[go: up one dir, main page]

JPH04249382A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH04249382A
JPH04249382A JP3014127A JP1412791A JPH04249382A JP H04249382 A JPH04249382 A JP H04249382A JP 3014127 A JP3014127 A JP 3014127A JP 1412791 A JP1412791 A JP 1412791A JP H04249382 A JPH04249382 A JP H04249382A
Authority
JP
Japan
Prior art keywords
light
type semiconductor
semiconductor layer
layer
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3014127A
Other languages
Japanese (ja)
Inventor
Keisaku Tomita
冨田 恵作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3014127A priority Critical patent/JPH04249382A/en
Publication of JPH04249382A publication Critical patent/JPH04249382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable incidence of signal light parallel with a package surface of a photodetector without deteriorating dynamic characteristics by providing a diffraction grating to a boundary between a first semiconductor layer and a second semiconductor layer. CONSTITUTION:After a diffraction grating 12 of a period LAMBDA is formed on an N-type semiconductor substrate 11, the diffraction grating 12 is buried by an N-type semiconductor layer 13. After an N-type avalanche layer 14 and an N-type semiconductor layer 15 are laminated and a guard ring 16 and a P-type semiconductor region (photoabsorbing layer) 17 are formed in the N-type semiconductor layer 15, a highly reflecting film 18 and electrodes 19, 20 are laminated. Signal light of wavelength lambda which is vertically directed to the N-type semiconductor substrate 11 of refraction index nj waveguides in the layer, diffracted to satisfy a specified equation in a direction which forms an angle thetato an incidence direction through mutual operation with the diffraction grating 12 of period LAMBDA, and is reflected to the N-type semiconductor layer 13 of refractive index n2. Furthermore, diffracted radiation light is applied to a P-type semiconductor region 17, converted to an electrical signal through photoelectric effect and output from a photodetector element.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体受光素子の構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a semiconductor photodetector.

【0002】0002

【従来の技術】幹線系光通信システムにおける昨今の技
術確信はめざましく、動的単一軸モードでつねに安定し
て発振するDFB−LD(分布帰還語レーザダイオード
)、高効率・高感度を同時に実現したAPD(アバラン
シェフォトダイオード)の開発、実用化とともに1Gb
/s〜2Gb/sの光通信システムがすでに商用化に達
している。こうした状況のなか、さらなる中継器間隔の
長距離化、超高速変調による大容量化をめざした次世代
光通信システムに対する研究開発も活発に行なわれてい
る。このうち超高速変調による大容量化をめざした次世
代光通信システムにおいては、発光素子、受光素子に直
結される駆動回路、初段増幅器それぞれが超高速動作の
ために集積回路化されるだけでなく、これらの集積回路
と発光素子・受光素子との接続に際し、できるだけ寄生
容量、寄生インダクタンスを生じないようにすることが
重要である。
[Prior Art] Recent technological advances in trunk optical communication systems are remarkable, and DFB-LDs (Distributed Feedback Laser Diodes), which always oscillate stably in a dynamic single-axis mode, have achieved high efficiency and high sensitivity at the same time. 1Gb with the development and practical application of APD (avalanche photodiode)
Optical communication systems ranging from /s to 2Gb/s have already reached commercialization. Under these circumstances, active research and development is being carried out on next-generation optical communication systems that aim to further increase the distance between repeaters and increase capacity through ultra-high-speed modulation. Among these, in next-generation optical communication systems that aim to increase capacity through ultra-high-speed modulation, the light-emitting element, the drive circuit directly connected to the light-receiving element, and the first stage amplifier are not only integrated circuits for ultra-high-speed operation. When connecting these integrated circuits to light emitting elements and light receiving elements, it is important to avoid generating parasitic capacitance and inductance as much as possible.

【0003】これまで実用・商用化に達した1Gb/s
〜2Gb/s幹線系光通信システムでは、各々素子の動
作速度については様々な検討がなされていたが、これら
の実装および接続によって生ずる動特性の劣化について
は、使用領域が比較的低周波領域だったこともあり十分
な検討や対策が為されていなかった。具体的には、発光
素子・受光素子や駆動回路・初段増幅器はそれぞれ単体
で個々のバッケージに封入されており、各々の素子は回
路基盤上に実装されたのちリード線等をもちいて接続さ
れていた。この方法では、各々の素子にはあらかじめ十
分な選別・スクリーニングを施すことができるため、各
種の電気特性、光学特性を確認できるだけでなく、動作
速度、信頼性についてもそれぞれ確認しておくことがで
きるという大きな利点を有しているが、素子を封入して
いる個々のバッケージに寄生容量や寄生インダクタンス
が付随しているためにこれらの素子の実装および接続に
よって動特性が劣化してしまうという大きな欠点をも有
している。従って、この方法が極めて有効であるのは〜
2Gb/sの変調速度域までで、これ以上の超高速変調
では実装方法や個々の素子間の接続方法にも新しい方法
を確立する必要がある。
[0003] 1Gb/s has reached practical and commercialization so far.
~ In the 2Gb/s trunk optical communication system, various studies have been made regarding the operating speed of each element, but the deterioration of dynamic characteristics caused by these implementations and connections is difficult to solve since the operating range is relatively low frequency. Due to this, sufficient consideration and countermeasures were not taken. Specifically, the light-emitting element, light-receiving element, drive circuit, and first-stage amplifier are individually enclosed in individual packages, and each element is mounted on a circuit board and then connected using lead wires, etc. Ta. With this method, each element can be thoroughly sorted and screened in advance, so it is possible to check not only various electrical and optical characteristics, but also operation speed and reliability. However, the major disadvantage is that the individual packages enclosing the elements have parasitic capacitance and parasitic inductance, so mounting and connecting these elements deteriorates the dynamic characteristics. It also has Therefore, this method is extremely effective because ~
For ultra-high-speed modulation up to the modulation speed range of 2 Gb/s, it is necessary to establish new methods for mounting methods and connecting methods between individual elements.

【0004】この新しい方法としては、第一に発光素子
や受光素子を駆動回路、初段増幅器の集積回路それぞれ
に近接して実装し、両者を約1mm程度のボンディング
ワイヤによって接続する方法(ベアチップによる実装)
、集積回路上にあらかじめ発光素子、受光素子用の実装
パターンを形成しておき、その上に発光素子、受光素子
を実装することで集積回路との接続をとる方法(フリッ
プチップ実装)、発光素子、受光素子自体をそれぞれの
集積回路上に形成して一体の素子にする方法(OEIC
)がある。それぞれの実装方法で十分に超高速動作が可
能な素子を実装・接続した場合、動作可能な変調周波数
域は、ベアチップによる実装で約5GHzまで、フリッ
プチップ実装で約10GHzまで、そしてOEICでは
さらに高周波領域までと推定されている。
This new method involves mounting the light emitting element and the light receiving element in close proximity to the driver circuit and the first-stage amplifier integrated circuit, respectively, and connecting them with bonding wires of about 1 mm (bare chip mounting). )
, A method of forming a mounting pattern for a light-emitting element and a light-receiving element on an integrated circuit in advance, and then mounting a light-emitting element and a light-receiving element thereon to connect the integrated circuit (flip-chip mounting). , a method of forming the light-receiving element itself on each integrated circuit to form an integrated element (OEIC
). When mounting and connecting elements capable of sufficiently high-speed operation using each mounting method, the operable modulation frequency range is up to approximately 5 GHz with bare chip mounting, approximately 10 GHz with flip chip mounting, and even higher frequencies with OEIC. It is estimated that up to the area.

【0005】SONETに準拠した2.5Gb/sの幹
線系通信システムに搭載する発光・受光モジュールは超
高速変調による通信容量の大容量化という面で、最近で
は最も開発が盛んである。そのうち駆動回路や初段増幅
集積回路を内蔵した駆動回路内蔵発光モジュール、初段
増幅集積回路内蔵受光モジュールでは実装および素子間
の接続についても配慮が為され、すでにベアチップによ
る実装が試みられている。特に初段増幅集積回路を受光
素子に近接して実装しボンディングワイヤで接続した、
初段増幅集積回路内蔵受光モジュールは受光素子自体が
発熱しないこと等の理由のためにモジュールとしての構
成が比較的簡易であり、駆動回路内蔵の発光モジュール
に比べて開発に対する要求も強い。
[0005] Light-emitting/light-receiving modules installed in 2.5 Gb/s trunk communication systems based on SONET have recently been the most actively developed in terms of increasing communication capacity through ultra-high-speed modulation. Among these, for light-emitting modules with built-in drive circuits and light-receiving modules with built-in first-stage amplifier integrated circuits, consideration has been given to mounting and connections between elements, and implementation using bare chips has already been attempted. In particular, the first stage amplification integrated circuit is mounted close to the light receiving element and connected with bonding wire.
A light-receiving module with a built-in first-stage amplifier integrated circuit has a relatively simple structure as a module because the light-receiving element itself does not generate heat, and there is a strong demand for development compared to a light-emitting module with a built-in drive circuit.

【0006】図3は従来の初段増幅集積回路内蔵発光モ
ジュールの簡易的な構成図である。光ファイバ131か
ら出射された信号光はセルフォックレンズ133で集光
されたのち、受光素子31に入射され光電効果によって
電気信号に変換される。受光素子31は初段増幅集積回
路33と近接して台座36上に実装されており、変換さ
れた電気信号は高速動作性を妨げることなくボンディン
グワイヤ32を通じて初段増幅集積回路33に入力され
て増幅され、さらに回路基盤上に形成された電極パタン
34を伝送され出力端子35を経て、初段増幅集積回路
内蔵受光モジュールから出力される。
FIG. 3 is a simplified configuration diagram of a conventional light emitting module with a built-in first stage amplifier integrated circuit. After the signal light emitted from the optical fiber 131 is focused by the SELFOC lens 133, it enters the light receiving element 31 and is converted into an electrical signal by the photoelectric effect. The light receiving element 31 is mounted on a pedestal 36 in close proximity to the first stage amplification integrated circuit 33, and the converted electrical signal is input to the first stage amplification integrated circuit 33 through the bonding wire 32 and amplified without interfering with high-speed operation. The light is further transmitted through an electrode pattern 34 formed on the circuit board, passes through an output terminal 35, and is output from the light receiving module with a built-in first-stage amplifier integrated circuit.

【0007】[0007]

【発明が解決しようとする課題】上述のように2Gb/
s以上の超高速変調を実現するためには、受光素子と初
段増幅器とは同一平面上に近接して実装され、約1mm
程度のボンディングワイヤで接続されることが必要であ
る。また、実際の装置、あるいはプリント基盤への実装
を考えた場合、発光モジュール自体は平面実装可能な形
態、すなわち光信号を入力する光ファイバと受光モジュ
ールの出力端子とが同一平面に対して平行となるような
形態をしていることも必要とされる。ところが従来の初
段増幅集積回路内蔵受光モジュールにおいては、受光素
子の実装面、初段増幅集積回路の実装面と発光モジュー
ル自体の実装面は互いに平行とすることは困難である。 これは信号光の入力方向が受光素子の受光面とが互いに
直交するように位置することが必要とされるためであり
、このため例えば受光素子と初段増幅集積回路とを同一
平面上に近接して実装した図3のような従来例において
は、初段増幅集積回路の出力部までは高速応答性を劣化
させることがないが、初段増幅回路の出力部と受光モジ
ュールの出力端子とは互いに直交した面内にあるため回
路基盤上の電極パタンに沿って電気信号を伝送させる際
に、高速応答性の劣化を避けることができない。このよ
うに、高速応答性を実装および素子間の接続で劣化させ
ることがないという、ベアチップによる実装の最大のメ
リットを十分に生かすためには、受光モジュールにおい
ては光信号を入力する光ファイバと受光モジュールの出
力端子とが同一平面に対して平行となるような構造を如
何にして実現するかということが最大の問題点となる。
[Problem to be solved by the invention] As mentioned above, 2Gb/
In order to achieve ultra-high-speed modulation faster than s, the photodetector and first-stage amplifier must be mounted close to each other on the same plane, with a distance of approximately 1 mm.
It is necessary to connect with some bonding wire. In addition, when considering mounting on an actual device or printed board, the light emitting module itself must be in a form that can be mounted on a plane, that is, the optical fiber that inputs the optical signal and the output terminal of the light receiving module are parallel to the same plane. It is also required that the shape be such that However, in the conventional light-receiving module with a built-in first-stage amplifier integrated circuit, it is difficult to make the mounting surface of the light-receiving element, the mounting surface of the first-stage amplifier integrated circuit, and the mounting surface of the light-emitting module itself parallel to each other. This is because the input direction of the signal light needs to be positioned so that the light receiving surface of the light receiving element is orthogonal to each other, and for this reason, for example, the light receiving element and the first stage amplification integrated circuit may be placed close to each other on the same plane. In the conventional example shown in Fig. 3, which is implemented with Since it is in-plane, deterioration of high-speed response cannot be avoided when transmitting electrical signals along the electrode pattern on the circuit board. In this way, in order to take full advantage of the greatest advantage of bare-chip mounting, which is that high-speed response does not deteriorate due to mounting or connection between elements, in the light receiving module, the optical fiber that inputs the optical signal and the light receiving The biggest problem is how to realize a structure in which the output terminals of the module are parallel to the same plane.

【0008】この問題点に対し、受光素子に対する光信
号の入力方向を光結合系に工夫をすることで解決する方
法が考えられる。図4は光ファイバの先端部を直接加工
して光ファイバの方向と光信号の入力方向を直交させる
ことを実現したペリカンビルファイバを用いた初段増幅
集積回路内蔵受光モジュールの簡易的な構成図である。 ペリカンビルファイバ142をあらかじめ先端を先球加
工した光ファイバの先球部を斜めに研磨して信号光を反
射させ、光ファイバの方向と光信号の出射方向と直交さ
せることを可能にしている。信号光はペリカンビルファ
イバ142によって光ファイバの方向と直交する方向に
反射させられたのち、受光素子41に入射され光電効果
によって電気信号に変換される。受光素子41は初段増
幅集積回路43と近接して実装されているため、変換さ
れた電気信号は高速動作性を妨げることなくボンディン
グワイヤ42を通じて初段増幅集積回路43に入力され
て増幅され、さらに回路基盤上に形成されたきわめて短
い電極パタン44を通じて出力端子45に接続され、初
段増幅集積回路内蔵受光受光モジュールから出力される
A possible solution to this problem is to modify the optical coupling system to determine the input direction of the optical signal to the light receiving element. Figure 4 is a simplified configuration diagram of a light receiving module with a built-in first-stage amplifier integrated circuit using Pelican Building fiber, which has been realized by directly processing the tip of the optical fiber to make the direction of the optical fiber and the input direction of the optical signal orthogonal. be. The tip of the Pelicanville fiber 142 is pre-processed to have a bulbous tip, and the tip of the optical fiber is polished obliquely to reflect the signal light, making it possible to make the direction of the optical fiber orthogonal to the output direction of the optical signal. The signal light is reflected by the pelican building fiber 142 in a direction perpendicular to the direction of the optical fiber, and then enters the light receiving element 41 where it is converted into an electrical signal by the photoelectric effect. Since the light receiving element 41 is mounted in close proximity to the first stage amplification integrated circuit 43, the converted electrical signal is input to the first stage amplification integrated circuit 43 through the bonding wire 42 and amplified without interfering with high-speed operation. The light is connected to an output terminal 45 through an extremely short electrode pattern 44 formed on the substrate, and is output from the light-receiving and light-receiving module with a built-in first stage amplifier integrated circuit.

【0009】本例においてはペリカンビルファイバを用
いることにより、受光素子の実装面、初段増幅集積回路
の実装面と受光モジュールからの出力端子すなわち受光
モジュール自体の実装面は互いに平行とすることが可能
となり、素子の実装、接続によって動特性を劣化させる
ことはないが、一方でペリカンビルファイバ自体の製作
が容易でなく再現性がよくないこと、また複雑な形状を
しているためファイバ内で損失を生じ、十分な光電効率
ひいては高い受信感度を得ることが困難であるという欠
点を有していた。
In this example, by using a pelican building fiber, the mounting surface of the light receiving element, the mounting surface of the first stage amplifier integrated circuit, and the output terminal from the light receiving module, that is, the mounting surface of the light receiving module itself can be made parallel to each other. Therefore, the dynamic characteristics will not deteriorate due to the mounting and connection of the elements, but on the other hand, it is not easy to manufacture the Pelican Building fiber itself and the reproducibility is poor, and the complicated shape causes loss within the fiber. This has the disadvantage that it is difficult to obtain sufficient photoelectric efficiency and high receiving sensitivity.

【0010】0010

【課題を解決するための手段】本発明の半導体受光素子
は、受信光を入射する第1導電型の第1の半導体層と、
前記第1の半導体層よりバンドギャップが小さく前記第
1の半導体層に接する第1導電型の第2の半導体層と、
第1,第2導電型の半導体接合とを少なくとも有し、前
記第1の半導体層と前記第2の半導体層の境界に回折格
子を有することを特徴とする。
[Means for Solving the Problems] A semiconductor light receiving element of the present invention includes a first semiconductor layer of a first conductivity type into which received light is incident;
a second semiconductor layer of a first conductivity type that has a smaller band gap than the first semiconductor layer and is in contact with the first semiconductor layer;
It is characterized by having at least semiconductor junctions of first and second conductivity types, and having a diffraction grating at the boundary between the first semiconductor layer and the second semiconductor layer.

【0011】[0011]

【実施例1】次に本発明について図面を参照して詳細に
説明する。図1は、本発明の実施例1を示す半導体受光
素子の構造の断面図である。本発明の半導体受光素子は
n型半導体基板11上に周期Λの回折格子12を形成し
たのち、n型半導体層13で回折格子12を埋めこみ、
n型アバランシェ層14,n型半導体層15を積層し、
n型半導体層15にガードリング16とp型半導体領域
(光吸収層)17とを形成したのち、高反射膜18およ
び電極19,20を積層して形成する。屈折率nj の
n型半導体基板11に垂直に入射された波長λの信号光
は層内を導波し、周期Λの回折格子12との相互作用に
よって入射方向に対しθの角度をなす方向に次式を満足
するように回折され、屈折率n2 のn型半導体層13
に放射される。
Embodiment 1 Next, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the structure of a semiconductor light-receiving element showing Example 1 of the present invention. The semiconductor photodetector of the present invention forms a diffraction grating 12 with a period Λ on an n-type semiconductor substrate 11, and then buries the diffraction grating 12 with an n-type semiconductor layer 13.
Laminating an n-type avalanche layer 14 and an n-type semiconductor layer 15,
After forming a guard ring 16 and a p-type semiconductor region (light absorption layer) 17 on the n-type semiconductor layer 15, a high-reflection film 18 and electrodes 19 and 20 are laminated. Signal light with a wavelength λ that is perpendicularly incident on the n-type semiconductor substrate 11 with a refractive index nj is guided within the layer, and due to interaction with the diffraction grating 12 with a period Λ, the signal light is directed at an angle θ with respect to the direction of incidence. The n-type semiconductor layer 13 is diffracted to satisfy the following formula and has a refractive index n2.
is radiated to.

【0012】0012

【0013】さらに回折された放射光は、p型半導体領
域(光吸収層)17に入射され光電効果により電気信号
に変換され、受光素子から出力される。この時、受光さ
れ得る放射光はθ〜π/2を満たす場合、すなわち、
Further, the diffracted radiation light enters the p-type semiconductor region (light absorption layer) 17, is converted into an electric signal by the photoelectric effect, and is output from the light receiving element. At this time, if the radiation light that can be received satisfies θ~π/2, that is,


0014】
[
0014

【0015】に限られるため受光することのできる入射
光は理論的に
The incident light that can be received is theoretically limited to

【0016】[0016]

【0017】を満たす波長に限定される。また、通常受
光素子の光電効率は約80%程度とされ、その一部は電
気信号に変換されずに受光素子を通過してしまうため、
本実施例においては、p型半導体領域(光吸収層)17
に接して高反射膜18を形成し、通過光を反射させて再
び光吸収層に入射して光電効率の向上をはかっている。 このようにして回折格子による信号光の回折現象を利用
して受光素子を形成することにより、受光素子の実装面
に対して平行に信号光を入射することが可能となり、素
子の実装,接続によって動特性を劣化させることなく初
段増幅集積回路内蔵受光モジュールを製作することがで
きる。尚、本実施例においては半導体受光素子としてア
バランシェ層を有するアバランシェフォトダイオードを
用いたが、特に限定したものではない。
The wavelength is limited to the wavelength that satisfies the following. In addition, the photoelectric efficiency of a normal photodetector is said to be about 80%, and some of it passes through the photodetector without being converted into an electrical signal.
In this embodiment, the p-type semiconductor region (light absorption layer) 17
A highly reflective film 18 is formed in contact with the light to reflect the passing light and make it enter the light absorption layer again to improve photoelectric efficiency. By forming a light-receiving element using the diffraction phenomenon of the signal light by the diffraction grating in this way, it becomes possible to input the signal light parallel to the mounting surface of the light-receiving element, and the mounting and connection of the element A light receiving module with a built-in first stage amplifier integrated circuit can be manufactured without deteriorating dynamic characteristics. In this example, an avalanche photodiode having an avalanche layer is used as the semiconductor light-receiving element, but the present invention is not particularly limited.

【0018】[0018]

【実施例2】図2は、本発明の実施例2を示す半導体受
光素子の構造の断面図である。本発明の半導体受光素子
は屈折率n3 のn型半導体基板11上に屈折率nj 
(n3 <nj )のn型半導体層121を積層し、そ
の表面に周期Λの回折格子12を形成したのち、屈折率
n2 (n2 <n3 <nj )  のn型半導体層
13で回折格子12を埋めこみ、n型アバランシェ層1
4、n半導体層15を積層し、n半導体層15にガード
リング16とp型半導体領域(光吸収層)17とを形成
したのち高反射膜18、電極19,20、および反射鏡
122を形成して製作される。屈折率nj のn型半導
体層121に垂直に入射された波長λの信号光は、実施
例1の場合と同様に層内を導波し、周期Λの回折格子1
2との相互作用によって入射方向に対しθの角度をなす
方向に回折され放射される。放射光は屈折率n2 のn
型半導体層13をへてp型半導体領域(光吸収層)17
に入射され、光電効果により電気信号に変換され受光素
子から出力される。
Embodiment 2 FIG. 2 is a sectional view of the structure of a semiconductor light receiving element showing Embodiment 2 of the present invention. The semiconductor photodetector of the present invention has a refractive index nj on an n-type semiconductor substrate 11 with a refractive index n3.
After stacking n-type semiconductor layers 121 with (n3 < nj ) and forming a diffraction grating 12 with a period Λ on the surface thereof, the diffraction grating 12 is formed with an n-type semiconductor layer 13 with a refractive index n2 (n2 < n3 < nj ). Buried, n-type avalanche layer 1
4. After stacking the n-semiconductor layer 15 and forming the guard ring 16 and the p-type semiconductor region (light absorption layer) 17 on the n-semiconductor layer 15, the high reflection film 18, electrodes 19, 20, and reflective mirror 122 are formed. It is manufactured by Signal light with a wavelength λ that is perpendicularly incident on the n-type semiconductor layer 121 with a refractive index nj is guided within the layer as in the case of Example 1, and is guided through the diffraction grating 1 with a period Λ.
2, it is diffracted and radiated in a direction forming an angle θ with respect to the incident direction. The synchrotron radiation has a refractive index n2
The p-type semiconductor region (light absorption layer) 17 passes through the type semiconductor layer 13
The light is incident on the light, is converted into an electrical signal by the photoelectric effect, and is output from the light receiving element.

【0019】本実施例においても回折格子による信号光
の回折現象を利用して受光素子を形成することにより、
受光素子の実装面に対して平行に信号光を入射すること
が可能となり、素子の実装、接続によって動特性を劣化
させることなく初段増幅集積回路内蔵受光モジュールを
製作することができる。また特に本実施例においては信
号光の導波層(n型半導体層121)に接して屈折率変
化が与えられているために、導波層内への光の閉じ込め
が強く実施例1の場合に比べ回折効率が向上するばかり
でなく、p型半導体領域(光吸収層)17に接して高反
射膜18、n型半導体基板に接して反射鏡122を形成
しているのに反射光を再び光吸収層に入射してさらに光
電効率の向上をはかることができる。尚、本実施例にお
いても半導体受光素子としてアバランシェ層を有するア
バランシェフォトダイオードを用いたが、実施例1と同
様に特に限定したものではない。
In this embodiment as well, by forming the light receiving element by utilizing the diffraction phenomenon of signal light by the diffraction grating,
It becomes possible to make the signal light incident parallel to the mounting surface of the light-receiving element, and it is possible to manufacture a light-receiving module with a built-in first-stage amplification integrated circuit without deteriorating the dynamic characteristics due to element mounting and connection. In particular, in this example, since the refractive index is changed in contact with the waveguide layer (n-type semiconductor layer 121) for signal light, the confinement of light within the waveguide layer is stronger than in Example 1. Not only does the diffraction efficiency improve compared to the above, but even though a high reflection film 18 is formed in contact with the p-type semiconductor region (light absorption layer) 17 and a reflecting mirror 122 is formed in contact with the n-type semiconductor substrate, it is possible to redirect the reflected light. The photoelectric efficiency can be further improved by entering the light absorption layer. In this example as well, an avalanche photodiode having an avalanche layer was used as the semiconductor light-receiving element, but as in Example 1, this is not particularly limited.

【0020】[0020]

【発明の効果】以上説明したように本発明の半導体受光
素子は、受光素子内に回折格子を有しているために、回
折格子による信号光の回折現象を利用して受光素子を形
成することができ、受光素子の実装面に対して平行に信
号光を入射することが可能となるために、素子の実装、
接続によって動特性を劣化させることがないという効果
がある。
[Effects of the Invention] As explained above, since the semiconductor photodetector of the present invention has a diffraction grating within the photodetector, the photodetector can be formed by utilizing the diffraction phenomenon of signal light by the diffraction grating. Since it is possible to make the signal light incident parallel to the mounting surface of the light receiving element, the mounting of the element,
This has the effect that dynamic characteristics are not degraded by the connection.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1を示す半導体受光素子の構造
の断面図、
FIG. 1 is a cross-sectional view of the structure of a semiconductor light-receiving device showing Example 1 of the present invention;

【図2】本発明の実施例2を示す半導体受光素子の構造
の断面図、
FIG. 2 is a cross-sectional view of the structure of a semiconductor light-receiving device showing Example 2 of the present invention;

【図3】従来の初段増幅集積回路内蔵受光モジュールの
簡易的な構成図、
[Figure 3] A simple configuration diagram of a conventional light receiving module with a built-in first-stage amplifier integrated circuit,

【図4】ペリカンビルファイバを用いた初段増幅集積回
路内蔵受光モジュールの簡易的な構成図である。
FIG. 4 is a simple configuration diagram of a light receiving module with a built-in first-stage amplifier integrated circuit using a Pelican building fiber.

【符号の説明】[Explanation of symbols]

11    n型半導体基板 12    回折格子 13    n型半導体層 14    n型アバランシェ層 15    n型半導体層 16    ガードリング 17    p型半導体領域(光吸収層)18    
高反射膜 19,20    電極
11 n-type semiconductor substrate 12 diffraction grating 13 n-type semiconductor layer 14 n-type avalanche layer 15 n-type semiconductor layer 16 guard ring 17 p-type semiconductor region (light absorption layer) 18
High reflective film 19, 20 electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  受信光が入射する第1導電型の第1の
半導体層と、前記第1の半導体層よりバンドギャップが
小さく前記第1の半導体層に接する第1導電型の第2の
半導体層と、第1,第2導電型の半導体接合とを少なく
とも有する半導体受光素子において、前記第1の半導体
層と前記第2の半導体層の境界に回折格子を有すること
を特徴とする半導体受光素子。
1. A first semiconductor layer of a first conductivity type into which received light is incident, and a second semiconductor of a first conductivity type that is in contact with the first semiconductor layer and has a smaller band gap than the first semiconductor layer. A semiconductor light-receiving element having at least a layer and semiconductor junctions of first and second conductivity types, the semiconductor light-receiving element having a diffraction grating at the boundary between the first semiconductor layer and the second semiconductor layer. .
JP3014127A 1991-02-05 1991-02-05 Semiconductor photodetector Pending JPH04249382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3014127A JPH04249382A (en) 1991-02-05 1991-02-05 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3014127A JPH04249382A (en) 1991-02-05 1991-02-05 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH04249382A true JPH04249382A (en) 1992-09-04

Family

ID=11852463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3014127A Pending JPH04249382A (en) 1991-02-05 1991-02-05 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH04249382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203986A (en) * 2000-12-19 2002-07-19 Korea Electronics Telecommun Avalanche photodetector
JP2009267251A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Semiconductor photodetector
CN114497312A (en) * 2020-10-27 2022-05-13 Tdk株式会社 Electrode structure and photodetection element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203986A (en) * 2000-12-19 2002-07-19 Korea Electronics Telecommun Avalanche photodetector
JP2009267251A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Semiconductor photodetector
CN114497312A (en) * 2020-10-27 2022-05-13 Tdk株式会社 Electrode structure and photodetection element

Similar Documents

Publication Publication Date Title
US8183656B2 (en) Photodiode
US6005262A (en) Flip-chip bonded VCSEL CMOS circuit with silicon monitor detector
JP3221916B2 (en) Optoelectronic device with integrated optical guide and photodetector
TWI436114B (en) Transmitter module and receiver module with optical waveguide structure
US6097521A (en) Optoelectronic module for bidirectional optical data transmission
JP5892875B2 (en) Optoelectronic integrated module
JP2002343983A (en) Optical element package
US11822138B2 (en) Integration of OE devices with ICs
CN114460698B (en) Light emitting module
JP3277876B2 (en) Optical transmission / reception module
USRE38280E1 (en) Optoelectronic module for bidirectional optical data transmission
JPH0513749A (en) Optical connection circuit
JP2001042171A (en) Active optical wiring device
JPH04249382A (en) Semiconductor photodetector
JP3356017B2 (en) Optical transmission / reception module
US11927814B2 (en) Semiconductor photodetector array sensor integrated with optical-waveguide-based devices
JPH114046A (en) Transmitting/receiving photonic ic
JP2001042145A (en) Opto-electric wiring board
JPH04373180A (en) Semiconductor photoreceptor element
JP3331828B2 (en) Optical transmission / reception module
KR100265858B1 (en) Wavelength Division Multiplexing with Integrated Semiconductor Laser and Photodetector on a Single Chip
KR20030075487A (en) Architecture of chip-to-chip optical interconnection using waveguides and microlenses
JP2006013048A (en) Light emitting optical semiconductor element and light receiving optical semiconductor element
JP2001223369A (en) End face incident waveguide type semiconductor photodetector and light receiving module using the same
JPH1090540A (en) Semiconductor light receiving element, semiconductor light receiving device, and semiconductor device