-Si layer, as shown in FIG. 3, it is thought that ohmic properties are ensured by recombination of electron-hole pairs injected into the μC-Si layer. In the case of a μC-Si layer, the resistivity of the layer itself can also be easily reduced. When the ohmic layer is an a-Si layer that does not contain hydrogen or has a low hydrogen content, as shown in Figure 4, there are many energy levels E1 ... En ... in the forbidden band, and the a-Si layer It is thought that ohmic properties are ensured by capturing the injected electron-hole pairs in the energy levels E1 . . . En .
【0016】μC−Siやa−Siのオーミック層は、
光電変換層がa−Siからなるものの場合、光電変換層
の形成の際に同じ装置でオーミック層を連続して形成出
来ると共に同じエッチャントでパターン化できるため、
非常に製造が容易になる。[0016] The ohmic layer of μC-Si or a-Si is
When the photoelectric conversion layer is made of a-Si, the ohmic layer can be continuously formed using the same device when forming the photoelectric conversion layer, and can be patterned using the same etchant.
It becomes very easy to manufacture.
【0017】[0017]
【実施例】以下、この発明にかかる光電変換装置の実施
例を説明する。図1は、この発明の光電変換装置の基本
構成例をあらわし、図2は、この光電変換装置の等価回
路をあらわす。光電変換装置1は、光電池機能を有する
a−Si系pinタイプの光電変換層2が5個(図1、
2では便宜上3つだけ示してある)、透明上電極4と下
電極5の間に設けられている。光は勿論、透明上電極4
側から入ってくる。各光電変換層2のi層は全てL≦1
/α(λ)となる波長の光を光電変換する半導体薄膜で
ある。光電変換層2におけるp、i、nの各半導体層の
厚みは、普通、i層が5000Å以下程度、n層および
p層がそれぞれi層の1/10の以下であって500Å
以下程度である。p層やn層としては、シランガスに0
.25〜1%以下程度の流量のドーピングガス(n型の
場合は例えばホスフィン、p型の場合は例えばジボラン
)を添加することで形成した不純物半導体層が挙げられ
る。[Embodiments] Hereinafter, embodiments of the photoelectric conversion device according to the present invention will be described. FIG. 1 shows an example of the basic configuration of a photoelectric conversion device of the present invention, and FIG. 2 shows an equivalent circuit of this photoelectric conversion device. The photoelectric conversion device 1 has five a-Si pin type photoelectric conversion layers 2 having a photovoltaic function (Fig. 1,
2, only three are shown for convenience), and are provided between the transparent upper electrode 4 and the lower electrode 5. Not only light but also transparent upper electrode 4
It comes in from the side. All i layers of each photoelectric conversion layer 2 are L≦1
It is a semiconductor thin film that photoelectrically converts light with a wavelength of /α(λ). The thickness of each of the p, i, and n semiconductor layers in the photoelectric conversion layer 2 is usually about 5000 Å or less for the i layer, and 500 Å or less for the n layer and p layer, each of which is 1/10 or less of the i layer.
It is about the following. For the p-layer and n-layer, silane gas is used.
.. An example is an impurity semiconductor layer formed by adding a doping gas (for example, phosphine in the case of n-type, and diborane in the case of p-type) at a flow rate of about 25% to 1% or less.
【0018】そして、各光電変換層2の間には、オーミ
ック層3がそれぞれ設けられており、光電変換率が改善
されることは前述の通りである。オーミック層3として
は、μC−Si層や水素未含有ないし水素含有量の少な
いa−Si層があり、真空蒸着、スパッタ法、プラズマ
CVD法等により形成されている。水素未含有ないし低
含有量のa−Si層は、例えば、プラズマCVD法によ
り水素補償無しのシランガスを使って膜化することで形
成できる。μC−Si層の場合は、普通、n型μC−S
i層であるが、a−Si層の場合は、いずれの導電型で
もよく、i型でもよい。As described above, the ohmic layer 3 is provided between each photoelectric conversion layer 2, and the photoelectric conversion rate is improved. The ohmic layer 3 includes a μC-Si layer and an a-Si layer that does not contain hydrogen or has a low hydrogen content, and is formed by vacuum evaporation, sputtering, plasma CVD, or the like. The a-Si layer containing no or low hydrogen content can be formed by, for example, forming a film by plasma CVD using silane gas without hydrogen compensation. In the case of μC-Si layer, usually n-type μC-S
Although it is an i-layer, in the case of an a-Si layer, it may be of any conductivity type, and may be an i-type.
【0019】この発明は、上記実施例に限らない。例え
ば、図1においてnとpが逆転したものが、他の実施例
として挙げられる。The present invention is not limited to the above embodiments. For example, another example may be one in which n and p are reversed in FIG.
【0020】[0020]
【発明の効果】前述したように、この発明の光電変換装
置は、各光電変換層間にオーミック層を設け整流性コン
タクトを解消するようにしているため、光電変換率が十
分に改善されているとともに十分な信頼性を有する非常
に有用な装置となっている。請求項3、5の光電変換装
置では、加えて、オーミック層がμC−Siやa−Si
からなるため、製造が容易となるという利点がある。[Effects of the Invention] As described above, the photoelectric conversion device of the present invention has an ohmic layer between each photoelectric conversion layer to eliminate rectifying contact, so that the photoelectric conversion rate is sufficiently improved. It has become a very useful device with sufficient reliability. In addition, in the photoelectric conversion device according to claims 3 and 5, the ohmic layer is made of μC-Si or a-Si.
It has the advantage of being easy to manufacture.
【図1】この発明の光電変換装置の構成例をあらわす断
面図である。FIG. 1 is a sectional view showing a configuration example of a photoelectric conversion device of the present invention.
【図2】図1の光電変換装置の等価回路図である。FIG. 2 is an equivalent circuit diagram of the photoelectric conversion device of FIG. 1.
【図3】図1の光電変換装置の(オーミック層がμC−
Si層である場合の)エネルギーバンド説明図である。[Fig. 3] The photoelectric conversion device of Fig. 1 (the ohmic layer is μC-
FIG. 3 is an energy band explanatory diagram (in the case of a Si layer).
【図4】図1の光電変換装置の(オーミック層がa−S
i層である場合の)エネルギーバンド説明図である。FIG. 4 shows the photoelectric conversion device in FIG. 1 (the ohmic layer is a-S
FIG. 3 is an explanatory diagram of energy bands (in the case of an i-layer).
【図5】この発明の光電変換装置および従来の光電変換
装置のI−V特性をあらわすグラフである。FIG. 5 is a graph showing IV characteristics of a photoelectric conversion device of the present invention and a conventional photoelectric conversion device.
【図6】従来の光電変換装置の構成をあらわす断面図で
ある。FIG. 6 is a cross-sectional view showing the configuration of a conventional photoelectric conversion device.
【図7】従来の光電変換装置の半導体層構成の説明図で
ある。FIG. 7 is an explanatory diagram of a semiconductor layer structure of a conventional photoelectric conversion device.
【図8】従来の光電変換装置の一例のエネルギーバンド
説明図である。FIG. 8 is an explanatory diagram of energy bands of an example of a conventional photoelectric conversion device.
【図9】従来の光電変換装置の他の例のエネルギーバン
ド説明図である。FIG. 9 is an explanatory diagram of energy bands of another example of a conventional photoelectric conversion device.
【図10】図6の光電変換装置の等価回路図である。10 is an equivalent circuit diagram of the photoelectric conversion device of FIG. 6. FIG.
【図11】従来の光電変換装置の製造工程の説明図であ
る。FIG. 11 is an explanatory diagram of the manufacturing process of a conventional photoelectric conversion device.
1・・・光電変換装置 2・・・光電変換層 3・・・オーミック層 4・・・透明上電極 5・・・下電極 1... Photoelectric conversion device 2... Photoelectric conversion layer 3...Ohmic layer 4...Transparent upper electrode 5...Lower electrode
Claims (5)
電変換する半導体薄膜を有する光電変換層複数が重ね合
わされてなる光電変換装置において、光電変換層の間に
オーミック性を有する層が設けられていることを特徴と
する光電変換装置。 但し、λ・・・入射光の波長 α(λ)・・・波長λの光に対する半導体薄膜の吸収係
数 L・・・キャリア収集長[Claim 1] A photoelectric conversion device in which a plurality of photoelectric conversion layers having semiconductor thin films that photoelectrically convert light with a wavelength satisfying L≦1/α(λ) are stacked, which has ohmic properties between the photoelectric conversion layers. A photoelectric conversion device characterized by being provided with a layer. However, λ... Wavelength of incident light α (λ)... Absorption coefficient of semiconductor thin film for light with wavelength λ L... Carrier collection length
注入される電子・正孔対の殆どを再結合させることので
きる層である請求項1記載の光電変換装置。2. The photoelectric conversion device according to claim 1, wherein the layer having ohmic properties is a layer capable of recombining most of the electron-hole pairs injected into this layer.
コン層である請求項2記載の光電変換装置。3. The photoelectric conversion device according to claim 2, wherein the layer having ohmic properties is a microcrystalline silicon layer.
多数のエネルギー準位を有していて、注入される電子・
正孔対の殆どを前記エネルギー準位に捕捉できる層であ
る請求項1記載の光電変換装置。4. The layer having ohmic properties has many energy levels in the forbidden band, and the injected electrons and
2. The photoelectric conversion device according to claim 1, wherein the layer is capable of trapping most of the hole pairs in the energy level.
ないし水素含有量の少ないアモルファスシリコン層であ
る請求項4記載の光電変換装置。5. The photoelectric conversion device according to claim 4, wherein the layer having ohmic properties is an amorphous silicon layer containing no hydrogen or a low hydrogen content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3008771A JP2980993B2 (en) | 1991-01-28 | 1991-01-28 | Photoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3008771A JP2980993B2 (en) | 1991-01-28 | 1991-01-28 | Photoelectric conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04252080A true JPH04252080A (en) | 1992-09-08 |
JP2980993B2 JP2980993B2 (en) | 1999-11-22 |
Family
ID=11702159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3008771A Expired - Lifetime JP2980993B2 (en) | 1991-01-28 | 1991-01-28 | Photoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2980993B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7808065B2 (en) | 2008-02-28 | 2010-10-05 | Mitsubishi Electric Corporation | Semiconductor light receiving element |
-
1991
- 1991-01-28 JP JP3008771A patent/JP2980993B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7808065B2 (en) | 2008-02-28 | 2010-10-05 | Mitsubishi Electric Corporation | Semiconductor light receiving element |
Also Published As
Publication number | Publication date |
---|---|
JP2980993B2 (en) | 1999-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5401336A (en) | Photovoltaic device | |
US5213628A (en) | Photovoltaic device | |
EP0221523B1 (en) | Semiconductor device | |
US20150303319A1 (en) | Back contact solar cell and manufacturing method thereof | |
US20100193027A1 (en) | Solar cell and method for manufacturing the same | |
US20120097236A1 (en) | Solar cell | |
KR20130016848A (en) | Heterojunction with intrinsic thin layer solar cell | |
US4781765A (en) | Photovoltaic device | |
KR101886818B1 (en) | Method for manufacturing of heterojunction silicon solar cell | |
JPH0795603B2 (en) | Photovoltaic device | |
JPH04127580A (en) | Multi-junction type amorphous silicon solar cell | |
US4926230A (en) | Multiple junction solar power generation cells | |
JPS58139478A (en) | amorphous solar cell | |
JPH0693519B2 (en) | Amorphous photoelectric conversion device | |
KR101898996B1 (en) | Silicon Solar Cell having Carrier Selective Contact | |
JPH04252080A (en) | Photoelectric conversion device | |
US4672148A (en) | Thin-film solar cells | |
JP2936269B2 (en) | Amorphous solar cell | |
JPS62256481A (en) | Semiconductor device | |
US20130160853A1 (en) | Solar cell having a pn hetero-junction | |
CN117673188B (en) | A self-driven solar-blind ultraviolet detector based on asymmetric Schottky barrier | |
JPS61222275A (en) | photovoltaic device | |
JPH05145095A (en) | Photovoltaic element | |
JP2680577B2 (en) | Photovoltaic device | |
JP2958491B2 (en) | Method for manufacturing photoelectric conversion device |