[go: up one dir, main page]

JPH04243981A - Refractory for casting execution of silicon carbide - Google Patents

Refractory for casting execution of silicon carbide

Info

Publication number
JPH04243981A
JPH04243981A JP3027852A JP2785291A JPH04243981A JP H04243981 A JPH04243981 A JP H04243981A JP 3027852 A JP3027852 A JP 3027852A JP 2785291 A JP2785291 A JP 2785291A JP H04243981 A JPH04243981 A JP H04243981A
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
carbon
alumina
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3027852A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sugiyama
杉山 一行
Takashi Suzuki
孝 鈴木
Hirobumi Ninomiya
博文 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP3027852A priority Critical patent/JPH04243981A/en
Publication of JPH04243981A publication Critical patent/JPH04243981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide corrosion resistance and spalling resistance and to improve durability by blending silicon carbide with silicon, alumina and carbon in a given weight ratio. CONSTITUTION:40-90 wt.% silicon carbide is blended with 1-5wt.% silicon having 5-150mum average particle diameter and the rest of 3-45wt.% alumina and 1-5 wt.% carbon in a ratio of carbon/silicon of <=3/7 to give a mixture. Then the mixture is optionally incorporated with a binder such as alumina cement and a dispersant such as condensed phosphate to produce refractory for casting execution of silicon carbide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は耐スラグ性、耐スポーリ
ング性に優れた炭化珪素質流し込み施工用耐火物に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide refractory for pouring construction that has excellent slag resistance and spalling resistance.

【0002】0002

【従来の技術】流し込み用耐火物はその施工の簡便さ故
、不定形耐火物の主流となっている。例えば高炉出銑樋
、混銑車の内張り、溶銑予備処理用ランスの耐火被覆に
使用される流し込み施工用耐火物の従来一般的な材質は
、アルミナ−炭化珪素−炭素質である。例えば特開昭6
2−148378公報に示される材質は、高アルミナ質
耐火材を主材し、これに炭化珪素5〜35重量%、適量
のピッチ、シリコンなどが添加されている。特開昭48
−32112号公報の材質は、アルミナ−炭化珪素−炭
素質において、窒化珪素、シリコンの単独またはその混
合物が微粉部の20〜40重量%を占めている。
2. Description of the Related Art Casting refractories have become the mainstream of monolithic refractories because of their ease of construction. For example, the conventionally common material for pouring refractories used for the fireproof coating of blast furnace tap troughs, linings of pig iron mixer cars, and lances for hot metal pretreatment is alumina-silicon carbide-carbonaceous. For example, JP-A-6
The material disclosed in Publication No. 2-148378 is mainly made of a high alumina refractory material, to which 5 to 35% by weight of silicon carbide, appropriate amounts of pitch, silicon, etc. are added. Unexamined Japanese Patent Publication 1973
The material of Publication No. 32112 is alumina-silicon carbide-carbon, and silicon nitride, silicon alone or a mixture thereof accounts for 20 to 40% by weight of the fine powder portion.

【0003】0003

【発明が解決しょうとする課題】鉄鋼業界では効率的な
生産性を追求するために高炉の大型化が進み、これに伴
う出銑温度の上昇により、耐火物の使用条件は厳しいも
のとなっている。その結果、前記従来の耐火物材質では
十分な耐用寿命が得られなくなっている。
[Problem to be solved by the invention] In the steel industry, blast furnaces are becoming larger in order to pursue efficient productivity, and as a result of this rise in tapping temperature, the conditions for using refractories have become stricter. There is. As a result, the conventional refractory materials do not have sufficient service life.

【0004】0004

【課題を解決するための手段】前記の特開昭62−14
8378公報の材質は、炭化珪素の含有量が重量割合で
35%またはそれ以下である。本発明者らの実験によれ
ば、炭化珪素が低熱膨張性の耐火原料であるため、その
含有量が少ないことが耐スポール性に劣る原因になって
いることがわかった。一方、特開昭48−32112号
公報の材質は耐食性向上に効果が認められものの、窒化
珪素、シリコンが多量に添加されていることにより、高
温下での焼結が異常に進行し、キレツ、ハクリが多発す
る原因となっている。
[Means for solving the problem] The above-mentioned Japanese Patent Application Laid-Open No. 62-14
The material disclosed in Publication No. 8378 has a silicon carbide content of 35% or less by weight. According to experiments conducted by the present inventors, it was found that since silicon carbide is a refractory raw material with low thermal expansion, its low content is the cause of poor spalling resistance. On the other hand, although the material disclosed in JP-A-48-32112 was found to be effective in improving corrosion resistance, due to the addition of large amounts of silicon nitride and silicon, sintering progressed abnormally at high temperatures, leading to cracking and cracking. This is the cause of frequent peeling.

【0005】本発明は耐スポール性および耐蝕性を兼ね
備え、最近の使用条件の苛酷化にも十分な耐用性を示す
流し込み施工用耐火物を得たものである。本発明は、重
量割合において、炭化珪素を40〜90%、シリコン1
〜5%、残部がアルミナおよび炭素よりなり、かつ、炭
素/シリコンの比が3/7以下であることを特徴とする
炭化珪素質流し込み施工用耐火物である。
[0005] The present invention provides a refractory for pouring construction that has both spall resistance and corrosion resistance, and exhibits sufficient durability even under recent severe usage conditions. In the present invention, silicon carbide is 40 to 90% and silicon 1 is 1% by weight.
This is a silicon carbide refractory for pouring work, characterized in that it consists of ~5%, the balance is alumina and carbon, and has a carbon/silicon ratio of 3/7 or less.

【0006】以下、本発明を更に詳細に説明する。なお
、以下に示す配合物、添加物の割合を示す単位の%は、
すべて重量%である。耐スポール性を得るためには、低
熱膨張の材質にする必要がある。そこで本発明は、低熱
膨張性の耐火原料である炭化珪素を40%以上を含有さ
せることで解決した。炭化珪素は熱膨張係数がアルミナ
の約半分である。この炭化珪素を従来材質に比べては多
く配合したことにより、耐スポール性が向上する。
The present invention will be explained in more detail below. In addition, the unit % indicating the proportion of the compounds and additives shown below is
All percentages are by weight. In order to obtain spall resistance, it is necessary to use a material with low thermal expansion. The present invention solves this problem by containing 40% or more of silicon carbide, which is a refractory raw material with low thermal expansion. Silicon carbide has a coefficient of thermal expansion that is approximately half that of alumina. By incorporating more silicon carbide than conventional materials, spall resistance is improved.

【0007】耐食性の向上については、シリコンの添加
が効果的あることが分かった。シリコンはそのSi成分
が耐火物の稼働面において空気中の酸素と結合し、Si
O2の高粘性体となる。これがスラグ等侵食剤のアタッ
クから耐火物の稼働面を保護するためと考えられる。し
かし、この耐食性向上の効果は、配合組成全体における
炭素/シリコンの比を3/7以下に限定することによっ
て初めて発揮される。シリコン成分のSiは気相反応に
よって次ぎのとおり反応する。
It has been found that addition of silicon is effective in improving corrosion resistance. The Si component of silicon combines with oxygen in the air on the working surface of the refractory, and the Si component
It becomes a highly viscous body of O2. It is thought that this is to protect the working surface of the refractory from attack by corrosive agents such as slag. However, this effect of improving corrosion resistance is only exhibited by limiting the carbon/silicon ratio in the entire composition to 3/7 or less. Si, which is a silicon component, reacts in a gas phase reaction as follows.

【0008】[0008]

【化1】[Chemical formula 1]

【0009】シリコンのSiと炭素のCとがこの反応に
よってSiC(β−SiCウイスカー)を生成し、その
分、Siが減少するが、この場合にSiとCとが1モル
づつ反応するため、炭素/シリコンの比が3/7未満で
C量を多くするとSiCの生成のためにSiが減少する
。その結果、スラグ等侵食剤のアタックから耐火物の稼
働面を保護する役割をもつSiO2の生成量も減少し、
耐食性向上の効果が得られない。
[0009] Si in silicon and C in carbon produce SiC (β-SiC whiskers) through this reaction, and Si decreases accordingly, but in this case, Si and C react by 1 mol each, so When the carbon/silicon ratio is less than 3/7 and the amount of C is increased, Si decreases due to the formation of SiC. As a result, the amount of SiO2 produced, which has the role of protecting the working surface of refractories from attack by corrosive agents such as slag, is also reduced.
The effect of improving corrosion resistance cannot be obtained.

【0010】シリコンは耐スラグ性を大幅に向上する反
面、焼結強度を促進することで耐スポール性を低下させ
る。そこで本発明は、炭化珪素の割合を40〜90%と
高くすることによって耐スポール性の低下を向上させた
上で、シリコンを添加する。炭化珪素が40%未満では
シリコンの割合が多くなったとき耐スポール性が不十分
となる。炭化珪素が90%を超えると、流し込み材の基
本特性に必要な流動性、硬化性、耐食性を付与する他の
成分の割合が少なくなって好ましくない。
Although silicon greatly improves slag resistance, it also reduces spall resistance by promoting sintering strength. Therefore, in the present invention, the reduction in spalling resistance is improved by increasing the proportion of silicon carbide to 40 to 90%, and then silicon is added. If the silicon carbide content is less than 40%, the spalling resistance will be insufficient when the proportion of silicon increases. If the silicon carbide content exceeds 90%, the proportion of other components that provide the basic characteristics of the pourable material, such as fluidity, hardenability, and corrosion resistance, decreases, which is not preferable.

【0011】アルミナ原料は、例えば電融アルミナ、仮
焼アルミナ、ボーキサイト、ばん土けつ岩、シリマナイ
ト、カイヤナイト、合成ムライト、アンダルサイト、ろ
う石などから選ばれる一種または二種以上である。炭素
はリン状黒鉛、土状黒鉛、コークス、ピッチ、ピッチコ
ークス、カーボンブラックなどから選ばれる一種または
二種以上である。
The alumina raw material is one or more selected from, for example, fused alumina, calcined alumina, bauxite, sillimanite, sillimanite, kyanite, synthetic mullite, andalusite, and waxite. Carbon is one or more types selected from phosphorous graphite, earthy graphite, coke, pitch, pitch coke, carbon black, and the like.

【0012】本発明はアルミナ、炭素および炭化珪素を
基本配合物とする点では従来の流し込み施工用耐火物と
何ら変わりない。この配合組成において本発明は、炭化
珪素を40〜90%に限定するとともに、シリコン1〜
5%を含有させる。さらに、炭素/シリコンの比を3/
7以下にする。アルミナ、炭素の割合は、炭化珪素およ
びシリコンの残部を占め、それぞれ例えばアルミナ3〜
45%、炭素1〜5%とする。シリコンは、好ましくは
平均粒径5〜150μmのものを使用する。その割合が
1%未満では耐食性向上の効果がなく、15%を超える
と過焼結によって耐スポール性が低下する。
The present invention is no different from conventional cast refractories in that it uses alumina, carbon and silicon carbide as its basic composition. In this compounding composition, the present invention limits silicon carbide to 40 to 90%, and silicon 1 to 90%.
Contain 5%. Furthermore, the carbon/silicon ratio is increased to 3/
Make it 7 or less. The proportion of alumina and carbon occupies the balance of silicon carbide and silicon, respectively, for example, alumina 3~
45%, carbon 1-5%. The silicon used preferably has an average particle size of 5 to 150 μm. If the proportion is less than 1%, there is no effect of improving corrosion resistance, and if it exceeds 15%, spalling resistance decreases due to oversintering.

【0013】炭素/シリコンの比は3/7以下とする。 前述したように、3/7を超えると耐食性に劣る。下限
は例えば1/15とする。結合剤、分散剤、必要によっ
てはさらに繊維類、金属粉、発泡剤などを適量添加する
ことは従来材質と同じである。結合剤はアルミナセメン
ト、りん酸塩、けい酸、りん酸ガラスなどである。分散
剤は、例えば縮合リン酸塩、カルボン酸塩、リグニンス
ルフォン酸塩などである。
[0013] The carbon/silicon ratio is set to 3/7 or less. As mentioned above, if it exceeds 3/7, corrosion resistance is poor. The lower limit is, for example, 1/15. The addition of appropriate amounts of binders, dispersants, and, if necessary, fibers, metal powder, foaming agents, etc., is the same as with conventional materials. Binders include alumina cement, phosphate, silicic acid, phosphate glass, etc. Dispersants include, for example, condensed phosphates, carboxylates, lignin sulfonates, and the like.

【0014】[0014]

【実施例】第1表に本発明の実施例とその比較例の配合
組成を示す。また、同時にその試験結果を示す。
[Examples] Table 1 shows the compositions of Examples of the present invention and Comparative Examples. The test results will also be shown at the same time.

【0015】[0015]

【表1】[Table 1]

【0016】各配合物に施工水分を外掛け6%添加し、
混練したものを加振力2G×15秒の振動テーブル上で
流し込み施工、、養生後、110℃×24時間の加熱乾
燥し、試験片とした。
[0016] Adding 6% of construction moisture to each formulation,
The kneaded material was poured on a vibrating table with an excitation force of 2 G for 15 seconds, and after curing, it was heated and dried at 110° C. for 24 hours to obtain a test piece.

【0017】試験方法は、つぎのとおりである。 耐スポーリング性:120×60×50mmの試験片を
1200℃の電気炉に片面を挿入し、30分間加熱後、
これを取り出し水冷し、常温まで冷却した時点で再度前
記の電気炉に30分挿入する操作を10回繰り返した。 そして、剥離が発生するまでの回数を調べた。
The test method is as follows. Spalling resistance: One side of a 120 x 60 x 50 mm test piece was inserted into an electric furnace at 1200°C, and after heating for 30 minutes,
This was taken out and cooled with water, and when cooled to room temperature, the operation of inserting it into the electric furnace for 30 minutes was repeated 10 times. Then, the number of times until peeling occurred was investigated.

【0018】圧縮強さ:40×40×16mmの試験片
を1500℃×3時間、還元雰囲気下で焼成後、測定。 耐食性:長さ方向に直角の断面が上辺65mmの台形で
、長さが120mmの台形柱状の試験片をドラム中に張
り合わせ、侵食材として高炉スラグを使用し、酸素−プ
ロパンによる熱源で1500℃×1時間を6回繰り返し
た。その侵食寸法を、比較例1の侵食寸法を100とし
た指数で示した。数値が小さいほど耐食性に優れている
。  実機試験:実施例および比較例のうち、その一部
を高炉樋のスラグライン部の内張りに施工し、耐用寿命
を測定した。 表に示した試験結果が示すように、本発明の材質はいず
れも耐食性、耐スポーリング性、実機試験に優れている
Compressive strength: Measured after firing a 40 x 40 x 16 mm test piece at 1500°C for 3 hours in a reducing atmosphere. Corrosion resistance: Trapezoidal columnar test pieces with a trapezoidal cross section perpendicular to the length direction with an upper side of 65 mm and a length of 120 mm were laminated together in a drum, blast furnace slag was used as the erosion material, and the specimen was heated at 1500°C with an oxygen-propane heat source. Repeated 6 times for 1 hour. The erosion size was expressed as an index with the erosion size of Comparative Example 1 as 100. The smaller the value, the better the corrosion resistance. Actual machine test: Some of the examples and comparative examples were applied to the lining of the slag line part of the blast furnace gutter, and the service life was measured. As shown in the test results shown in the table, all the materials of the present invention are excellent in corrosion resistance, spalling resistance, and actual machine testing.

【0019】[0019]

【発明の効果】本発明は、以上のように耐食性および耐
スポーリング性を兼ね備えていることによって、その耐
用性は従来材質に比べて格段に向上している。鉄鋼業界
では、高炉の大型化で耐火物のの使用条件はますます厳
しくなっており、耐用性に優れた本発明の耐火物の価値
はきわめて高い。
[Effects of the Invention] As the present invention has both corrosion resistance and spalling resistance as described above, its durability is significantly improved compared to conventional materials. In the steel industry, the usage conditions for refractories are becoming increasingly strict due to the increase in the size of blast furnaces, and the value of the refractory of the present invention, which has excellent durability, is extremely high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量割合において、炭化珪素を40〜
90%、シリコン1〜5%、残部がアルミナおよび炭素
よりなり、かつ、炭素/シリコンの比が3/7以下であ
ることを特徴とする炭化珪素質流し込み施工用耐火物。
Claim 1: Silicon carbide is contained in a weight ratio of 40 to 40%.
A refractory made of silicon carbide for pouring work, characterized in that the silicon carbide-based refractory is made of 90% silicon, 1 to 5% silicon, and the balance is alumina and carbon, and has a carbon/silicon ratio of 3/7 or less.
JP3027852A 1991-01-28 1991-01-28 Refractory for casting execution of silicon carbide Pending JPH04243981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3027852A JPH04243981A (en) 1991-01-28 1991-01-28 Refractory for casting execution of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3027852A JPH04243981A (en) 1991-01-28 1991-01-28 Refractory for casting execution of silicon carbide

Publications (1)

Publication Number Publication Date
JPH04243981A true JPH04243981A (en) 1992-09-01

Family

ID=12232451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3027852A Pending JPH04243981A (en) 1991-01-28 1991-01-28 Refractory for casting execution of silicon carbide

Country Status (1)

Country Link
JP (1) JPH04243981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235908A1 (en) * 2017-06-23 2018-12-27 Jfeスチール株式会社 Method for producing graphite having surface to which metal oxide adheres, graphite having surface to which metal oxide and water-soluble resin adhere, graphite-containing castable refractory and method for producing graphite-containing castable refractory
JP2019006670A (en) * 2017-06-23 2019-01-17 Jfeスチール株式会社 Method for producing graphite having metal oxide adhered to surface, graphite having metal oxide and water-soluble resin adhered to surface, and method for producing graphite-containing castable refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235908A1 (en) * 2017-06-23 2018-12-27 Jfeスチール株式会社 Method for producing graphite having surface to which metal oxide adheres, graphite having surface to which metal oxide and water-soluble resin adhere, graphite-containing castable refractory and method for producing graphite-containing castable refractory
JP2019006670A (en) * 2017-06-23 2019-01-17 Jfeスチール株式会社 Method for producing graphite having metal oxide adhered to surface, graphite having metal oxide and water-soluble resin adhered to surface, and method for producing graphite-containing castable refractory

Similar Documents

Publication Publication Date Title
KR910001934B1 (en) Carbon containing refractory
US4208214A (en) Refractory compositions
US20120052196A1 (en) Monolithic graphitic castable refractory
JP3952332B2 (en) Graphite-containing amorphous refractory material for chaotic vehicles
JPH0687667A (en) Zirconia-mullite containing castable refractory
JPH04243981A (en) Refractory for casting execution of silicon carbide
JP2832064B2 (en) Fused alumina / magnesia composition and refractory products
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JP3908562B2 (en) Irregular refractory
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
JP7636728B2 (en) Castable refractory and molten steel ladle using same
JP4163783B2 (en) Alumina-silicon carbide refractories
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JPH0570248A (en) Monolithic refractory for blast-furnace molten iron runner
JPS61101471A (en) Basic monolithic refractories
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JP6098834B2 (en) Amorphous refractories for molten aluminum alloys
JP2000335980A (en) Graphite-containing amorphous refractories
JP2004059390A (en) Castable refractories for blast furnace gutters
JPH0777979B2 (en) Carbon-containing refractory
JP2005139062A (en) Low carbon unfired brick
JPH04280858A (en) Production of unburned magnesia-carbon brick
JP2003002754A (en) Heat insulating castable refractory
JP2024108281A (en) Castable refractories for lances
KR100286663B1 (en) Basic Refractories for Timing Ladles