[go: up one dir, main page]

JPH04249372A - Mos type field effect transistor and fabrication thereof - Google Patents

Mos type field effect transistor and fabrication thereof

Info

Publication number
JPH04249372A
JPH04249372A JP1413391A JP1413391A JPH04249372A JP H04249372 A JPH04249372 A JP H04249372A JP 1413391 A JP1413391 A JP 1413391A JP 1413391 A JP1413391 A JP 1413391A JP H04249372 A JPH04249372 A JP H04249372A
Authority
JP
Japan
Prior art keywords
source
effect transistor
field effect
drain
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1413391A
Other languages
Japanese (ja)
Inventor
Hiroshi Furuta
博伺 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1413391A priority Critical patent/JPH04249372A/en
Publication of JPH04249372A publication Critical patent/JPH04249372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent soft errors of 0 1 to be caused when a punch through and alpha-rays penetrate through a source-drain by a method wherein an insulating layer separating a source diffusing layer from a drain diffusing layer is formed in a narrower band form than a channel length at a place which is deeper than an invert layer in which a channel of a semiconductor substrate is formed. CONSTITUTION:After a V-form small groove 2 is opened in a P type silicon substrate 1, a SiO23 grows on the entire surface by a CVD method. Next, by etching the SiO23, the small groove 2 is filled with the SiO23. Next, after a polysilicon 4 grows on the entire surface and is heat-treated by a laser-anneal or the like, whereby the polysilicon 4 is made a single crystal. Then, after impurities for controlling a threshold value voltage is ion-implanted, a gate oxidizing film 5 and a polysilicon gate electrode 6 is formed, arsenic is ion- implanted, and a source 7a and a drain 7b are formed to form an element part.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はMOS型電界効果トラン
ジスタに関し、特にソース−ドレイン電極間の基板の構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS field effect transistor, and more particularly to the structure of a substrate between source and drain electrodes.

【0002】0002

【従来の技術】従来技術によるMOS型電界効果トラン
ジスタ(以下MOSFETと記す)は、第1に図4(a
)に示すように半導体基板1上に形成したもの、第2に
図4(b)に示すようにサファイア基板や石英基板など
の絶縁基板11上に形成したもの、第3に図4(c)に
示すように半導体基板1に埋込酸化膜13を形成したS
IMOX(Separation by Implan
ted Oxygen)構造の3種類がある。
[Prior Art] A MOS field effect transistor (hereinafter referred to as MOSFET) according to the prior art is first shown in FIG.
) as shown in FIG. 4B, secondly as shown in FIG. 4B, as shown in FIG. As shown in FIG.
IMOX (Separation by Implan)
There are three types of ted Oxygen) structures.

【0003】このように従来のMOSFETにおいては
ソース7a、ドレイン7bおよびチャネルの下には全面
に絶縁層が存在するか、絶縁層が全く存在しない構造に
なっている。
[0003] As described above, the conventional MOSFET has a structure in which an insulating layer exists over the entire surface or no insulating layer exists under the source 7a, drain 7b, and channel.

【0004】0004

【発明が解決しようとする課題】MOSFETが微細化
されて、ゲート長がサブミクロンオーダーに達してつぎ
のような2つの問題が生じている。
As MOSFETs have been miniaturized and their gate lengths have reached the submicron order, the following two problems have arisen.

【0005】第1の問題点はゲート長が短かくなってき
たことによる短チャネル効果である。パンチスルー電流
を防止するため基板の不純物濃度を上げて対処してきた
が、そのために容量増加など回路動作特性が悪化するな
どの問題がある。
The first problem is the short channel effect due to the shorter gate length. Punch-through current has been prevented by increasing the impurity concentration of the substrate, but this has led to problems such as increased capacitance and deterioration of circuit operating characteristics.

【0006】第2の問題点は図5に示すようにα粒子が
ソース7aおよびドレイン7bを貫通するように入射し
た場合、MOSFETでは「0」→「1」の反転エラー
が起こるという問題がある。ゲート長が短くなるにつれ
てこのソース−ドレイン貫通が顕著になってくる。
The second problem is that, as shown in FIG. 5, when α particles are incident on the source 7a and the drain 7b, an inversion error from "0" to "1" occurs in the MOSFET. . As the gate length becomes shorter, this source-drain penetration becomes more noticeable.

【0007】ソース7a側からドレイン7b側に向って
α線が貫通すると、ファネリング(funneling
 )現象により入射直後(およそ1ピコ秒)はソースか
ら電子が放出され、ドレインでは電子が収集される。ド
レイン電圧の対数に比例した電流が軌跡に沿って流れる
When α rays penetrate from the source 7a side to the drain 7b side, funneling occurs.
) phenomenon, electrons are emitted from the source immediately after incidence (approximately 1 picosecond) and are collected at the drain. A current proportional to the logarithm of the drain voltage flows along the trajectory.

【0008】α線入射後1〜10ピコ秒でα線によって
乱れたポテンシャルが徐々に回復してくる。まだ流れ続
けている電流はラテラルNPN動作によるものと考えら
れる。
[0008] The potential disturbed by the α rays gradually recovers in 1 to 10 picoseconds after the incidence of the α rays. The current that continues to flow is considered to be due to lateral NPN operation.

【0009】さらに時間が経過して10ピコ秒以降にな
ると、ファネリングによる電界はなくなって基板に注入
された電子は拡散によって移動し、ソースおよびドレイ
ンでこの電子を収集する。
[0009] Further, after 10 picoseconds, the electric field due to funneling disappears, and the electrons injected into the substrate move by diffusion, and are collected at the source and drain.

【0010】ソースへの入出電荷(収集する電荷を正と
して)をQs とすると、Qs =−Q1 −Q2 +
Q3 でQs <0ならばソースからの電荷放出となる
。ここでQ1はα線入射後1ピコ秒以下の電子放出、Q
2 は1〜10ピコ秒での電子放出、Q3 はおよそ1
0ピコ秒のソースの電子収集による電荷を示す。
[0010] If the charge entering and leaving the source (assuming the charge to be collected is positive) is Qs, then Qs = -Q1 -Q2 +
If Qs < 0 at Q3, charge is released from the source. Here, Q1 is electron emission within 1 picosecond after α-ray incidence, Q
2 is electron emission in 1-10 ps, Q3 is approximately 1
The charge due to electron collection of the source for 0 ps is shown.

【0011】従来のソフトエラーは「1」→「0」反転
であるのに対し、このソフトエラーはMOSFETの実
効チャネル長が短くなるほど顕著になる「0」→「1」
反転のエラーである。
[0011] While the conventional soft error is a "1" → "0" reversal, this soft error is a "0" → "1" reversal that becomes more noticeable as the effective channel length of the MOSFET becomes shorter.
This is a reversal error.

【0012】実際のデバイスではモールド樹脂やAl配
線および高融点金属配線などに含まれる微量のU(ウラ
ン)やTh(トリウム)からα線が発生する。α線がデ
バイス表面に入射する角度はランダムであり、微細パタ
ーンほどこのソース−ドレイン貫通による「0」〜「1
」ソフトエラーが問題になる。メモリセルノードに接続
されているMOSFETだけでなく、周辺回路を構成す
るMOSFETもこの不良が発生する。
In actual devices, α rays are generated from trace amounts of U (uranium) and Th (thorium) contained in mold resin, Al wiring, high melting point metal wiring, and the like. The angle at which α rays enter the device surface is random, and the finer the pattern, the more the α rays enter the device surface.
” Soft errors become a problem. This defect occurs not only in the MOSFET connected to the memory cell node but also in the MOSFET forming the peripheral circuit.

【0013】[0013]

【課題を解決するための手段】本発明のMOS型電界効
果トランジスタはチャネルの反転層よりも深くソースと
ドレインとを隔離する絶縁層が形成されたものである。
Means for Solving the Problems The MOS field effect transistor of the present invention has an insulating layer formed deeper than the channel inversion layer to isolate the source and drain.

【0014】[0014]

【実施例】本発明の第1の実施例としてN型MOSFE
Tについて、図1(a)〜(e)を参照して説明する。
[Embodiment] As the first embodiment of the present invention, an N-type MOSFE
T will be explained with reference to FIGS. 1(a) to (e).

【0015】はじめに図1(a)に示すように、P型シ
リコン基板1に表面開口幅0.2〜0.3μm、深さ0
.2〜0.3μmのV字型の小溝2を開ける。
First, as shown in FIG. 1(a), a surface opening width of 0.2 to 0.3 μm and a depth of 0 is formed in a P-type silicon substrate 1.
.. A small V-shaped groove 2 of 2 to 0.3 μm is made.

【0016】つぎに図1(b)に示すように、全面にC
VD法などによりSiO2 3を成長させる。
Next, as shown in FIG. 1(b), C is applied to the entire surface.
SiO2 3 is grown using a VD method or the like.

【0017】つぎに図1(c)に示すように、SiO2
 3をエッチバックすることにより小溝2にSiO2 
3を満たす。
Next, as shown in FIG. 1(c), SiO2
SiO2 is formed in the small groove 2 by etching back 3.
3 is satisfied.

【0018】つぎに図1(d)に示すように、全面に厚
さ0.1μmのポリシリコン4を成長させたのち、レー
ザーアニールなどで熱処理することによりポリシリコン
4を単結晶化する。
Next, as shown in FIG. 1D, after growing polysilicon 4 to a thickness of 0.1 μm over the entire surface, polysilicon 4 is made into a single crystal by heat treatment such as laser annealing.

【0019】つぎに図1(e)に示すように、しきい値
電圧を制御する不純物をイオン注入してからゲート酸化
膜5、ポリシリコンゲート電極6を形成し、砒素をイオ
ン注入してソース7a、ドレイン7bを形成して素子部
が完成する。
Next, as shown in FIG. 1E, impurities for controlling the threshold voltage are ion-implanted, a gate oxide film 5 and a polysilicon gate electrode 6 are formed, and arsenic is ion-implanted to form the source. 7a and a drain 7b are formed to complete the element section.

【0020】図1(a)の幅0.2μm、深さ0.2μ
mの小溝2を形成するには第1にEB直描法が上げられ
るが、つぎのように容易な方法もある。
[0020] Width 0.2 μm and depth 0.2 μm in Fig. 1(a)
The first method for forming the small grooves 2 of m is the EB direct writing method, but there are also easier methods as follows.

【0021】はじめに図2(a)に示すように、フォト
レジスト14をマスクとしてSiO2 3をエッチング
して幅0.5μmの開口を形成する。
First, as shown in FIG. 2A, SiO2 3 is etched using the photoresist 14 as a mask to form an opening with a width of 0.5 μm.

【0022】つぎに図2(b)に示すように、フォトレ
ジスト14を除去したのち、SiO2 3の開口の側壁
でちょうど0.15μmの厚さになるようにCVD法に
より新たにSiO2 3aを成長させる。
Next, as shown in FIG. 2(b), after removing the photoresist 14, new SiO2 3a is grown by CVD to a thickness of just 0.15 μm on the sidewall of the opening of the SiO2 3. let

【0023】つぎに図2(c)に示すように、異方性ド
ライエッチングによりSiO2 3aをエッチバックす
る。
Next, as shown in FIG. 2(c), the SiO2 3a is etched back by anisotropic dry etching.

【0024】このSiO2 3,3aをマスクとして異
方性ドライエッチングすることにより、P型シリコン基
板1に小溝を形成することができる。
Small grooves can be formed in the P-type silicon substrate 1 by anisotropic dry etching using the SiO2 3, 3a as a mask.

【0025】なお小溝2の開口幅が広いときは少し深く
溝を掘って、熱酸化したのち酸化膜3,3aを除去して
、表面をより平坦化してからポリシリコン4を成長させ
る方法もある。
When the opening width of the small groove 2 is wide, there is also a method of digging the groove a little deeper, removing the oxide films 3 and 3a after thermal oxidation, and flattening the surface before growing the polysilicon 4. .

【0026】こうしてソース7aとドレイン7bとの間
にSiO2 3からなる絶縁膜を挟むことにより、特に
ドレイン電圧が高いときにドレイン7b近傍の電界が緩
和されて空乏層の形状が異なり、従来のMOSFETに
比べて短チャネル効果が起こりにくい。α線がソース7
aからドレイン7bに貫通するように入射しても、絶縁
層3によりα線入射後に起こるポテンシャルの乱れが少
なく、ソース7aから放出される電荷が通常のMOSF
ETよりも実質的に少なくなるという利点がある。この
ようにソース−ドレイン貫通によるソフトエラーや短チ
ャネル効果の1つであるパンチスルーに対し有効である
ことが分った。
By sandwiching the insulating film made of SiO 2 3 between the source 7a and the drain 7b, the electric field near the drain 7b is relaxed, especially when the drain voltage is high, and the shape of the depletion layer is different, making it different from the conventional MOSFET. short channel effects are less likely to occur compared to Alpha rays are source 7
Even if it penetrates into the drain 7b from the source 7a, the insulating layer 3 causes less disturbance in the potential that occurs after the α rays are incident, and the charge emitted from the source 7a is similar to that of a normal MOSFET.
It has the advantage of being substantially less than ET. In this way, it has been found that this method is effective against soft errors caused by source-drain penetration and punch-through, which is one of the short channel effects.

【0027】ソース−ドレイン間に挟む絶縁膜の形状は
本実施例のくさび型に限らず種々のものが考えられる。
The shape of the insulating film sandwiched between the source and drain is not limited to the wedge shape of this embodiment, but various shapes can be considered.

【0028】つぎに本発明の第2の実施例について、図
3(a)〜(d)を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 3(a) to 3(d).

【0029】はじめに図3(a)に示すように、P型シ
リコン基板1の厚さ25nmのSiO2 8を形成した
のち、厚さ500〜600nmのタンズステン9を堆積
させてからリソグラフィにより開口を形成する。
First, as shown in FIG. 3(a), after forming SiO2 8 with a thickness of 25 nm on a P-type silicon substrate 1, tungsten 9 with a thickness of 500 to 600 nm is deposited, and then an opening is formed by lithography. .

【0030】つぎに図3(b)に示すように、P型シリ
コン基板1を500℃に保って酸素を加速エネルギー1
00〜150keV、注入量(ドース)約2×1018
cm−2ホットイオン注入してからタングステン9を除
去する。つぎに1100〜1200℃でアニールしてS
iO2 10を形成する。つぎに全面にポリシリコン4
を成長させる。
Next, as shown in FIG. 3(b), the P-type silicon substrate 1 is maintained at 500° C. and oxygen is accelerated with an energy of 1.
00-150keV, implantation amount (dose) approximately 2×1018
After cm-2 hot ion implantation, tungsten 9 is removed. Next, annealing at 1100 to 1200℃ is performed.
Form iO2 10. Next, apply polysilicon 4 to the entire surface.
grow.

【0031】つぎに図3(c)に示すように、レーザー
アニールによりポリシリコン4を単結晶化してから、し
きい値電圧を制御する不純物をイオン注入し、ゲート酸
化膜5、ポリシリコンゲート電極6を形成する。
Next, as shown in FIG. 3(c), the polysilicon 4 is made into a single crystal by laser annealing, and then impurities for controlling the threshold voltage are ion-implanted to form the gate oxide film 5 and the polysilicon gate electrode. form 6.

【0032】つぎに図3(d)に示すように、砒素をイ
オン注入してソース7a、ドレイン7bを形成して素子
部が完成する。
Next, as shown in FIG. 3(d), arsenic ions are implanted to form a source 7a and a drain 7b, thereby completing the element section.

【0033】酸素をイオン注入するとき回転イオン注入
を行なうことにより、深さ方向に拡がった台形のSiO
2 を形成することができる。
By performing rotational ion implantation when ion-implanting oxygen, a trapezoidal shape of SiO that spreads in the depth direction is formed.
2 can be formed.

【0034】[0034]

【発明の効果】MOSFETのソース−ドレイン間を隔
離する絶縁層を設けたので、パンチスルー(短チャネル
効果)を防ぎ、α線がソース−ドレインを貫通するとき
に起る「0」→「1」のソフトエラーを防ぐ効果がある
Effects of the Invention: Since an insulating layer is provided to isolate the source and drain of the MOSFET, punch-through (short channel effect) is prevented, and the change from "0" to "1" that occurs when α rays penetrate the source and drain is prevented. ” is effective in preventing soft errors.

【0035】絶縁層の形状(大きさ、形、深さ)はMO
SFET毎に最適化することができる。
The shape (size, shape, depth) of the insulating layer is MO
It can be optimized for each SFET.

【0036】新たにシリコン層を形成してチャネル層と
するので、絶縁層を形成する工程で発生する表面損傷の
影響を受けないという利点がある。さらにMBE装置な
どを用いることにより、絶縁層上に形成するシリコン層
は極めて薄い層でも精度良く形成することができる。
Since a new silicon layer is formed to serve as the channel layer, there is an advantage that it is not affected by surface damage that occurs in the step of forming an insulating layer. Furthermore, by using an MBE apparatus or the like, even an extremely thin silicon layer can be formed on the insulating layer with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を示す斜視図と断面図で
ある。
FIG. 1 is a perspective view and a sectional view showing a first embodiment of the present invention.

【図2】本発明の小溝を形成する方法を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a method of forming small grooves according to the present invention.

【図3】本発明の第2の実施例を示す断面図である。FIG. 3 is a sectional view showing a second embodiment of the invention.

【図4】従来技術によるMOSFETを示す断面図であ
る。
FIG. 4 is a cross-sectional view of a MOSFET according to the prior art.

【図5】ソース−ドレイン貫通による「0」→「1」ソ
フトエラーを示す断面図である。
FIG. 5 is a cross-sectional view showing a "0" → "1" soft error due to source-drain penetration.

【符号の説明】[Explanation of symbols]

1    P型シリコン基板 2    小溝 3,3a    SiO2 4    ポリシリコン 5    ゲート酸化膜 6    ゲートポリシリコン 7a    ソース 7b    ドレイン 8    SiO2 9    タングステン 10    SiO2 11    絶縁基板 12    フィールド酸化膜 13    埋込酸化膜 14    フォトレジスト 1 P-type silicon substrate 2 Small groove 3,3a   SiO2 4 Polysilicon 5 Gate oxide film 6 Gate polysilicon 7a Source 7b Drain 8 SiO2 9 Tungsten 10   SiO2 11 Insulating substrate 12 Field oxide film 13 Buried oxide film 14 Photoresist

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板のチャネルが形成される反
転層よりも深いところに、ソース拡散層とドレイン拡散
層とを隔離する絶縁層をチャネル長よりも狭い帯状に形
成したMOS型電界効果トランジスタ。
1. A MOS type field effect transistor in which an insulating layer is formed in a strip shape narrower than the channel length to isolate a source diffusion layer and a drain diffusion layer in a region deeper than an inversion layer in which a channel is formed in a semiconductor substrate.
【請求項2】  絶縁層の上端はソース−ドレイン拡散
層の下端よりも浅い請求項1記載のMOS型電界効果ト
ランジスタ。
2. The MOS field effect transistor according to claim 1, wherein the upper end of the insulating layer is shallower than the lower end of the source-drain diffusion layer.
【請求項3】  絶縁層の下端はソース−ドレイン拡散
層の下端よりも深い請求項1記載のMOS型電界効果ト
ランジスタ。
3. The MOS field effect transistor according to claim 1, wherein the lower end of the insulating layer is deeper than the lower end of the source-drain diffusion layer.
【請求項4】  絶縁層は酸化シリコン、窒化シリコン
、酸化タンタル、有機絶縁物のうち1つ以上からなる請
求項1記載のMOS型電界効果トランジスタ。
4. The MOS field effect transistor according to claim 1, wherein the insulating layer is made of one or more of silicon oxide, silicon nitride, tantalum oxide, and an organic insulator.
【請求項5】半導体基板上に所定の形状の絶縁層を形成
する工程と、全面に厚さ0.2μm以下のポリシリコン
を堆積してから単結晶化する工程とを含む請求項1記載
のMOS型電界効果トランジスタの製造方法。
5. The method according to claim 1, comprising the steps of forming an insulating layer in a predetermined shape on the semiconductor substrate, and depositing polysilicon with a thickness of 0.2 μm or less over the entire surface and then converting it into a single crystal. A method for manufacturing a MOS field effect transistor.
【請求項6】半導体基板表面の所定の領域に酸素をイオ
ン注入して前記半導体基板の内部に絶縁層を形成する工
程と、全面に厚さ0.2μm以下のポリシリコンを堆積
してから単結晶化する工程とを含む請求項1記載のMO
S型電界効果トランジスタの製造方法。
6. A step of forming an insulating layer inside the semiconductor substrate by implanting oxygen ions into a predetermined region of the surface of the semiconductor substrate, and depositing polysilicon with a thickness of 0.2 μm or less over the entire surface, and then simply The MO according to claim 1, comprising the step of crystallizing.
A method for manufacturing an S-type field effect transistor.
JP1413391A 1991-02-05 1991-02-05 Mos type field effect transistor and fabrication thereof Pending JPH04249372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1413391A JPH04249372A (en) 1991-02-05 1991-02-05 Mos type field effect transistor and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1413391A JPH04249372A (en) 1991-02-05 1991-02-05 Mos type field effect transistor and fabrication thereof

Publications (1)

Publication Number Publication Date
JPH04249372A true JPH04249372A (en) 1992-09-04

Family

ID=11852639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1413391A Pending JPH04249372A (en) 1991-02-05 1991-02-05 Mos type field effect transistor and fabrication thereof

Country Status (1)

Country Link
JP (1) JPH04249372A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721198A (en) * 1985-07-05 1998-02-24 The Dow Chemical Company Elastic solids having reversible stress-induced fluidity
KR100403010B1 (en) * 1996-06-12 2004-05-24 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor device, semiconductor integrated device, and manufacturing method of semiconductor device
KR100493018B1 (en) * 2002-06-12 2005-06-07 삼성전자주식회사 Method for fabricating a semiconductor device
KR100578821B1 (en) * 2004-08-24 2006-05-11 삼성전자주식회사 Thin Film Formation Method
US7605025B2 (en) 2004-02-06 2009-10-20 Samsung Electronics Co., Ltd. Methods of forming MOSFETS using crystalline sacrificial structures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721198A (en) * 1985-07-05 1998-02-24 The Dow Chemical Company Elastic solids having reversible stress-induced fluidity
KR100403010B1 (en) * 1996-06-12 2004-05-24 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor device, semiconductor integrated device, and manufacturing method of semiconductor device
KR100493018B1 (en) * 2002-06-12 2005-06-07 삼성전자주식회사 Method for fabricating a semiconductor device
US7605025B2 (en) 2004-02-06 2009-10-20 Samsung Electronics Co., Ltd. Methods of forming MOSFETS using crystalline sacrificial structures
KR100578821B1 (en) * 2004-08-24 2006-05-11 삼성전자주식회사 Thin Film Formation Method

Similar Documents

Publication Publication Date Title
US5972754A (en) Method for fabricating MOSFET having increased effective gate length
US5296401A (en) MIS device having p channel MOS device and n channel MOS device with LDD structure and manufacturing method thereof
JPS6318867B2 (en)
JP2897004B2 (en) CMOSFET manufacturing method
JPH0426542B2 (en)
JPH08250728A (en) Field effect type semiconductor device and method of manufacturing the same
JPH04249372A (en) Mos type field effect transistor and fabrication thereof
JPH05267331A (en) Manufacture of mos semiconductor device
JPH05102179A (en) Semiconductor device and its manufacture
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
KR0146525B1 (en) Method for manufacturing thin film transistor
JP2852901B2 (en) Method of manufacturing MOSFET
JPH0147016B2 (en)
JP2703883B2 (en) MIS transistor and method of manufacturing the same
JPH0234936A (en) Semiconductor device and its manufacturing method
US6214674B1 (en) Method of fabricating high voltage device suitable for low voltage device
JPH02196434A (en) Manufacture of mos transistor
JP2833500B2 (en) Method for manufacturing surface tunnel transistor
JP3141520B2 (en) Method for manufacturing nonvolatile memory element
JP2892415B2 (en) Method for manufacturing semiconductor device
KR100249798B1 (en) Formation of thin junction layer and ion gate mask semiconductor device using ion implantation mask layer
JPS59231863A (en) Insulated gate semiconductor device and its manufacturing method
JPH0778979A (en) Method for manufacturing semiconductor device
JPH0630389B2 (en) Semiconductor element
KR100657754B1 (en) Manufacturing method of thin junction of semiconductor device