[go: up one dir, main page]

JPH04247219A - Exhaust gas treating device - Google Patents

Exhaust gas treating device

Info

Publication number
JPH04247219A
JPH04247219A JP3012079A JP1207991A JPH04247219A JP H04247219 A JPH04247219 A JP H04247219A JP 3012079 A JP3012079 A JP 3012079A JP 1207991 A JP1207991 A JP 1207991A JP H04247219 A JPH04247219 A JP H04247219A
Authority
JP
Japan
Prior art keywords
exhaust gas
reaction vessel
nox
plasma
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3012079A
Other languages
Japanese (ja)
Inventor
Seiichi Nishida
西田 聖一
Masayoshi Murata
正義 村田
Hiroyuki Matsunaga
松永 弘雪
Nobuaki Murakami
信明 村上
Satoshi Uchida
聡 内田
Takanobu Kondou
近藤 敬宣
Katsuo Hashizaki
克雄 橋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3012079A priority Critical patent/JPH04247219A/en
Publication of JPH04247219A publication Critical patent/JPH04247219A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To make the plasma reaction vessel of an exhaust gas treating device highly efficient. CONSTITUTION:A dielectric cylindrical reaction vessel 9 with the inner diameter gradually decreasing from the exhaust gas inlet side toward the outlet side, an external electrode 11 provided around the vessel 9, an internal electrode 10 furnished along the inner face of the vessel 9 with a supplied gas in-between and a power source 6 for impressing a voltage between the electrodes 11 and 10 are provided to the exhaust gas treating device. A plasma reaction is brought about between the electrodes 10 and 11, and the NOX in the exhaust gas are removed. At this time, since the flow rate is progressively increased toward the outlet side, the recombination of NOX is prevented, and the device is made highly effective.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は発電プラント用ボイラー
,ディーゼルエンジン,ガスタービンおよび各種燃焼炉
などから排出される排気ガス中のNOX を効果的にか
つ大容量除去することができるグロー放電プラズマによ
る排ガス処理装置に関する。
[Industrial Application Field] The present invention utilizes glow discharge plasma that can effectively and in large quantities remove NOX from exhaust gas emitted from power plant boilers, diesel engines, gas turbines, and various combustion furnaces. Related to exhaust gas treatment equipment.

【0002】0002

【従来の技術】図4および図5は従来から用いられてい
るグロー放電プラズマによる排ガス処理装置の説明図で
ある。この装置により例えばディーゼルエンジンの排ガ
ス中のNOX を処理する場合を例にとり説明する。
2. Description of the Related Art FIGS. 4 and 5 are explanatory diagrams of a conventional exhaust gas treatment apparatus using glow discharge plasma. An explanation will be given by taking as an example a case in which this device is used to treat NOX in the exhaust gas of a diesel engine.

【0003】図4において、ディーゼルエンジン101
の排ガスを排気管102を介してサイクロン・コレクタ
ー103に通し、微粒子を除去した後、サイクロン・コ
レクター排気管104を経由して、プラズマ反応容器1
05に導入する。プラズマ反応容器105は、図5(a
),(b)に詳細を示すように、筒状のガラス反応容器
109の内側に内部電極110,外側に外部電極111
を配設し、内部電極110および外部電極111に電圧
を印加する電源106により構成され、排ガスをプラズ
マ化することにより、排ガス中のNOX を下記の原理
により、除去する。すなわち、内部電極110と外部電
極111の間に、電源106用いて電圧を印加すると、
大気圧グロー放電現象で排ガスはプラズマ化される。そ
して、例えばNO2 は次の化学反応を起こす。
In FIG. 4, a diesel engine 101
The exhaust gas of
It will be introduced in 2005. The plasma reaction vessel 105 is shown in FIG.
), (b), an internal electrode 110 is placed inside the cylindrical glass reaction vessel 109, and an external electrode 111 is placed outside.
The device is configured with a power supply 106 that applies voltage to internal electrodes 110 and external electrodes 111, and removes NOX in the exhaust gas by turning the exhaust gas into plasma according to the following principle. That is, when a voltage is applied between the internal electrode 110 and the external electrode 111 using the power supply 106,
The exhaust gas is turned into plasma by the atmospheric pressure glow discharge phenomenon. For example, NO2 causes the following chemical reaction.

【0004】 2NO2 →2NO+O2             
    (1)2NO+O2 →N2 +2O2   
          (2)なお、プラズマは、外部電
界によって加速された高エネルギー電子がガス分子と衝
突し、励起分子,励起原子,遊離基,イオンおよび中性
粒子などが混在した電離気体であり、上記(1),(2
)式では数eV乃至数10eVのエネルギーを得たNO
X が化学的に活性な種となって、複雑な反応を起こし
た結果として、N2 およびO2 になると考えられる
2NO2 →2NO+O2
(1) 2NO+O2 →N2 +2O2
(2) Plasma is an ionized gas in which high-energy electrons accelerated by an external electric field collide with gas molecules, and excited molecules, atoms, free radicals, ions, and neutral particles coexist. ), (2
) formula, NO has an energy of several eV to several tens of eV.
It is thought that X becomes a chemically active species and as a result of a complex reaction, it becomes N2 and O2.

【0005】さて、上記のように、エンジンの排ガスを
大気圧グロー放電現象を利用して、プラズマ化すると、
(NO+NO2 )が50〜200 ppm 程度の濃
度および30ないし60  l/min程度の流量の範
囲では、プラズマ発生電力すなわち電源106より供給
される電力が数W乃至数10Wの範囲で、NOX 除去
率が80乃至90%を達成できる。
Now, as mentioned above, if engine exhaust gas is turned into plasma using the atmospheric pressure glow discharge phenomenon,
When the concentration of (NO+NO2) is about 50 to 200 ppm and the flow rate is about 30 to 60 l/min, the NOX removal rate is low when the plasma generation power, that is, the power supplied from the power supply 106 is in the range of several watts to several tens of watts. 80 to 90% can be achieved.

【0006】したがって、ボイラー,ガスタービンおよ
びディーゼルエンジンなど各種燃焼を伴う装置の排ガス
公害対策装置として活用されつつある。
[0006] Therefore, it is being utilized as an exhaust gas pollution control device for various types of equipment that involve combustion, such as boilers, gas turbines, and diesel engines.

【0007】[0007]

【発明が解決しようとする課題】上記、従来の装置では
次のような欠点があり、実用化が非常に困難であるとい
う問題点があった。
[Problems to be Solved by the Invention] The above-mentioned conventional apparatus has the following drawbacks, which make it extremely difficult to put it into practical use.

【0008】(1) 排ガス量をある一定量例えば(3
0〜60  l/min)程度よりもそれ以上に増加さ
せると、グロー放電プラズマが発生しなくなり、NOX
 除去ができなくなる。
(1) If the amount of exhaust gas is set to a certain amount, for example (3
If the flow rate is increased more than 0 to 60 l/min), glow discharge plasma will no longer be generated and NOX
It will not be possible to remove it.

【0009】(2) また、電極の大きさを排ガス流れ
方向へ長くすると、NOX 除去効果が著しく低下する
(2) Furthermore, if the size of the electrode is increased in the exhaust gas flow direction, the NOX removal effect will be significantly reduced.

【0010】(3) 上記(1),(2)の理由により
例えば数100〜数100,000 l/minクラス
の大容量排ガス処理装置としての利用ができない。
(3) Due to the reasons (1) and (2) above, it cannot be used as a large-capacity exhaust gas treatment device, for example, in the several 100 to several 100,000 l/min class.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
[Means for Solving the Problems] The present invention takes the following means to solve the above problems.

【0012】すなわち、排ガス処理装置として、グロー
放電プラズマを用いて排ガス中の窒素酸化物を無害化す
る排ガス処理装置において、上記排ガスの入口側から出
口側へ次第に内径が小さくなる誘電体製の筒形の反応容
器と、同反応容器の外面に沿って設けられる外部電極と
、上記反応容器の内面に沿いかつ所定の間隔をあけて設
けられる内部電極と、上記外部電極および上記内部電極
間に電圧を印加する電圧印加手段とを設ける。
That is, in an exhaust gas treatment apparatus that uses glow discharge plasma to detoxify nitrogen oxides in exhaust gas, a cylinder made of a dielectric material whose inner diameter gradually decreases from the inlet side to the outlet side of the exhaust gas is used. a reaction vessel having a shape, an external electrode provided along the outer surface of the reaction vessel, an internal electrode provided along the inner surface of the reaction vessel at a predetermined interval, and a voltage between the external electrode and the internal electrode. A voltage applying means for applying the voltage is provided.

【0013】[0013]

【作用】上記手段により、NOX を含んだ排ガスは反
応容器の入口から容器内の内面と内部電極との間に導入
される。さらに内部電極と外部電極間に電圧印加手段か
ら印加して、グロー放電を発生させる。すると前記(1
)式および(2)式の反応が生じ、NOX が除去され
る。
[Operation] By the above means, exhaust gas containing NOX is introduced from the inlet of the reaction vessel between the inner surface of the vessel and the internal electrode. Further, a voltage is applied between the internal electrode and the external electrode from a voltage applying means to generate a glow discharge. Then, the above (1
) and (2) reactions occur, and NOX is removed.

【0014】反応容器では入口から出口へ向けて次第に
流路断面積が小さくなるので、流側が増加する。すなわ
ち、プラズマ反応によりNOX 濃度が低下するにつれ
て、プラズマと排ガス(NOX )の接触時間が短縮さ
れていく。その結果NOX 除去に最適な電力供給がで
きるので、電力過剰による低濃度部でのNOX の再結
合がなくなる。したがって反応容器を延長してもNOX
 除去率は低下しない。
In the reaction vessel, the cross-sectional area of the flow path gradually decreases from the inlet to the outlet, so the flow side increases. That is, as the NOX concentration decreases due to the plasma reaction, the contact time between the plasma and the exhaust gas (NOX) decreases. As a result, optimal power supply for NOX removal can be achieved, eliminating recombination of NOX in low concentration areas due to excessive power. Therefore, even if the reaction vessel is extended, NO
Removal rate does not decrease.

【0015】以上のようにして、高効率でNOX が処
理でき、かつ処理量の増加を図ることができる。
[0015] As described above, NOX can be treated with high efficiency and the throughput can be increased.

【0016】[0016]

【実施例】本発明の一実施例を図1及び図2により説明
する。図1において1は汎用の燃焼炉で、排気ガス公害
対策を講じるための対象物である。2は上記汎用の燃焼
炉1の排ガスを除じん器(サイクロン・コレクター等)
3に移送する排気管である。除じん器3では排気ガスに
含まれている粒子類を除去する。4は除じん器3の排気
ガスをプラズマ反応容器5に移送する排気管,6は上記
プラズマ反応容器5の電極にプラズマ発生電力を印加す
る電源,7はプラズマ反応容器5に連結された排ガス出
力管である。
[Embodiment] An embodiment of the present invention will be explained with reference to FIGS. 1 and 2. In FIG. 1, 1 is a general-purpose combustion furnace, which is an object for taking measures against exhaust gas pollution. 2 is a dust remover (cyclone collector, etc.) for the exhaust gas from the general-purpose combustion furnace 1 mentioned above.
This is the exhaust pipe that transfers the air to No. 3. The dust remover 3 removes particles contained in the exhaust gas. 4 is an exhaust pipe that transfers the exhaust gas from the dust remover 3 to the plasma reaction vessel 5; 6 is a power source that applies plasma generation power to the electrodes of the plasma reaction vessel 5; and 7 is an exhaust gas output connected to the plasma reaction vessel 5. It's a tube.

【0017】図2によりプラズマ反応容器5について詳
細に説明する。両端が開口している円錐状の反応容器9
は誘電体(例えば、ガラス・セラミックスなど)製であ
る。反応容器9は、ガス入口側から出口側に向け、次第
に口径が小さくなった筒状となっている。
The plasma reaction vessel 5 will be explained in detail with reference to FIG. Conical reaction vessel 9 with open ends
is made of dielectric material (eg, glass ceramics, etc.). The reaction vessel 9 has a cylindrical shape whose diameter gradually decreases from the gas inlet side to the outlet side.

【0018】反応容器9の外面には外部電極11が密着
して設置されている。また反応容器9の内部の空間には
円錐状の内部電極10が同軸に設けられる。このとき反
応容器9の内面と内部電極10の外面とは、所定の一定
の間隔をあけて配置される。内外部電極10,11は電
源6につながれる。
An external electrode 11 is placed in close contact with the outer surface of the reaction vessel 9. Further, a conical internal electrode 10 is coaxially provided in the interior space of the reaction vessel 9. At this time, the inner surface of the reaction container 9 and the outer surface of the internal electrode 10 are spaced apart from each other by a predetermined constant distance. The inner and outer electrodes 10 and 11 are connected to a power source 6.

【0019】プラズマ反応容器5は以上の反応容器9,
内外部電極10,11を備えている。
The plasma reaction vessel 5 includes the above reaction vessels 9,
It has inner and outer electrodes 10 and 11.

【0020】プラズマ反応容器5の入口には排ガス入口
管18,出口には排ガス出口管7が接続されている。
An exhaust gas inlet pipe 18 is connected to the inlet of the plasma reaction vessel 5, and an exhaust gas outlet pipe 7 is connected to the outlet thereof.

【0021】以上の構成において、燃焼炉1で発生した
NOx を含む排ガスを、排気管2を介して除じん器3
に移送し、除じん器3で排ガス中の粒子類を除去し、こ
の排ガスを排気管4を介してプラズマ反応容器5の排ガ
ス入口管18を介して、反応容器9の内部に導入する。
In the above configuration, the exhaust gas containing NOx generated in the combustion furnace 1 is passed through the exhaust pipe 2 to the dust remover 3.
The dust remover 3 removes particles in the exhaust gas, and the exhaust gas is introduced into the reaction vessel 9 via the exhaust pipe 4 and the exhaust gas inlet pipe 18 of the plasma reaction vessel 5.

【0022】他方、プラズマ発生用の電源6から内部電
極10及び外部電極11に電力を供給すると、反応容器
9の誘電体と内部電極10の間に排ガスのプラズマが発
生する。このプラズマはグロー放電プラズマでありNO
X およびN2 ,O2 などのガス分子を励起および
解離させ、化学的に活性な状態とする。それによって前
記(1)および(2)式の化学反応がひき起こされ、N
OX がN2 およびO2 になり除去される。
On the other hand, when power is supplied from the plasma generation power source 6 to the internal electrode 10 and the external electrode 11, exhaust gas plasma is generated between the dielectric of the reaction vessel 9 and the internal electrode 10. This plasma is a glow discharge plasma and NO
It excites and dissociates gas molecules such as X and N2, O2, and makes them chemically active. This causes the chemical reactions of formulas (1) and (2) above, and N
OX becomes N2 and O2 and is removed.

【0023】本実施例の装置で得たNOx (50〜2
00ppm )の除去状況を図3(a)〜(c)により
説明する。本例では、流量10 0  l/minであ
る。
NOx (50-2
The removal status of 00 ppm) will be explained with reference to FIGS. 3(a) to 3(c). In this example, the flow rate is 100 l/min.

【0024】図3(a)は反応容器内の軸方向の位置と
ガス流速の関係を示すグラフである。反応容器9はガス
入口側から出口側に行くにつれ、次第に口径が小さくな
っているのでガス入口側から出口側に向って次第に流速
が増加する(同図実線)。そうすると、図3(b)(実
線)に示すようにプラズマと排ガスの接触時間はガス入
口側から出口側に行くにつれ、次第に短かくなっていく
。反応容器9のガス入口の口径,ガス出口の口径,及び
、ガス流れ方向の長さを調整すると図3(c)(実線)
に示すように反応容器9の出口では100%程度のNO
X 除去率が得られている。
FIG. 3(a) is a graph showing the relationship between the axial position in the reaction vessel and the gas flow rate. Since the diameter of the reaction vessel 9 gradually decreases from the gas inlet side to the outlet side, the flow rate gradually increases from the gas inlet side to the outlet side (solid line in the figure). Then, as shown in FIG. 3(b) (solid line), the contact time between the plasma and the exhaust gas gradually becomes shorter from the gas inlet side to the outlet side. When the diameter of the gas inlet, the diameter of the gas outlet, and the length in the gas flow direction of the reaction vessel 9 are adjusted, the result is shown in FIG. 3(c) (solid line).
As shown in the figure, approximately 100% NO is present at the outlet of the reaction vessel 9.
X removal rate has been obtained.

【0025】従来の装置では反応容器のガス入口側から
出口側にかけて、均一な電力を供給し、かつプラズマと
排ガスの接触時間が均一であるため、NOX濃度の低下
する反応容器のガス出口付近では余分な電力が供給され
、N2 とO2 に分解されたNOX が再結合してN
OX 除去率は50%程度であった。このような理由に
より、従来のプラズマ法では反応容器(電極)を延長し
てNOX 除去率を向上させることができない、あるい
は排ガス処理量を60  l/min以上にすることが
できないという問題点があった。
[0025] In the conventional device, uniform power is supplied from the gas inlet side to the outlet side of the reaction vessel, and the contact time between the plasma and the exhaust gas is uniform, so near the gas outlet of the reaction vessel where the NOx concentration decreases, When extra power is supplied, NOX decomposed into N2 and O2 recombines and becomes N
The OX removal rate was about 50%. For these reasons, the conventional plasma method has problems in that it is not possible to extend the reaction vessel (electrode) to improve the NOX removal rate, or it is not possible to increase the exhaust gas processing rate to 60 l/min or more. Ta.

【0026】しかし、本実施例では、反応容器内のガス
流速をガス入口側から出口側に行くにつれ、次第に増加
させているので、プラズマ反応によりNOX濃度が低下
するにつれて、プラズマと排ガス(NOX )の接触時
間が短縮されていく。その結果NOX 除去に最適な電
力供給ができるので、電力過剰によるNOX の再結合
がなくなる。したがって反応容器を延長すればNOX 
除去率は向上する。また、反応容器を複数並列接続する
ことにより、例えば、流量10,0 0 0  l/m
inでも処理可能となる。(従来比約100倍)。
However, in this embodiment, the gas flow rate in the reaction vessel is gradually increased from the gas inlet side to the outlet side, so as the NOX concentration decreases due to the plasma reaction, the plasma and exhaust gas (NOX) contact time will be shortened. As a result, optimal power supply for NOX removal can be achieved, eliminating recombination of NOX due to excessive power. Therefore, if the reaction vessel is extended, NOx
Removal rate is improved. In addition, by connecting multiple reaction vessels in parallel, for example, a flow rate of 10,000 l/m can be achieved.
It is also possible to process in. (approximately 100 times the conventional ratio).

【0027】[0027]

【発明の効果】以上に説明したように本発明の装置によ
れば、反応容器の後流部でのNOX の再結合がなくな
るので、除去効率が大幅に向上する。また、大型化ある
いは多数並列に設置すれば処理容量はさらに大幅に増加
できる。したがって、大容量排ガスNOX 除去装置と
しての産業上の価値が著しく高い。
As explained above, according to the apparatus of the present invention, the recombination of NOX in the downstream part of the reaction vessel is eliminated, so that the removal efficiency is greatly improved. In addition, by increasing the size or installing multiple devices in parallel, the processing capacity can be further increased significantly. Therefore, it has extremely high industrial value as a large-capacity exhaust gas NOX removal device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の一実施例の全体系統図である。FIG. 1 is an overall system diagram of an embodiment of the present invention.

【図2】図2は同実施例のプラズマ反応容器の詳細縦断
面図である。
FIG. 2 is a detailed longitudinal sectional view of the plasma reaction vessel of the same embodiment.

【図3】図3,(a),(b),(c)は同実施例の作
用説明図である。
FIG. 3A, FIG. 3B, and FIG. 3C are explanatory views of the operation of the same embodiment.

【図4】図4は従来例の全体系統図である。FIG. 4 is an overall system diagram of a conventional example.

【図5】図5(a),(b)は同従来例の反応容器の構
成図である。
FIGS. 5(a) and 5(b) are configuration diagrams of a reaction vessel of the same conventional example.

【符号の説明】[Explanation of symbols]

1    燃焼炉 2    排気管 3    除じん器 4    排気管 5    プラズマ反応容器 6    電源 7    排ガス出口管 9    反応容器 10  内部電極(円錐状) 11  外部電極(円錐状) 18  排ガス入口管 1 Combustion furnace 2 Exhaust pipe 3. Dust remover 4 Exhaust pipe 5 Plasma reaction vessel 6 Power supply 7 Exhaust gas outlet pipe 9 Reaction container 10 Internal electrode (conical) 11 External electrode (conical) 18 Exhaust gas inlet pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  グロー放電プラズマを用いて排ガス中
の窒素酸化物を無害化する排ガス処理装置において、上
記排ガスの入口側から出口側へ次第に内径が小さくなる
誘電体製の筒形の反応容器と、同反応容器の外面に沿っ
て設けられる外部電極と、上記反応容器の内面に沿いか
つ所定の間隔をあけて設けられる内部電極と、上記外部
電極および上記内部電極間に電圧を印加する電圧印加手
段とを備えてなることを特徴とする排ガス処理装置。
1. An exhaust gas treatment device that uses glow discharge plasma to detoxify nitrogen oxides in exhaust gas, comprising: a cylindrical reaction vessel made of a dielectric material whose inner diameter gradually decreases from the inlet side to the outlet side of the exhaust gas; , an external electrode provided along the outer surface of the reaction container, an internal electrode provided along the inner surface of the reaction container at a predetermined interval, and voltage application for applying a voltage between the external electrode and the internal electrode. An exhaust gas treatment device comprising: means.
JP3012079A 1991-02-01 1991-02-01 Exhaust gas treating device Withdrawn JPH04247219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3012079A JPH04247219A (en) 1991-02-01 1991-02-01 Exhaust gas treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3012079A JPH04247219A (en) 1991-02-01 1991-02-01 Exhaust gas treating device

Publications (1)

Publication Number Publication Date
JPH04247219A true JPH04247219A (en) 1992-09-03

Family

ID=11795581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3012079A Withdrawn JPH04247219A (en) 1991-02-01 1991-02-01 Exhaust gas treating device

Country Status (1)

Country Link
JP (1) JPH04247219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060091869A (en) * 2005-02-16 2006-08-22 이상석 Low power and multi-purpose plasma generation method using commercial power supply and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060091869A (en) * 2005-02-16 2006-08-22 이상석 Low power and multi-purpose plasma generation method using commercial power supply and device

Similar Documents

Publication Publication Date Title
EP0366876B1 (en) Exhaust gas treating apparatus
US5284556A (en) Exhaust treatment system and method
JPH04305226A (en) Method for decreasing nox in gas
JPH06106025A (en) Plasma reaction vessel in nitrogen oxide decomposition device
JPH0615143A (en) Plasma reaction vessel for nitrogen oxide decomposition device
US7121079B2 (en) System for exhaust gas treatment comprising a gas ionizing system with ionized air injection
JP3101744B2 (en) Exhaust gas treatment method and exhaust gas treatment device
JPH06178914A (en) Waste gas treatment device
JPH05115746A (en) Exhaust gas treatment apparatus
JPH04247219A (en) Exhaust gas treating device
JPH04219123A (en) Device for treating waste gas with glow discharge plasma
JPH04122417A (en) Exhaust gas treating device
JP3089213B2 (en) Multistage exhaust gas treatment reactor
JP3156185B2 (en) Exhaust gas treatment method and apparatus
KR102249085B1 (en) Rf plasma exhaust gas treatment device
JPH02211219A (en) Waste gas treatment apparatus
JPH04338215A (en) Exhaust gas treating device
JPH04363115A (en) Exhaust gas treating equipment
JPH02227117A (en) Exhaust gas treating equipment
JPH047019A (en) Exhaust gas treating device
JPH04110013A (en) Exhaust gas treating device
JPH07116460A (en) Apparatus for treating exhaust gas
JPH06182150A (en) Method to make nitrogen oxide containing exhaust gas harmless
JPH05309231A (en) Device for treating exhaust gas
JPH02258014A (en) Apparatus for treating flue gas

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514