[go: up one dir, main page]

JPH0424552A - Analyzing method for hydroquinone derivative - Google Patents

Analyzing method for hydroquinone derivative

Info

Publication number
JPH0424552A
JPH0424552A JP12900490A JP12900490A JPH0424552A JP H0424552 A JPH0424552 A JP H0424552A JP 12900490 A JP12900490 A JP 12900490A JP 12900490 A JP12900490 A JP 12900490A JP H0424552 A JPH0424552 A JP H0424552A
Authority
JP
Japan
Prior art keywords
metal
column
filler
eluate
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12900490A
Other languages
Japanese (ja)
Inventor
Hiroyuki Moriyama
森山 弘之
Katsuo Komiya
克夫 小宮
Mitsuo Aoki
光夫 青木
Takae Yamato
大和 孝江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP12900490A priority Critical patent/JPH0424552A/en
Publication of JPH0424552A publication Critical patent/JPH0424552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To make it possible to analyze a hydroquinone derivative which is readily subject to oxidation reaction by using a high-speed liquid chromatography device that is not in contact with metal, eluate from which dissolved oxygen is removed and filler whose content of impure metal is less in the liquid contact part of the eluate. CONSTITUTION:In order to avoid the contact between eluate wherein a sample is dissolved and a metal part, a glass-lined stainless pipe or a synthetic macromolecular material is utilized in a piping system, and solvent-resisting property and pressure resistance property are provided. For a pump head and the like, a material which is machined with resin is utilized. For a column, a column such as glass-lining coated column having excellent pressure resistance property and organic-solvent resisting property is used. A filler wherein the diameter of the particle is small is made to fill the column. Since the metal in the filler is made to be 10ppm or less, the filler such as highly pure silica gel is utilized. The filler containing a large amount of metal is cleaned with aqueous solution of inorganic acid or cleaned with chelate reagent and removed. Since the dissolved oxygen in the eluate is made to be 10ppm or less, the dissolved oxygen in the eluate is removed by pressure reduced degassing, ultrasonic degassing and the like.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ヒドロキノン誘導体の分析方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for analyzing hydroquinone derivatives.

更に詳しくは、高速液体クロマトグラフィーによるヒド
ロキノン誘導体の分析において、試料溶液が金属と接し
ない測定系を用いることを特徴とするヒドロキノン誘導
体の分析方法に関する。
More specifically, the present invention relates to a method for analyzing hydroquinone derivatives using high-performance liquid chromatography, which is characterized by using a measurement system in which the sample solution does not come into contact with metals.

〈従来技術と問題点〉 高速液体クロマトグラフィー(IIPLC)は、分析手
段の一つとして重要な方法であるが、測定の際に試料の
分解や化学変化をともなうことがある。これらの分解反
応や化学反応は、溶離液との化学反応や加水分解反応、
或いは溶N液中の溶存酸素由来の酸化反応や、測定系に
おける溶離液中の或いは測定装置由来の金属による酸化
反応等が挙げられる。この様な測定中の化学反応は被検
体物質の定量を著しく阻害し、分析結果の正確さが失わ
れる原因となるため、可能な限り抑制する必要がある。
<Prior Art and Problems> High performance liquid chromatography (IIPLC) is an important method as an analytical means, but it may involve decomposition or chemical changes of a sample during measurement. These decomposition reactions and chemical reactions include chemical reactions with the eluent, hydrolysis reactions,
Alternatively, oxidation reactions derived from dissolved oxygen in the solution N solution, oxidation reactions caused by metals in the eluent in the measurement system or from the measurement device, etc. can be mentioned. Such chemical reactions during measurement significantly impede the quantification of the analyte substance and cause a loss of accuracy in the analysis results, so they must be suppressed as much as possible.

測定の再現性や正確さを高めるためにHPLCによる酸
化反応を受けやすい物質の分析では、酸化反応を誘発す
る因子の除去が不可欠であり、その要因として測定系中
の酸素や金属種の存在が挙げられる。通常、HPLCで
は、分析カラムとしてステンレスカラムが耐圧性、耐有
機溶媒性、価格等の点で広く用いられ、またポンプや配
管類なども耐圧性を考慮し金属製で作製されている。こ
のため、溶離液が大部分金属と接していることから、測
定の際、被検体が金属と接触したり、また金属部分から
溶解した金属によって試料が酸化反応を受ける。更には
溶離液に溶解した酸素により酸化反応を生じ検体物質が
変化する。金属が溶離液に接しないように設計された中
低圧液体クロマトグラフィー用装置は市販されているが
、いずれもタンパク質などの生体高分子の分離用である
ため耐圧性に欠ける。
In order to improve the reproducibility and accuracy of measurements, it is essential to remove factors that induce oxidation reactions when analyzing substances that are susceptible to oxidation reactions by HPLC, and the presence of oxygen and metal species in the measurement system is essential. Can be mentioned. Generally, in HPLC, stainless steel columns are widely used as analytical columns due to pressure resistance, organic solvent resistance, cost, etc., and pumps, piping, etc. are also made of metal in consideration of pressure resistance. For this reason, most of the eluent is in contact with the metal, so during measurement, the specimen comes into contact with the metal, and the sample undergoes an oxidation reaction due to the metal dissolved from the metal portion. Furthermore, the oxygen dissolved in the eluent causes an oxidation reaction and changes the sample substance. Medium- and low-pressure liquid chromatography devices designed to prevent the metal from coming into contact with the eluent are commercially available, but all of them lack pressure resistance because they are used to separate biopolymers such as proteins.

く問題点を解決する方法〉 本発明は、溶離液の接液部、配管、カラムおよび試料注
入装置に金属と接しない高速液体クロマトグラフィー用
装置と溶存酸素を除去した溶離液を用い、更に不純金属
の含有量が少ない充填剤を用いることによって、酸化反
応を受けやすいヒドロキノン誘導体の分析方法を提供す
るものである。
The present invention uses a high-performance liquid chromatography device that does not come into contact with metals in the eluent contact parts, piping, columns, and sample injection device, and an eluent from which dissolved oxygen has been removed, and further eliminates impurities. The present invention provides a method for analyzing hydroquinone derivatives that are susceptible to oxidation reactions by using a filler with a low metal content.

すなわち本発明は、溶存酸素がlQppm以下の溶離液
、金属含有量が10ppm以下の充填剤及び溶離液が金
属と接することのない液体クロマトグラフィー用装置を
用いることを特徴とするヒドロキノン誘導体の分析方法
に関するものである。
That is, the present invention provides a method for analyzing hydroquinone derivatives, which is characterized by using an eluent with dissolved oxygen of 1Q ppm or less, a packing material with a metal content of 10 ppm or less, and a liquid chromatography device in which the eluent does not come into contact with metals. It is related to.

本発明でいうヒドロキノン誘導体とは、例えば、ヒドロ
キノン、及び置換ヒドロキノン体、或いは酸化反応の結
果キノン構造を有する誘導体を与える化合物など、容易
に酸化反応によってキノン構造物質に変化する化合物を
いう。ヒドロキノン誘導体は、金属イオンと電子の授受
を行ない式(1)に示すような反応を行ない、キノン誘
導体へと酸化される。
The term "hydroquinone derivative" as used in the present invention refers to a compound that easily changes into a quinone structure substance through an oxidation reaction, such as hydroquinone, a substituted hydroquinone, or a compound that yields a derivative having a quinone structure as a result of an oxidation reaction. The hydroquinone derivative exchanges electrons with a metal ion to undergo a reaction as shown in formula (1), and is oxidized to a quinone derivative.

(R,−R4は水素或いは置換基、芳香縮合環、Xは酸
素或いは置換基を持つ窒素、Xは金属)例えば1.2−
1或いは1.4−ヒドロキノン、メトキシ基、ターシャ
アリ−ブチル基、メチル基等の置換基を有するヒドロキ
ノン、キニザリン、1.4−ジヒドロナフタレン、及び
その誘導体、更にはp−ヒドロキシジフェニルアミン等
のヒドロキノン類似体が挙げられる。
(R, -R4 are hydrogen or a substituent, aromatic condensed ring, X is oxygen or nitrogen with a substituent, X is a metal) For example, 1.2-
1 or 1,4-hydroquinone, hydroquinone having a substituent such as a methoxy group, a tertiary butyl group, or a methyl group, quinizarin, 1,4-dihydronaphthalene, and its derivatives, and hydroquinone analogs such as p-hydroxydiphenylamine. One example is the body.

本発明を達成するためには、試料が溶解した溶離液と金
属部分との接触を避け、また溶離液に溶解した酸素を除
去しなければならない。
In order to achieve the present invention, it is necessary to avoid contact between the eluent in which the sample is dissolved and the metal part, and to remove oxygen dissolved in the eluent.

測定系では、溶離液が金属と接しない測定系の作製は、
溶離液からポンプまでの配管、微粒子除去用の溶媒フィ
ルター ポンプ、試料注入装置(インジェクター)、カ
ラム、配管について考慮されなければならない。たとえ
ば、配管系では、溶離液容器から送液ポンプまでと送液
ポンプから試料注入バルブ、試料溶液ループ、試料注入
バルブからカラム入口、カラム出口から検出器に至る全
てにおいて金属との接液を避ける必要がある。
In the measurement system, creating a measurement system in which the eluent does not come into contact with the metal is
Consideration must be given to the piping from the eluent to the pump, the solvent filter pump for particulate removal, the sample injection device (injector), the column, and the piping. For example, in the piping system, avoid contact with metal in everything from the eluent container to the liquid pump, from the liquid pump to the sample injection valve, to the sample solution loop, from the sample injection valve to the column inlet, and from the column outlet to the detector. There is a need.

本目的を達成するために利用できる材質としては、ガラ
スライニングステンレスパイプ、テトラフルオロエチレ
ン(テフロン)製或いは、ポリエーテルエーテルケトン
製(PEEK)などの合成高分子材料が利用できる。特
にPEEK製の配管は耐溶媒性、耐圧性であり本発明に
適している。
Examples of materials that can be used to achieve this purpose include glass-lined stainless steel pipes, synthetic polymer materials such as tetrafluoroethylene (Teflon), and polyetheretherketone (PEEK). In particular, PEEK piping is solvent resistant and pressure resistant and is suitable for the present invention.

送液ポンプ、及びインジェクターは、ポンプヘッド等が
樹脂で加工されたものが市販されており、本発明に利用
できる。
Liquid pumps and injectors whose pump heads and the like are processed with resin are commercially available and can be used in the present invention.

カラムについては、ステンレス製以外の材質として、ガ
ラス、ポリカーボネート、テフロン内面コートステンレ
ス、ガラスライニングステンレス、PEEK、チタン等
が上げられる。ガラスカラムやポリカーボネートカラム
は、金属と相互作用するタンパク質などの生体高分子の
分離の際に利用されている。しかし、耐圧性が低いため
充填剤の粒子径を小さくできず、高理論段の充填カラム
を得ることが困難である。また、テフロン内面コートカ
ラム、ガラスライニングコートカラム、PEEK製カラ
ムは、耐圧性、耐有機溶媒性に優れているため、小さい
粒子径の充填剤を充填でき、その結果分離能の高いカラ
ムを得ることができる。
As for the column, materials other than stainless steel include glass, polycarbonate, Teflon inner-coated stainless steel, glass-lined stainless steel, PEEK, titanium, and the like. Glass columns and polycarbonate columns are used to separate biopolymers such as proteins that interact with metals. However, due to the low pressure resistance, the particle size of the packing material cannot be reduced, making it difficult to obtain a packed column with high theoretical plates. In addition, Teflon inner-coated columns, glass-lined columns, and PEEK columns have excellent pressure resistance and organic solvent resistance, so they can be filled with packing materials with small particle diameters, resulting in columns with high resolution. I can do it.

充填剤中に含まれる金属も酸化反応に寄与すると考えら
れるため金属の含有量の少ない充填剤を用いる必要があ
る。従って充填剤中の金属は、10ppm以下でなけれ
ばならない。充填剤としては、高純度のシリカゲル及び
ポリマーを基材とした充填剤が利用できる。或いは、金
属を多量に含有する充填剤であっても、例えば、薄い塩
酸や硫酸などの無機酸水溶液で洗浄するか、エチレンジ
アミン四酢酸二ナトリウムなどのキレート試薬で洗浄す
ることによって除去することができる。
Since the metal contained in the filler is also considered to contribute to the oxidation reaction, it is necessary to use a filler with a low metal content. Therefore, the metal content in the filler must be less than 10 ppm. As the filler, high purity silica gel and polymer-based fillers can be used. Alternatively, even metal-rich fillers can be removed, for example, by washing with a dilute aqueous inorganic acid solution such as hydrochloric acid or sulfuric acid, or with a chelating reagent such as disodium ethylenediaminetetraacetate. .

溶離液中の溶存酸素は10ppm以下である。Dissolved oxygen in the eluent is 10 ppm or less.

溶離液中の溶存酸素の除去は、例えば、減圧脱気や超音
波脱気、ヘリウムのバブリングや膜脱気により達成でき
る。特に、ヘリウムのバブリングや、膜脱気装置による
オンラインでの脱気は長期間にわたって溶離液中の溶存
酸素を除去できるので本発明に適している。
Removal of dissolved oxygen in the eluent can be achieved, for example, by vacuum degassing, ultrasonic degassing, helium bubbling, or membrane degassing. In particular, helium bubbling or online deaeration using a membrane deaerator are suitable for the present invention because they can remove dissolved oxygen in the eluent over a long period of time.

以下実施例を用いて本発明を説明するが、本発明は実施
例に限定される物ではない。
The present invention will be explained below using Examples, but the present invention is not limited to the Examples.

〈実施例〉 市販のガラスライニングステンレスカラム 内径4mm
、長さ 25cm  (ガスクロ工業製) 、PEEK
製カラム 内径4.8mm、長さ 25c+a  (S
AS製)、ステンレスカラム 内径4.6sa+ 、長
さ 25cm  (杉山商事製)に逆相用充填剤TSK
gel ODS−807M(5u tb 。
<Example> Commercially available glass-lined stainless steel column, inner diameter 4 mm
, Length 25cm (manufactured by Gascro Industries), PEEK
manufactured column, inner diameter 4.8mm, length 25c+a (S
(manufactured by AS), stainless steel column inner diameter 4.6sa+, length 25cm (manufactured by Sugiyama Shoji) with TSK packing material for reversed phase.
gel ODS-807M (5u tb.

東ソー製)を充填した。測定系として、接液部がテフロ
ン製である樹脂仕様高圧送液ポンプ(CCPM。
(manufactured by Tosoh). The measurement system is a resin high-pressure liquid pump (CCPM) whose wetted parts are made of Teflon.

東ソー製)とインジェクター(レオダイン社製、712
5) 、配管に内径0.25mmのPEEK製/くイブ
(SAS製)を用い、また、溶離液口過のためにテフロ
ン製の溶媒フィルターを装着した。更に、溶離液は、M
1定の前12時間前から、ヘリウムをノ(ブリングした
。試料として、2,6−ジターシャリ−ブチルヒドロキ
ノン(DBIIQ)を用い、注入前にアセトニトリルに
溶解し、アセトニトリル70部、蒸留水30部を溶離液
として、また、3−メトキシヒドロキノン(MHQ)を
試料として、アセトニトリル10部、蒸留水90部の溶
離液として、紫外吸収光度計(UV−2151、LKB
製、テフロン製セル、検出波長254r+m)で測定し
た。測定の間、溶離液中にヘリウムをバブリングしなが
ら、上述の充填カラムをもちいて測定した。測定は3回
行ない、非金属系システムのピークカラムによって得ら
れた酸化体、2.6ジターシヤリーブチルヒドロキノン
(DBBQ)及び2メトキシベンゾキノン(MBQ)の
面積に対するそれぞれの測定で得られた酸化体の面積比
を表1にまとめた。また、得られたクロマトグラムを、
図1に示した。
Tosoh) and injector (Rheodyne, 712)
5) A PEEK tube (manufactured by SAS) with an inner diameter of 0.25 mm was used for the piping, and a Teflon solvent filter was attached to pass the eluent. Furthermore, the eluent is M
12 hours before injection, helium was bled. 2,6-ditertiary-butylhydroquinone (DBIIQ) was used as a sample. Before injection, it was dissolved in acetonitrile, and 70 parts of acetonitrile and 30 parts of distilled water were added. An ultraviolet absorption photometer (UV-2151, LKB
The measurement was carried out using a Teflon cell manufactured by Teflon Co., Ltd., and a detection wavelength of 254 r+m). The measurement was carried out using the above-mentioned packed column while bubbling helium into the eluent during the measurement. The measurements were carried out three times, and the oxidants obtained in each measurement for the area of 2.6 ditertiary butylhydroquinone (DBBQ) and 2 methoxybenzoquinone (MBQ), the oxidant obtained by the peak column of the non-metal system, The area ratios are summarized in Table 1. In addition, the obtained chromatogram is
It is shown in Figure 1.

溶離液中の溶存酸素を溶存酸素系(弁内製)で測定した
ところ。7.4ppmであった。また、充填剤中の金属
含有量は、Fe、ippm以下、Na、5ppm以下、
CLl % 1 p p m以下、Ti。
Dissolved oxygen in the eluent was measured using a dissolved oxygen system (manufactured by Benuchi). It was 7.4 ppm. In addition, the metal content in the filler is Fe, ippm or less, Na, 5ppm or less,
CLl % 1 ppm or less, Ti.

ippm以下であった。It was below ippm.

楽 翻 凝 ロー に く比較例1> 市販の高圧送液ポンプ(CCPM、東ソー製)、試料注
入バルブ(レオダイン製、7125) 、ステンレス製
パイプを用いること以外は実施例1と同様に充填カラム
を用いて試料を測定した。その結果を表1にまとめた。
Rakuten Coagulation Low Comparative Example 1> A packed column was prepared in the same manner as in Example 1, except that a commercially available high-pressure liquid pump (CCPM, manufactured by Tosoh), a sample injection valve (7125, manufactured by Rheodyne), and a stainless steel pipe were used. The sample was measured using The results are summarized in Table 1.

く比較例2〉 酸素濃度は55ppmの溶離液を用いた以外は実施例1
と同様に分析した。
Comparative Example 2> Example 1 except that an eluent with an oxygen concentration of 55 ppm was used.
Analyzed in the same way.

〈実施例2〉 実施例1で調整した分析カラムを用い、膜脱気装置(E
RC−3522、東ソー製)にょる脱気をオンラインで
行なった溶離液を24時間通液した後、DBHQの分析
を行なった。通液前後での酸化体の面積のピークカラム
で得られた酸化体の面積に対する比を表2に示した。
<Example 2> Using the analytical column prepared in Example 1, a membrane degasser (E
RC-3522 (manufactured by Tosoh) and an eluent degassed online for 24 hours, and then DBHQ analysis was performed. Table 2 shows the ratio of the area of the oxidant before and after passing the liquid to the area of the oxidant obtained in the peak column.

また、クロマトグラムを図2に示した。Further, a chromatogram is shown in FIG. 2.

表2 酸化型物質のピーク面積比 通液前    通液後 ガラスコートカラム  1.02     1.0AP
EEK製カラム     1       1.03ス
テンレスカラム   1.39     3.28く比
較例3〉 金属含有量の多い充填剤が充填されたピークカラム、及
び同様の充填剤が充填されたピークカラムを1mMエチ
レンジアミン四酢酸二ナトリウム水溶液50部、アセト
ニトリル50部を24時間、0、 5 1111/wi
nの流速で通液洗浄したカラムを用い、蒸留水90部、
アセトニトリル10部を溶離液とヒドロキノン(IIQ
)を分析した。その結果得られたクロマトグラムを図3
に示した。表3に酸化体のピーク面積と金属分析の結果
を示した。
Table 2 Peak area ratio of oxidized substances Before passing through Glass coated column after passing through liquid 1.02 1.0AP
EEK Column 1 1.03 Stainless Steel Column 1.39 3.28 Comparative Example 3> A peak column packed with a packing material with a high metal content and a peak column packed with a similar packing material were treated with 1mM ethylenediaminetetraacetic acid. 50 parts of disodium aqueous solution and 50 parts of acetonitrile for 24 hours, 0.5 1111/wi
Using a column washed with liquid at a flow rate of n, 90 parts of distilled water,
Add 10 parts of acetonitrile to the eluent and hydroquinone (IIQ
) was analyzed. The resulting chromatogram is shown in Figure 3.
It was shown to. Table 3 shows the peak areas of the oxidants and the results of metal analysis.

表3 充填剤中の金属の影響 BQ(%) 金属含有量(ppII) Na  Pe  ^I  Cu  Ti金属含有カラム
  12.3  37 11 1>  1>  1>洗
浄カラム    0.2  5>  1>  1>  
l>  l>〈発明の効果〉 本発明により、酸化反応を受けやすい試料の液体クロマ
トグラフィーによる分析の際には測定系を非金属系とし
、さらに溶離液の溶存酸素を除去することによって試料
の分解を抑制することができることが明かとなった。
Table 3 Effect of metals in packing material BQ (%) Metal content (ppII) Na Pe ^I Cu Ti Metal-containing column 12.3 37 11 1>1>1> Washing column 0.2 5>1>1>
l>l><Effects of the Invention> According to the present invention, when a sample susceptible to oxidation reaction is analyzed by liquid chromatography, the measurement system is non-metallic, and the dissolved oxygen of the eluent is removed, thereby making it possible to It has become clear that decomposition can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は実施例1で、また図2は実施例2で得られた (
DBIIQ)のクロマトグラムであり、(A、)はガラ
スコートカラムの、(B)はPEEK製カラムの、(C
)はステンレスカラムのクロマトグラムであり、(a)
はD B +10の、また(b)はDBBQのピークで
ある。 図3は、比較例3でのEDTA溶液洗浄前(A)の、ま
た、洗浄後(B)のカラムで得られたIIQのクロマト
グラムである。
Figure 1 was obtained in Example 1, and Figure 2 was obtained in Example 2 (
DBIIQ), where (A,) is the glass coated column, (B) is the PEEK column, and (C
) is a chromatogram of a stainless steel column; (a)
is the peak of D B +10, and (b) is the peak of DBBQ. FIG. 3 is a chromatogram of IIQ obtained with the column before (A) and after (B) washing with the EDTA solution in Comparative Example 3.

Claims (1)

【特許請求の範囲】[Claims] (1)溶存酸素が10ppm以下の溶離液、金属含有量
が10ppm以下の充填剤及び溶離液が金属と接するこ
とのない液体クロマトグラフィー用装置を用いることを
特徴とするヒドロキノン誘導体の分析方法。
(1) A method for analyzing hydroquinone derivatives, which comprises using an eluent with dissolved oxygen of 10 ppm or less, a filler with a metal content of 10 ppm or less, and a liquid chromatography device in which the eluent does not come into contact with metals.
JP12900490A 1990-05-21 1990-05-21 Analyzing method for hydroquinone derivative Pending JPH0424552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12900490A JPH0424552A (en) 1990-05-21 1990-05-21 Analyzing method for hydroquinone derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12900490A JPH0424552A (en) 1990-05-21 1990-05-21 Analyzing method for hydroquinone derivative

Publications (1)

Publication Number Publication Date
JPH0424552A true JPH0424552A (en) 1992-01-28

Family

ID=14998775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12900490A Pending JPH0424552A (en) 1990-05-21 1990-05-21 Analyzing method for hydroquinone derivative

Country Status (1)

Country Link
JP (1) JPH0424552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059886A (en) * 1992-05-25 2000-05-09 S & C Co., Ltd. Method of ultrasonically cleaning workpiece
KR20220169504A (en) 2021-06-18 2022-12-28 한림인텍 주식회사 Safety pad, battery cell and battery module having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059886A (en) * 1992-05-25 2000-05-09 S & C Co., Ltd. Method of ultrasonically cleaning workpiece
KR20220169504A (en) 2021-06-18 2022-12-28 한림인텍 주식회사 Safety pad, battery cell and battery module having the same

Similar Documents

Publication Publication Date Title
Saito et al. Miniaturized solid-phase extraction as a sample preparation technique for the determination of phthalates in water
Huppert et al. Determination of the plasticizer N-butylbenzenesulfonamide and the pharmaceutical Ibuprofen in wastewater using solid phase microextraction (SPME)
Riggin et al. Determination of benzidine, dichlorobenzidine, and diphenylhydrazine in aqueous media by high performance liquid chromatography
CN102411035B (en) New method for detecting trace amount bromate
Prados et al. A fully automated HPLC method for the determination of catecholamines in biological samples utilizing ethylenediamine condensation and peroxyoxalate chemiluminescence detection
Nielen et al. Use of cation exchangers for the on-line preconcentration of polar anilines in liquid chromatography
Li et al. Analysis of environmental pollutants using ion chromatography coupled with mass spectrometry: A review
JPH0424552A (en) Analyzing method for hydroquinone derivative
CN106501410A (en) The detection method of N nitrosodiethanolamines in a kind of cosmetics
EP3816622A1 (en) Interface system and corresponding method
US7165444B2 (en) Concentrating column and sample processing device useful for elemental analysis of trace metals
Jansen et al. Miniaturization of solid-phase reactors for on-line post-column derivatization in narrow-bore liquid chromatography
JPH06160365A (en) Measuring method and device for negative ion contained in condensate of condensate circulation system
CN104535564A (en) A kind of concentration column filler, concentration column and its application in the analysis of trace metal elements
Nondek et al. On-line preconcentration and high-performance liquid chromatographic determination of o-toluenesulphonamide in saccharin
CN108152219A (en) The real-time detection method and device of impurity in synthesis gas
KR101566400B1 (en) Analytical method of perchlorate in water with ion chromatography
CN105388226A (en) Method for determining hydrophilic-hydrophobic properties of bisphenol compounds
CN103217417B (en) Autoanalysis method of iron content in water sample
JP4665154B2 (en) Coexisting anion treatment apparatus and method
CN109030668B (en) High performance liquid phase analysis method of gadoxetic acid disodium intermediate
US20080171395A1 (en) Column packing and concentrating column for the analysis of metallic elements
US20030092196A1 (en) Concentration module and method for on-site concentration of trace contaminants from a sample of a liquide for analytical analysis
Marina et al. Flow-injection determination of low levels of ammonium ions in natural waters employing preconcentration with a cation-exchange resin
JP4258072B2 (en) Method for purification and measurement of serotonin and 5-hydroxyindoleacetic acid