JPH0424426B2 - - Google Patents
Info
- Publication number
- JPH0424426B2 JPH0424426B2 JP59012561A JP1256184A JPH0424426B2 JP H0424426 B2 JPH0424426 B2 JP H0424426B2 JP 59012561 A JP59012561 A JP 59012561A JP 1256184 A JP1256184 A JP 1256184A JP H0424426 B2 JPH0424426 B2 JP H0424426B2
- Authority
- JP
- Japan
- Prior art keywords
- sputtering
- film
- storage medium
- magnetic storage
- protective film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 21
- 229930195733 hydrocarbon Natural products 0.000 claims description 19
- 150000002430 hydrocarbons Chemical class 0.000 claims description 19
- 230000001681 protective effect Effects 0.000 claims description 16
- 238000004544 sputter deposition Methods 0.000 claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- -1 C 2 H 6 Chemical class 0.000 claims description 3
- 239000010408 film Substances 0.000 description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- MUJOIMFVNIBMKC-UHFFFAOYSA-N fludioxonil Chemical compound C=12OC(F)(F)OC2=CC=CC=1C1=CNC=C1C#N MUJOIMFVNIBMKC-UHFFFAOYSA-N 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/72—Protective coatings, e.g. anti-static or antifriction
- G11B5/727—Inorganic carbon protective coating, e.g. graphite, diamond like carbon or doped carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、磁気記憶媒体表面に炭化水素保護膜
を形成する方法、特に録画、録音、電算機等に用
いられる磁気ドラム又は磁気デイスク等の磁気記
憶媒体表面にスパツタリングにより炭化水素保護
膜を形成する方法に関する。
近年、記録密度を向上させるため真空蒸着、ス
パツタリング、及びメツキ等の方法により、鉄、
コバルト、ニツケル又はこれらの合金からなる強
磁性金属薄膜を基体上に形成する方法が提案され
ている。しかし、これらの方法で作成された薄膜
型の金属磁気記憶媒体は高密度記録性が優れてい
るが、例えば記録再生装置に使用する場合、磁気
記憶媒体と磁気ヘツド等とが物理的に接触し、高
速度走行をするので、長期使用による耐摩耗性に
問題がある。
これらを改善するために、磁性層の表面に
SiO2、Si3N4、C、Al2O3のスパツタ蒸着膜など
を形成する方法が知られているが、これらの保護
膜は硬質ではあるが、摩擦係数が大きいために保
護膜は磁気ヘツドのいずれかが摩耗したり、損傷
したりするので、さらにこれらの保護膜と潤滑剤
とを併用する方法が提案されている。しかしなが
ら、この方法によるものはスペーシングロスやヘ
ツドステイツクなどの新たな問題点を生じ易い欠
点がある。
本発明は、これらの欠点を改善することを目的
とするものであつて、磁気記憶媒体の保護膜とし
て、特定の炭化水素から選ばれた1種以上を含有
するガス雰囲気下炭素ターゲツトを用いてスパツ
タリングを行ない磁気記憶媒体上に炭化水素膜を
形成させることにより、潤滑剤の併用なしでも摩
擦係数が小さく耐摩耗性にすぐれ、ヘツドステイ
クなどの問題が少ないすぐれた磁気記憶媒体が得
られる磁気記憶媒体表面に炭化水素保護膜を形成
させる方法を提供しようとするものである。
すなわち本発明は磁気記憶媒体表面にスパツタ
リング法により炭化水素保護膜を形成させる際
に、CH4、C2H4、C2H6、C3H8、C6H6(ベンゼ
ン)等の炭化水素から選ばれた1種以上のガス雰
囲気下、炭素をターゲツトとして用いスパツタリ
ングすることを特徴とする。
以下さらに、本発明を詳しく説明する。
本発明は炭素をターゲツトとして用いスパツタ
リング法により磁気記憶媒体の表面に炭化水素膜
を形成させる方法であるが、本発明の雰囲気とし
て用いられる炭化水素はCH4、C2H6、C2H8、
C2H8、C2H及びC6H6等の炭化水素であるが、こ
れらを1種以上含有するガスであればよく、又こ
れらのガスのみであつてもよいが、アルゴン
(Ar)、ヘリウム(He)及び水素(H2)などのガ
スを併用しても差支えはない。
本発明において炭素をターゲツトとして用い、
雰囲気ガスとして前記炭化水素から選ばれた1種
以上を含有するガス雰囲気中でスパツタリングを
行なうと、C−H結合を多量に含む硬質の炭化水
素被膜が形成される。このようにして得られた保
護膜は動摩擦係数が小さく、かつ内部応力が小さ
いために密着力が強固である。従来の炭素をター
ゲツトとして用いるスパツタリング法は雰囲気ガ
スとしてAr、He等のガスを単独で用いるので、
硬質の炭素保護膜が形成されるが、この保護膜中
にはC−H結合あるいは水素原子は検出されない
か、あるいは検出されても極く僅かであるので、
その内部応力が大きいために、密着力が弱く、さ
らに動摩擦係数も大きくなるので好ましくないか
らである。
磁気記憶媒体に対する保護膜の形成条件として
は前記した雰囲気ガス以外にガス圧力、スパツタ
リング電源、バイアス電圧、及び反応時間があ
る。
これらの条件はその装置の形状大きさ等によつ
て変るので特に限定することはできないがいずれ
も公知の条件で行うことができる。なお、本発明
のスパツタリング工程において炭化水素被膜を被
着されるべき磁気記憶媒体には電圧を印加しなく
ても良いが、電圧を印加することも可能である。
以下実施例をあげてさらに本発明を具体的に説
明する。
実施例 1
メツキデイスクの製造
直径9cm、厚み2mmの鏡面研摩したアルミ板上
に非磁性Ni−Pを50μm厚に無電解メツキした
後、30μm厚まで鏡面研摩し、更にその上に第1
表に示すメツキ液を用い、メツキ条件としてCo
−Ni−P(Co:80%、Ni:15%、P:5%)の
磁性膜を0.1μm厚となるようにPH7.5、液温75℃で
無電解メツキ(以下メツキデイスクAという)し
た。なお無電解メツキの前処理する際に、日本カ
ニゼン(株)の商品名「シユーマセンシタイザー」及
び商品名「シユーマアクチベーター」を使用し
た。
The present invention relates to a method for forming a hydrocarbon protective film on the surface of a magnetic storage medium, and in particular a method for forming a hydrocarbon protective film on the surface of a magnetic storage medium such as a magnetic drum or magnetic disk used for video recording, sound recording, computers, etc. by sputtering. Regarding the method. In recent years, in order to improve recording density, methods such as vacuum evaporation, sputtering, and plating have been used to improve the recording density of iron,
A method has been proposed in which a ferromagnetic metal thin film made of cobalt, nickel, or an alloy thereof is formed on a substrate. However, although thin-film metal magnetic storage media created by these methods have excellent high-density recording properties, when used in recording/reproducing devices, for example, the magnetic storage medium and magnetic head etc. do not come into physical contact. , since they run at high speeds, there are problems with wear resistance due to long-term use. In order to improve these, the surface of the magnetic layer is
Methods of forming sputter-deposited films of SiO 2 , Si 3 N 4 , C, and Al 2 O 3 are known, but although these protective films are hard, they have a large coefficient of friction and are not magnetic. Since either of the heads may wear out or be damaged, methods have been proposed in which these protective films and lubricants are used in combination. However, this method has the disadvantage that new problems such as spacing loss and head stay tend to occur. The present invention aims to improve these drawbacks, and uses a carbon target in a gas atmosphere containing one or more selected from specific hydrocarbons as a protective film for a magnetic storage medium. By forming a hydrocarbon film on a magnetic storage medium by sputtering, an excellent magnetic storage medium with a low coefficient of friction, excellent wear resistance, and fewer problems such as head stake can be obtained without the use of a lubricant. The present invention aims to provide a method for forming a hydrocarbon protective film on a surface. That is, the present invention uses carbonization of CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 6 H 6 (benzene), etc. when forming a hydrocarbon protective film on the surface of a magnetic storage medium by sputtering. It is characterized by sputtering using carbon as a target in an atmosphere of one or more gases selected from hydrogen. The present invention will be further explained in detail below. The present invention is a method of forming a hydrocarbon film on the surface of a magnetic storage medium by a sputtering method using carbon as a target, but the hydrocarbons used as the atmosphere in the present invention are CH 4 , C 2 H 6 , C 2 H 8 . ,
Hydrocarbons such as C 2 H 8 , C 2 H and C 6 H 6 may be used as long as they contain one or more of these gases, or only these gases, but argon (Ar) There is no problem in using gases such as , helium (He), and hydrogen (H 2 ) in combination. In the present invention, carbon is used as a target,
When sputtering is performed in a gas atmosphere containing one or more selected from the above hydrocarbons, a hard hydrocarbon film containing a large amount of C--H bonds is formed. The protective film thus obtained has a small coefficient of dynamic friction and low internal stress, so it has strong adhesion. Conventional sputtering methods using carbon as a target use gases such as Ar and He alone as atmospheric gases, so
A hard carbon protective film is formed, but no C-H bonds or hydrogen atoms are detected in this protective film, or even if they are detected, they are very small.
This is because the internal stress is large, resulting in weak adhesion and a large dynamic friction coefficient, which is undesirable. In addition to the above-mentioned atmospheric gas, conditions for forming a protective film on a magnetic storage medium include gas pressure, sputtering power source, bias voltage, and reaction time. Since these conditions vary depending on the shape and size of the device, they cannot be particularly limited, but any known conditions can be used. Although it is not necessary to apply a voltage to the magnetic storage medium to which the hydrocarbon film is to be applied in the sputtering process of the present invention, it is also possible to apply a voltage. EXAMPLES The present invention will be explained in more detail below with reference to Examples. Example 1 Manufacture of a plated disk After non-magnetic Ni-P was electrolessly plated to a thickness of 50 μm on a mirror-polished aluminum plate with a diameter of 9 cm and a thickness of 2 mm, the plate was mirror-polished to a thickness of 30 μm, and a first plate was applied on top of the plated plate.
Using the plating liquid shown in the table, Co
Electroless plating of -Ni-P (Co: 80%, Ni: 15%, P: 5%) magnetic film to a thickness of 0.1 μm at pH 7.5 and liquid temperature of 75°C (hereinafter referred to as plating disk A) did. In the pretreatment for electroless plating, Nippon Kanigen Co., Ltd.'s product name "Schuma Sensitizer" and product name "Schuma Activator" were used.
【表】
次に(株)徳田製作所製のマグネトロン型スパツタ
リング装置(商品名「CFS−8ES」)またターゲ
ツトとしては日立化成(株)の高密度カーボン(商品
名「HCB−18」)を用い、第2表に示す条件下で
スパツタリングを行ない、メツキデイスクAの表
面に炭化水素保護膜を800Å厚に形成した。また
比較のために第2表に示す条件(実験No.8)でス
パツタリングを行ない、メツキデイスクAの表面
に炭素膜を800Å厚に形成した。[Table] Next, we used a magnetron type sputtering device manufactured by Tokuda Seisakusho Co., Ltd. (product name ``CFS-8ES'') and high-density carbon (product name ``HCB-18'') manufactured by Hitachi Chemical Co., Ltd. as the target. Sputtering was performed under the conditions shown in Table 2 to form a hydrocarbon protective film with a thickness of 800 Å on the surface of the metal disk A. For comparison, sputtering was performed under the conditions shown in Table 2 (Experiment No. 8) to form a carbon film with a thickness of 800 Å on the surface of the metal disk A.
【表】【table】
【表】
なお第3表に示した物性の測定は次の方法によ
つた。
(1) 動摩擦係数測定
第1図に示す回転装置を用いて測定した。
ヘツド:2mmφサフアイア球.
ヘツド荷重:5g
相対速度:5m/sec。
(2) 摺動回数測定
第1図の装置を用いて保護膜が破壊するまでの
摺動回数を測定した。
ヘツド:2mmφサフアイア球.
ヘツド荷重:10g
相対速度:10m/sec
(3) CSS(コンタクト・スタート・ストツプ)テ
スト
固定デイスクドライブ装置を用いて、ヘツドク
ラツシユが発生するまでのサイクル数を測定し
た。
ヘツド:IBM−3350タイプ、
ヘツド荷重:9.8g.
回転速度:3600r.p.m.、
ON−OFF30秒サイクル。
実施例 2
0.5mm厚のシリコンウエハー上に、反応時間を
75分とした以外は実験No.1と同じ条件で行い炭化
水素膜を1μm厚で得た。
この炭化水素膜を施したシリコンウエハーの透
過型赤外分光分析の結果を第2図に示す。第2図
に示すように2870、2920、2960、1420および1375
cm1の吸収より、この炭化水素膜中には明らかに
C−H結合が存在することが確認された。
比較例
0.5mm厚のシリコンウエハー上に、反応時間を
87.5分とした以外は実験No.8と同じ条件で行い炭
素膜を1μm厚で得た。
この炭素膜を施したシリコンウエハーの透過型
赤外分光分析の結果を第3図に示す。第3図によ
ればこの炭素膜中にはC−H結合の存在が認めら
れなかつた。[Table] The physical properties shown in Table 3 were measured by the following method. (1) Measurement of dynamic friction coefficient Measurement was performed using the rotating device shown in Figure 1. Head: 2mmφ sapphire ball. Head load: 5g Relative speed: 5m/sec. (2) Measurement of the number of sliding movements The number of sliding movements until the protective film was destroyed was measured using the apparatus shown in Figure 1. Head: 2mmφ sapphire ball. Head load: 10g Relative speed: 10m/sec (3) CSS (Contact Start Stop) Test Using a fixed disk drive device, the number of cycles until head crash occurred was measured. Head: IBM-3350 type, Head load: 9.8g. Rotation speed: 3600r.pm, ON-OFF 30 seconds cycle. Example 2 The reaction time was measured on a 0.5 mm thick silicon wafer.
A hydrocarbon film with a thickness of 1 μm was obtained under the same conditions as in Experiment No. 1 except that the time was 75 minutes. FIG. 2 shows the results of transmission infrared spectroscopic analysis of the silicon wafer coated with this hydrocarbon film. 2870, 2920, 2960, 1420 and 1375 as shown in Figure 2
It was confirmed from the absorption at cm 1 that C--H bonds were clearly present in this hydrocarbon film. Comparative example: The reaction time was measured on a 0.5 mm thick silicon wafer.
A carbon film with a thickness of 1 μm was obtained under the same conditions as Experiment No. 8 except that the time was 87.5 minutes. FIG. 3 shows the results of transmission infrared spectroscopy of the silicon wafer coated with this carbon film. According to FIG. 3, no C--H bond was observed in this carbon film.
図面は本発明の実施例及び比較例に用いる装置
を示すものであつて、第1図は動摩擦係数及び摺
動回数測定装置の説明図、第2図及び第3図はそ
れぞれ実施例2及び比較例によつて作成されたシ
リコンウエハー上の保護膜の波数と透過率との関
係図である。
符号 1……磁気記憶媒体、2……ホルダー、
3……サフアイア球、4……板バネ、5……歪ゲ
ージ、6……XYステージ、7……モーター、8
……架台。
The drawings show devices used in Examples and Comparative Examples of the present invention, and FIG. 1 is an explanatory diagram of the dynamic friction coefficient and sliding number measuring device, and FIGS. 2 and 3 are examples of Example 2 and Comparative Example, respectively. FIG. 2 is a diagram showing the relationship between the wave number and transmittance of a protective film on a silicon wafer prepared in accordance with an example. Code 1...Magnetic storage medium, 2...Holder,
3...Saphire ball, 4...plate spring, 5...strain gauge, 6...XY stage, 7...motor, 8
... trestle.
Claims (1)
炭化水素保護膜を形成させる際に、CH4、C2H4、
C2H6、C3H8、及びC6H6等の炭化水素から選ばれ
た1種以上のガスを含有する雰囲気下炭素をター
ゲツトとして用いスパツタリングすることを特徴
とする磁気記憶媒体表面に炭化水素保護膜を形成
する方法。1 When forming a hydrocarbon protective film on the surface of a magnetic storage medium by sputtering, CH 4 , C 2 H 4 ,
The surface of a magnetic storage medium is characterized by sputtering using carbon as a target in an atmosphere containing one or more gases selected from hydrocarbons such as C 2 H 6 , C 3 H 8 , and C 6 H 6 . Method of forming a hydrocarbon protective film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59012561A JPS60155668A (en) | 1984-01-26 | 1984-01-26 | Formation of protective hydrocarbon film on surface of magnetic storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59012561A JPS60155668A (en) | 1984-01-26 | 1984-01-26 | Formation of protective hydrocarbon film on surface of magnetic storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60155668A JPS60155668A (en) | 1985-08-15 |
JPH0424426B2 true JPH0424426B2 (en) | 1992-04-27 |
Family
ID=11808755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59012561A Granted JPS60155668A (en) | 1984-01-26 | 1984-01-26 | Formation of protective hydrocarbon film on surface of magnetic storage medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60155668A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4755426A (en) * | 1986-01-18 | 1988-07-05 | Hitachi Maxell, Ltd. | Magnetic recording medium and production of the same |
JPS6362656A (en) * | 1986-09-02 | 1988-03-18 | Fuji Photo Film Co Ltd | Manufacture of magnetic recording medium |
DE3644822A1 (en) * | 1986-12-31 | 1988-07-14 | Basf Ag | METHOD FOR PRODUCING DISK-SHAPED MAGNETIC RECORDING CARRIERS |
US4778582A (en) * | 1987-06-02 | 1988-10-18 | International Business Machines Corporation | Process for making a thin film metal alloy magnetic recording disk with a hydrogenated carbon overcoat |
US5045165A (en) * | 1990-02-01 | 1991-09-03 | Komag, Inc. | Method for sputtering a hydrogen-doped carbon protective film on a magnetic disk |
JP4073567B2 (en) | 1999-01-11 | 2008-04-09 | シャープ株式会社 | Thermally assisted magnetic recording medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5321902A (en) * | 1976-08-11 | 1978-02-28 | Fujitsu Ltd | Formation of carbonized protective film for magnetic recording medium |
JPS5321901A (en) * | 1976-08-11 | 1978-02-28 | Fujitsu Ltd | Formation of carbonized protective film for magnetic recording medium |
JPS53143206A (en) * | 1977-05-18 | 1978-12-13 | Nec Corp | Magnetic disc |
US4277540A (en) * | 1971-05-03 | 1981-07-07 | Aine Harry E | Thin film magnetic recording medium |
-
1984
- 1984-01-26 JP JP59012561A patent/JPS60155668A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4277540A (en) * | 1971-05-03 | 1981-07-07 | Aine Harry E | Thin film magnetic recording medium |
JPS5321902A (en) * | 1976-08-11 | 1978-02-28 | Fujitsu Ltd | Formation of carbonized protective film for magnetic recording medium |
JPS5321901A (en) * | 1976-08-11 | 1978-02-28 | Fujitsu Ltd | Formation of carbonized protective film for magnetic recording medium |
JPS53143206A (en) * | 1977-05-18 | 1978-12-13 | Nec Corp | Magnetic disc |
Also Published As
Publication number | Publication date |
---|---|
JPS60155668A (en) | 1985-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910006150B1 (en) | Magnetic recording medium and manufacturing method thereof | |
US5409738A (en) | Recording medium | |
JPH04214230A (en) | Carbon film forming method, structure of magnetic memory and manufacture of magnetic disk | |
JPS60258727A (en) | Magnetic storage medium | |
JPH0424426B2 (en) | ||
JPH0465445B2 (en) | ||
JPS60157725A (en) | Magnetic storage medium | |
JPS62103823A (en) | Magnetic disk | |
JP2552799B2 (en) | Manufacturing method of magnetic storage medium | |
JP2594534B2 (en) | Magnetic storage | |
JPH0664733B2 (en) | Method of manufacturing magnetic storage medium | |
JPH01166321A (en) | Magnetic recording medium and production thereof | |
JPH0287322A (en) | Magnetic recording medium | |
JPH0322218A (en) | Production of magnetic disk | |
JPS6288133A (en) | magnetic memory | |
JPH0836744A (en) | Magnetic recording medium | |
JPS62137725A (en) | Production of magnetic memory medium | |
JPS6180522A (en) | Magnetic recording medium | |
JPH0513333B2 (en) | ||
JPH1139648A (en) | Magnetic recording medium | |
JPH11222676A (en) | Production of magnetic record medium | |
JPH07161030A (en) | Magnetic recording medium | |
JPH07296372A (en) | Magnetic recording medium and production thereof | |
JPH02108218A (en) | Magnetic recording medium | |
JPS61206919A (en) | Magnetic disk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |