[go: up one dir, main page]

JPH04243971A - Coated fiber reinforced functionally graded material - Google Patents

Coated fiber reinforced functionally graded material

Info

Publication number
JPH04243971A
JPH04243971A JP3025709A JP2570991A JPH04243971A JP H04243971 A JPH04243971 A JP H04243971A JP 3025709 A JP3025709 A JP 3025709A JP 2570991 A JP2570991 A JP 2570991A JP H04243971 A JPH04243971 A JP H04243971A
Authority
JP
Japan
Prior art keywords
sic
fiber
fibers
carbon
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3025709A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3025709A priority Critical patent/JPH04243971A/en
Publication of JPH04243971A publication Critical patent/JPH04243971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐酸化性に優れた炭化
ケイ素の被覆層を備え、同時に優れた高温強度特性を有
する被覆繊維強化傾斜機能材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated fiber-reinforced functionally graded material having a silicon carbide coating layer with excellent oxidation resistance and at the same time having excellent high-temperature strength properties.

【0002】0002

【従来の技術】炭素或はSiC等のセラミックスをマト
リックスとし、このマトリックス中に強化材として炭素
繊維或はSiC等のセラミックス繊維を含む繊維強化複
合材料は、高温でも優れた強度特性を示し、破壊靭性値
が大きく信頼性に富む等の理由により、航空宇宙用材料
として近年特に注目を集めている。
[Prior Art] Fiber-reinforced composite materials, which have a matrix of ceramics such as carbon or SiC and contain carbon fibers or ceramic fibers such as SiC as reinforcing materials in this matrix, exhibit excellent strength characteristics even at high temperatures and are resistant to fracture. Due to its high toughness and high reliability, it has attracted particular attention in recent years as an aerospace material.

【0003】しかしながら上記繊維強化複合材料の内、
強化材が炭素繊維である炭素繊維強化複合材料は150
0℃を越える高温下でも優れ強度特性を有する反面、航
空宇宙用材料として用いるためには耐酸化性が不足する
。そこで、CVD法などにより耐酸化性に優れたSiC
被覆層を表面にコーティングしているが、SiC被覆層
の熱膨張係数に比べて基材である炭素繊維強化複合材料
の熱膨張係数が極めて小さいため、熱サイクル下でSi
C被覆層の剥離や破壊が生じる欠点があつた。
However, among the above fiber reinforced composite materials,
Carbon fiber reinforced composite material whose reinforcing material is carbon fiber is 150
Although it has excellent strength properties even at high temperatures exceeding 0°C, it lacks oxidation resistance for use as an aerospace material. Therefore, SiC, which has excellent oxidation resistance, is
Although a coating layer is coated on the surface, the thermal expansion coefficient of the base carbon fiber reinforced composite material is extremely small compared to that of the SiC coating layer, so the Si
There was a drawback that the C coating layer peeled off or was destroyed.

【0004】一方、強化材としてSiC等のセラミック
ス繊維を用いたセラミックス繊維強化複合材料では、熱
膨張係数の不整合によるSiC被覆層の剥離や破壊等は
生じないが、セラミックス繊維は1200℃以上で強度
が低下するため高温下での強度特性が不十分であつた。
On the other hand, in ceramic fiber-reinforced composite materials that use ceramic fibers such as SiC as reinforcing materials, peeling or destruction of the SiC coating layer due to mismatch in thermal expansion coefficient does not occur, but ceramic fibers Since the strength decreased, the strength properties at high temperatures were insufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、熱膨張係数の不整合によるSiC被覆層の
剥離や破壊がなく、1500℃以上の高温でも優れた強
度特性を維持することの出来る被覆繊維強化複合材料を
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional circumstances, the present invention provides a SiC coating layer that does not peel or break due to mismatching of thermal expansion coefficients and maintains excellent strength characteristics even at high temperatures of 1500° C. or higher. The purpose of this invention is to provide a coated fiber-reinforced composite material that can be used as a composite material.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本発明者は強化材として炭素繊維とセラミックス繊維
の両方を用い、基材中の炭素繊維とセラミックス繊維の
組成を傾斜組成とした被覆繊維強化傾斜機能材料を開発
した。
[Means for Solving the Problems] In order to achieve the above object, the present inventors used both carbon fibers and ceramic fibers as reinforcing materials, and provided a coating in which the composition of the carbon fibers and ceramic fibers in the base material was graded. We have developed a fiber-reinforced functionally graded material.

【0007】即ち、本発明の被覆繊維強化傾斜機能材料
は、基材の表裏面にSiC被覆層を設ける場合には、炭
素、或は周期律表の4A属元素、ケイ素又はホウ素の炭
化物、窒化物又は炭窒化物の少なくとも1種からなるマ
トリックス中に、強化材として炭素繊維及びセラミック
ス繊維を含む繊維強化複合材料の基材と、基材の両表面
に設けた炭化ケイ素の被覆層とからなり、前記基材の両
表面部の強化材がセラミックス繊維、中心部の強化材が
炭素繊維、及び中間部の強化材が炭素繊維とセラミック
ス繊維の両方からなり、強化材中の炭素繊維含有率が中
心部での100%から両表面部での0%までほぼ連続的
に変化していることを特徴とする。
That is, in the case where the coated fiber-reinforced functionally graded material of the present invention is provided with a SiC coating layer on the front and back surfaces of the base material, the coated fiber-reinforced functionally graded material is made of carbon, a carbide or nitride of an element of group 4A of the periodic table, silicon or boron. A fiber-reinforced composite material base material containing carbon fibers and ceramic fibers as reinforcing materials in a matrix consisting of at least one type of carbonitride or carbonitride, and a silicon carbide coating layer provided on both surfaces of the base material. , the reinforcing material on both surfaces of the base material is made of ceramic fibers, the reinforcing material in the center part is made of carbon fibers, and the reinforcing material in the middle part is made of both carbon fibers and ceramic fibers, and the carbon fiber content in the reinforcing material is It is characterized by a nearly continuous change from 100% at the center to 0% at both surfaces.

【0008】又、基材の片方の表面にのみSiC被覆層
を設ける場合には、炭素、或は周期律表の4A属元素、
ケイ素又はホウ素の炭化物、窒化物又は炭窒化物の少な
くとも1種からなるマトリックス中に、強化材として炭
素繊維及びセラミックス繊維を含む繊維強化複合材料の
基材と、基材の片方の表面に設けた炭化ケイ素の被覆層
とからなり、前記基材の片方の表面部の強化材がセラミ
ックス繊維、他方の表面部の強化材が炭素繊維、及び中
間部の強化材が炭素繊維とセラミックス繊維の両方から
なり、強化材中の炭素繊維含有率が片方の表面部での0
%から他方の表面部での100%までほぼ連続的に変化
していることを特徴とする。
[0008] In addition, when providing a SiC coating layer only on one surface of the base material, carbon, or an element of group 4A of the periodic table,
A base material of a fiber-reinforced composite material containing carbon fibers and ceramic fibers as reinforcing materials in a matrix consisting of at least one of silicon or boron carbides, nitrides, or carbonitrides, and a fiber-reinforced composite material provided on one surface of the base material. The reinforcing material on one surface of the base material is ceramic fiber, the reinforcing material on the other surface is carbon fiber, and the reinforcing material in the middle is made of both carbon fiber and ceramic fiber. , the carbon fiber content in the reinforcement is 0 on one surface.
It is characterized in that it changes almost continuously from % to 100% on the other surface.

【0009】[0009]

【作用】本発明では、基材のSiC被覆層を設ける側の
表面部には強化材がセラミックス繊維からなるセラミッ
クス繊維強化複合材料を配置することによつて、SiC
被覆層との熱膨張係数の不整合性を良くし、熱サイクル
下でのSiC被覆層の剥離や破壊を防止でき、優れた耐
酸化性並びに耐熱衝撃性が得られる。
[Function] In the present invention, by arranging a ceramic fiber-reinforced composite material whose reinforcing material is ceramic fiber on the surface portion of the base material on which the SiC coating layer is provided, SiC
It improves the mismatch in thermal expansion coefficient with the coating layer, prevents peeling and destruction of the SiC coating layer under thermal cycles, and provides excellent oxidation resistance and thermal shock resistance.

【0010】同時に、基材の中心部又はSiC被覆層を
設けない側の表面部には強化材が炭素繊維である炭素繊
維強化複合材料を配置することによつて、1500℃以
上の高温においても優れた強度特性を維持することが可
能である。
At the same time, by arranging a carbon fiber-reinforced composite material whose reinforcing material is carbon fiber in the center of the base material or the surface area on the side where the SiC coating layer is not provided, the material can withstand even high temperatures of 1500°C or higher. It is possible to maintain excellent strength properties.

【0011】更に、基材の中間部は炭素繊維とセラミッ
クス繊維の両方を強化材とし、炭素繊維含有率を中心部
又はSiC被覆層を設けない他方の表面部からSiC被
覆層を設ける片方の表面部までほぼ連続的に変化した傾
斜組成としてあるので、基材内部での熱膨張係数の不整
合性を緩和することが出来る。
Furthermore, the middle part of the base material is reinforced with both carbon fiber and ceramic fiber, and the carbon fiber content is varied from the center part or the other surface part where no SiC coating layer is provided to one surface where the SiC coating layer is provided. Since the composition has a gradient composition that changes almost continuously up to the end, it is possible to alleviate the inconsistency in the coefficient of thermal expansion within the base material.

【0012】尚、SiC被覆層は通常のCVD法やPV
D法によつて形成できる。
[0012] The SiC coating layer can be formed using the usual CVD method or PV method.
It can be formed by method D.

【0013】[0013]

【実施例1】マトリックスとして平均粒径2μmのTi
C粉末を用い、これに微量のAl2O3粉末を混合した
後アクリルアマイド系樹脂と混練し、SiC繊維の織布
上に塗布してSiC繊維とTiC粉末からなるSiC/
TiC複合体シート■を得た。次に、マトリックスとし
て平均粒径2μmのTiC粉末を用い、これに微量のA
l2O3粉末を混合した後アクリルアマイド系樹脂と混
練し、炭素繊維の織布上に塗布して炭素繊維とTiC粉
末からなるC/TiC複合体シート■を得た。
[Example 1] Ti with an average particle size of 2 μm as a matrix
Using C powder, a small amount of Al2O3 powder is mixed with it, then kneaded with acrylamide resin, and applied on a woven fabric of SiC fibers to form a SiC/TiC powder made of SiC fibers and TiC powder.
A TiC composite sheet ■ was obtained. Next, TiC powder with an average particle size of 2 μm was used as a matrix, and a small amount of A was added to it.
After mixing the 12O3 powder, it was kneaded with an acrylamide resin and coated on a carbon fiber woven fabric to obtain a C/TiC composite sheet (2) consisting of carbon fibers and TiC powder.

【0014】これらの複合体シート■と■を組み合わせ
、SiC/TiC複合体シート■3枚を1組(計3枚)
−SiC/TiC複合体シート■2枚+C/TiC複合
体シート■1枚を3組(計9枚)−SiC/TiC複合
体シート■1枚+C/TiC複合体シート■1枚を3組
(計6枚)−SiC/TiC複合体シート■1枚+C/
TiC複合体シート■2枚を3組(計9枚)−C/Ti
C複合体シート■3枚を1組(計3枚)の順に、合計3
0枚積層した。 その後、積層体を500℃で3時間加熱して揮発物を除
去した後、2000℃において200Kg/cm2の圧
力で2時間加圧焼結し、縦50mm×横50mm×高さ
5mmのC〜SiC繊維強化TiC複合材料(C〜Si
C/TiC複合材料)を製造した。
[0014] These composite sheets ■ and ■ are combined to form a set of three SiC/TiC composite sheets ■ (3 sheets in total).
- 3 sets of 2 SiC/TiC composite sheets + 1 C/TiC composite sheet (9 sheets in total) - 3 sets of 1 SiC/TiC composite sheet + 1 C/TiC composite sheet ( 6 sheets in total) - SiC/TiC composite sheet ■ 1 sheet + C/
TiC composite sheet ■ 3 sets of 2 sheets (9 sheets in total) - C/Ti
C composite sheet ■ 3 sheets in 1 set (total 3 sheets), total 3 sheets
0 sheets were laminated. Thereafter, the laminate was heated at 500°C for 3 hours to remove volatiles, and then pressure sintered at 2000°C for 2 hours at a pressure of 200 kg/cm2 to form a C to SiC material measuring 50 mm long x 50 mm wide x 5 mm high. Fiber reinforced TiC composite material (C~Si
C/TiC composite material) was manufactured.

【0015】このC〜SiC/TiC複合材料の面方向
の熱膨張係数を測定したところ、SiC/TiC表面部
が4.4×10−6K−1及びC/TiC表面部が1.
2×10−6K−1であつた。次に、このC〜SiC/
TiC複合材料を基材とし、原料ガスとしてSiCl4
、CH4、H2を用いたCVD法により、基材のSiC
/TiC表面にSiC(熱膨張係数4.5×10−6K
−1)を約500μmの厚さに被覆した。
When the thermal expansion coefficient in the plane direction of this C~SiC/TiC composite material was measured, it was found that the SiC/TiC surface portion was 4.4×10 −6 K−1 and the C/TiC surface portion was 1.4×10 −6 K−1.
It was 2×10-6K-1. Next, this C~SiC/
TiC composite material is used as the base material, and SiCl4 is used as the raw material gas.
, CH4, and H2, the base material SiC
/SiC on TiC surface (thermal expansion coefficient 4.5 x 10-6K
-1) was coated to a thickness of about 500 μm.

【0016】上記のごとく製造した本発明の被覆C〜S
iC/TiC複合材料について、室温及び1500℃で
の曲げ強度を測定した。又、大気中において室温から1
700℃までの熱サイクルを10回繰り返し、熱サイク
ル後の室温強度を測定すると共にSiC被覆層の状態を
観察した。結果を表1に示した。
Coatings C to S of the present invention produced as described above
The bending strength of the iC/TiC composite material was measured at room temperature and at 1500°C. Also, in the atmosphere from room temperature to 1
A thermal cycle up to 700° C. was repeated 10 times, and the room temperature strength after the thermal cycle was measured and the state of the SiC coating layer was observed. The results are shown in Table 1.

【0017】比較例として、TiCマトリックスをSi
C繊維のみで強化した基材にSiC被覆層を形成した被
覆SiC/TiC複合材料、及びTiCマトリックスを
炭素繊維のみで強化した基材にSiC被覆層を設けた被
覆C/TiC複合材料を製造し、上記と同様の試験を行
い、結果を表1に合わせて示した。
As a comparative example, the TiC matrix was replaced with Si
We produced a coated SiC/TiC composite material in which a SiC coating layer was formed on a base material reinforced only with C fibers, and a coated C/TiC composite material in which a SiC coating layer was provided on a base material in which a TiC matrix was reinforced only with carbon fibers. , the same test as above was conducted and the results are shown in Table 1.

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【実施例2】マトリックスとして平均粒径2μmのSi
3N4粉末を用い、これに微量のAl2O3粉末を混合
した後アクリルアマイド系樹脂と混練し、Si−Ti−
C繊維の織布上に塗布してSi−Ti−C繊維とSi3
N4粉末からなるSi−Ti−C/Si3N4複合体シ
ート■を得た。又、マトリックスとして平均粒径2μm
のSi3N4粉末を用い、これに微量のAl2O3粉末
を混合した後アクリルアマイド系樹脂と混練し、炭素繊
維の織布上に塗布して炭素繊維とSi3N4粉末からな
るC/Si3N4複合体シート■を得た。
[Example 2] Si with an average particle size of 2 μm as a matrix
Using 3N4 powder, a small amount of Al2O3 powder was mixed with it and then kneaded with acrylamide resin to form Si-Ti-
Si-Ti-C fibers and Si3 are coated on a woven fabric of C fibers.
A Si-Ti-C/Si3N4 composite sheet (2) consisting of N4 powder was obtained. In addition, as a matrix, the average particle size is 2 μm.
After mixing a small amount of Al2O3 powder with this Si3N4 powder, it was kneaded with an acrylamide resin and coated on a carbon fiber woven fabric to obtain a C/Si3N4 composite sheet consisting of carbon fibers and Si3N4 powder. Ta.

【0020】これらの複合体シート■と■を実施例1と
同様に組み合わせ、Si−Ti−C/Si3N4複合体
シート■3枚を1組(計3枚)−Si−Ti−C/Si
3N4複合体シート■2枚+C/Si3N4 複合体シート■1枚を3組(計9枚)−Si−Ti−C
/Si3N4複合体シート■1枚+C/Si3N4 複合体シート■1枚を3組(計6枚)−Si−Ti−C
/Si3N4複合体シート■1枚+C/Si3N4 複合体シート■2枚を3組(計9枚)−C/Si3N4
複合体シート■3枚を1組(計3枚)の順に、合計30
枚積層した。その後、積層体を実施例1と同様に処理し
てC〜Si−Ti−C繊維強化Si3N4複合材料(C
〜Si−Ti−C/Si3N4複合材料)を製造した。
These composite sheets ■ and ■ were combined in the same manner as in Example 1, and a set of three Si-Ti-C/Si3N4 composite sheets ■ (3 sheets in total) -Si-Ti-C/Si
3N4 composite sheet ■ 2 sheets + C/Si3N4 composite sheet ■ 3 sets of 1 sheet (total 9 sheets) - Si-Ti-C
/Si3N4 composite sheet ■ 1 sheet + C / Si3N4 composite sheet ■ 3 sets (total 6 sheets) - Si-Ti-C
/Si3N4 composite sheet ■ 1 sheet + C/Si3N4 composite sheet ■ 3 sets of 2 sheets (9 sheets in total) - C/Si3N4
Composite sheet ■ 3 sheets in 1 set (total of 3 sheets), total 30
Laminated. Thereafter, the laminate was treated in the same manner as in Example 1 to make a C~Si-Ti-C fiber-reinforced Si3N4 composite (C
~Si-Ti-C/Si3N4 composite material) was manufactured.

【0021】得られたC〜Si−Ti−C/Si3N4
複合材料の面方向の熱膨張係数を測定したところ、Si
−Ti−C/Si3N4表面部が3.2×10−6K−
1及びC/Si3N4表面部が0.6×10−6K−1
であつた。次に、このC〜Si−Ti−C/Si3N4
複合材料を基材とし、実施例1と同様に基材のSi−T
i−C/Si3N4表面にSiCを約500μmの厚さ
に被覆した。
Obtained C~Si-Ti-C/Si3N4
When the thermal expansion coefficient in the plane direction of the composite material was measured, it was found that Si
-Ti-C/Si3N4 surface area is 3.2 x 10-6K-
1 and C/Si3N4 surface area is 0.6×10-6K-1
It was hot. Next, this C~Si-Ti-C/Si3N4
A composite material is used as a base material, and the base material is Si-T in the same manner as in Example 1.
The i-C/Si3N4 surface was coated with SiC to a thickness of about 500 μm.

【0022】上記のごとく製造した本発明の被覆C〜S
i−Ti−C/Si3N4複合材料について、室温及び
1500℃での曲げ強度を測定した。又、大気中におい
て室温から1700℃までの熱サイクルを10回繰り返
し、熱サイクル後の室温強度を測定すると共にSiC被
覆層の状態を観察した。結果を表2に示した。
Coatings C to S of the present invention produced as described above
The bending strength of the i-Ti-C/Si3N4 composite material was measured at room temperature and at 1500°C. Further, thermal cycles from room temperature to 1700° C. were repeated 10 times in the air, and the room temperature strength after the thermal cycles was measured and the state of the SiC coating layer was observed. The results are shown in Table 2.

【0023】比較例として、Si3N4マトリックスを
Si−Ti−C繊維のみで強化した基材にSiC被覆層
を形成した被覆Si−Ti−C/Si3N4複合材料、
及びSi3N4マトリックスを炭素繊維のみで強化した
基材にSiC被覆層を設けた被覆C/Si3N4複合材
料を製造し、上記と同様の試験を行い、結果を表2に合
わせて示した。
As a comparative example, a coated Si-Ti-C/Si3N4 composite material was prepared in which a SiC coating layer was formed on a base material in which a Si3N4 matrix was reinforced with only Si-Ti-C fibers.
A coated C/Si3N4 composite material was produced in which a SiC coating layer was provided on a base material in which a Si3N4 matrix was reinforced with only carbon fibers, and the same tests as above were conducted, and the results are shown in Table 2.

【0024】[0024]

【表2】[Table 2]

【0025】[0025]

【実施例3】マトリックスとして平均粒径1μmのSi
C粉末を用い、これに微量のAl2O3粉末を混合した
後アクリルアマイド系樹脂と混練し、SiC繊維の織布
上に塗布してSiC繊維とSiC粉末からなるSiC/
SiC複合体シート■を得た。次に、マトリックスとし
て平均粒径1μmのC粉末を用い、これに微量のAl2
O3粉末を混合した後アクリルアマイド系樹脂と混練し
、炭素繊維の織布上に塗布して炭素繊維とC粉末からな
るC/C複合体シート■を得た。
[Example 3] Si with an average particle size of 1 μm as a matrix
C powder is mixed with a small amount of Al2O3 powder, then kneaded with acrylamide resin, and coated on a woven fabric of SiC fibers to form a SiC/C powder made of SiC fibers and SiC powder.
A SiC composite sheet ■ was obtained. Next, C powder with an average particle size of 1 μm was used as a matrix, and a small amount of Al2 was added to it.
After mixing the O3 powder, it was kneaded with an acrylamide resin and applied onto a carbon fiber woven fabric to obtain a C/C composite sheet (2) consisting of carbon fibers and C powder.

【0026】これらの複合体シート■と■を組み合わせ
、SiC/SiC複合体シート■3枚を1組(計3枚)
−SiC/SiC複合体シート■2枚+C/C複合体シ
ート■1枚を3組(計9枚)−SiC/SiC複合体シ
ート■1枚+C/C複合体シート■1枚を3組(計6枚
)−SiC/SiC複合体シート■1枚+C/C複合体
シート■2枚を3組(計9枚)−C/C複合体シート■
3枚を1組(計3枚)の順に、合計30枚積層した。こ
のようにして得られた2つの積層体のC/C複合体シー
ト■側を合わせて重ね、実施例1と同様に処理して両表
面がSiC/SiC表面部からなるC〜SiC繊維強化
C〜SiC複合材料(C〜SiC/C〜SiC複合材料
)を得た。
[0026] These composite sheets ■ and ■ are combined to form a set of three SiC/SiC composite sheets ■ (3 sheets in total).
- 3 sets of 2 SiC/SiC composite sheets + 1 C/C composite sheet (9 total) - 3 sets of 1 SiC/SiC composite sheet + 1 C/C composite sheet ( 6 sheets in total) - SiC/SiC composite sheet ■ 1 sheet + C/C composite sheet ■ 3 sets of 2 sheets (9 sheets in total) - C/C composite sheet ■
A total of 30 sheets were laminated in the order of three sheets (total of three sheets). The C/C composite sheet side (■) of the two laminates obtained in this way were stacked together and treated in the same manner as in Example 1. ~SiC composite material (C~SiC/C~SiC composite material) was obtained.

【0027】このC〜SiC/C〜SiC複合材料の面
方向の熱膨張係数を測定したところ、両方のSiC/S
iC表面部が4.4×10−6K−1であつた。次に、
このC〜SiC/C〜SiC複合材料を基材とし、実施
例1と同様に基材の両方のSiC/SiC表面にSiC
を約500μmの厚さに被覆した。
When the thermal expansion coefficient in the plane direction of this C~SiC/C~SiC composite material was measured, it was found that both SiC/S
The iC surface area was 4.4 x 10-6K-1. next,
This C~SiC/C~SiC composite material is used as a base material, and as in Example 1, SiC is applied to both SiC/SiC surfaces of the base material.
was coated to a thickness of approximately 500 μm.

【0028】上記のごとく製造した本発明の被覆C〜S
iC/C〜SiC複合材料について、室温及び1500
℃での曲げ強度を測定した。又、大気中において室温か
ら1700℃までの熱サイクルを10回繰り返し、熱サ
イクル後の室温強度を測定すると共にSiC被覆層の状
態を観察した。結果を表3に示した。
Coatings C to S of the invention produced as described above
For iC/C~SiC composite materials, room temperature and 1500
The bending strength at ℃ was measured. Further, thermal cycles from room temperature to 1700° C. were repeated 10 times in the air, and the room temperature strength after the thermal cycles was measured and the state of the SiC coating layer was observed. The results are shown in Table 3.

【0029】比較例として、SiCマトリックスをSi
C繊維のみで強化した基材の両表面にSiC被覆層を形
成した被覆SiC/SiC複合材料、及びSiCマトリ
ックスを炭素繊維のみで強化した基材の両表面にSiC
被覆層を設けた被覆C/SiC複合材料を製造し、上記
と同様の試験を行い、結果を表3に合わせて示した。
As a comparative example, the SiC matrix was
A coated SiC/SiC composite material in which a SiC coating layer is formed on both surfaces of a base material reinforced only with C fibers, and a coated SiC/SiC composite material in which a SiC coating layer is formed on both surfaces of a base material reinforced only with carbon fibers.
A coated C/SiC composite material provided with a coating layer was manufactured and tested in the same manner as above, and the results are shown in Table 3.

【0030】[0030]

【表3】[Table 3]

【0031】[0031]

【発明の効果】本発明によれば、1500℃以上の高温
でも優れた強度特性を示し、熱サイクル下でも剥離や破
損のないSiC被覆層を有する、極めて耐熱性に優れた
被覆繊維強化傾斜機能材料を提供できる。この被覆繊維
強化傾斜機能材料は宇宙往還機等の超高速飛翔体に用い
る機体断熱材やスクラムジェットエンジン材料等として
最適である。
Effects of the Invention According to the present invention, the coated fiber-reinforced gradient function exhibits excellent strength even at high temperatures of 1500°C or higher and has an SiC coating layer that does not peel or break even under thermal cycles. We can provide materials. This coated fiber-reinforced functionally graded material is most suitable as airframe insulation material used in ultra-high-speed flying vehicles such as spacecraft, scramjet engine material, etc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭素、或は周期律表の4A属元素、ケ
イ素又はホウ素の炭化物、窒化物又は炭窒化物の少なく
とも1種からなるマトリックス中に、強化材として炭素
繊維及びセラミックス繊維を含む繊維強化複合材料の基
材と、基材の両表面に設けた炭化ケイ素の被覆層とから
なり、前記基材の両表面部の強化材がセラミックス繊維
、中心部の強化材が炭素繊維、及び中間部の強化材が炭
素繊維とセラミックス繊維の両方からなり、強化材中の
炭素繊維含有率が中心部での100%から両表面部での
0%までほぼ連続的に変化していることを特徴とする被
覆繊維強化傾斜機能材料。
Claim 1: Fibers containing carbon fibers and ceramic fibers as reinforcing materials in a matrix consisting of carbon, or at least one of carbides, nitrides, or carbonitrides of elements of group 4A of the periodic table, silicon, or boron. It consists of a reinforced composite material base material and a silicon carbide coating layer provided on both surfaces of the base material, the reinforcement material on both surfaces of the base material is ceramic fiber, the reinforcement material in the center is carbon fiber, and the intermediate material is made of ceramic fiber. The reinforcing material in this part is made of both carbon fiber and ceramic fiber, and the carbon fiber content in the reinforcing material changes almost continuously from 100% in the center to 0% on both surfaces. Coated fiber-reinforced functionally graded material.
【請求項2】  炭素、或は周期律表の4A属元素、ケ
イ素又はホウ素の炭化物、窒化物又は炭窒化物の少なく
とも1種からなるマトリックス中に、強化材として炭素
繊維及びセラミックス繊維を含む繊維強化複合材料の基
材と、基材の片方の表面に設けた炭化ケイ素の被覆層と
からなり、前記基材の片方の表面部の強化材がセラミッ
クス繊維、他方の表面部の強化材が炭素繊維、及び中間
部の強化材が炭素繊維とセラミックス繊維の両方からな
り、強化材中の炭素繊維含有率が片方の表面部での0%
から他方の表面部での100%までほぼ連続的に変化し
ていることを特徴とする被覆繊維強化傾斜機能材料。
2. Fibers containing carbon fibers and ceramic fibers as reinforcing materials in a matrix consisting of carbon, or at least one of carbides, nitrides, or carbonitrides of elements of group 4A of the periodic table, silicon, or boron. Consisting of a reinforced composite material base material and a silicon carbide coating layer provided on one surface of the base material, the reinforcement material on one surface portion of the base material is ceramic fiber, and the reinforcement material on the other surface portion is carbon. The fibers and the reinforcing material in the middle are made of both carbon fiber and ceramic fiber, and the carbon fiber content in the reinforcing material is 0% on one surface.
1. A coated fiber-reinforced functionally graded material characterized by an almost continuous change from 100% to 100% at the other surface.
JP3025709A 1991-01-25 1991-01-25 Coated fiber reinforced functionally graded material Pending JPH04243971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025709A JPH04243971A (en) 1991-01-25 1991-01-25 Coated fiber reinforced functionally graded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025709A JPH04243971A (en) 1991-01-25 1991-01-25 Coated fiber reinforced functionally graded material

Publications (1)

Publication Number Publication Date
JPH04243971A true JPH04243971A (en) 1992-09-01

Family

ID=12173321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025709A Pending JPH04243971A (en) 1991-01-25 1991-01-25 Coated fiber reinforced functionally graded material

Country Status (1)

Country Link
JP (1) JPH04243971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503193A (en) * 2008-09-18 2012-02-02 コミッサリア ア レネルジ アトミック エ オ エネルジ オルターネイティブ Nuclear fuel cladding with high thermal conductivity and method for manufacturing the same
CN108046819A (en) * 2017-11-23 2018-05-18 西北工业大学 A kind of structure-function integration C/C-SiC friction materials and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503193A (en) * 2008-09-18 2012-02-02 コミッサリア ア レネルジ アトミック エ オ エネルジ オルターネイティブ Nuclear fuel cladding with high thermal conductivity and method for manufacturing the same
CN108046819A (en) * 2017-11-23 2018-05-18 西北工业大学 A kind of structure-function integration C/C-SiC friction materials and preparation method

Similar Documents

Publication Publication Date Title
US5254397A (en) Carbon fiber-reinforced composite material having a gradient carbide coating
US4719151A (en) Laminated ceramic structure
US6284357B1 (en) Laminated matrix composites
JPH0551268A (en) Fiber-reinforced functionally gradient material
Chawla Interface engineering in mullite fiber/mullite matrix composites
US5558907A (en) Pseudo-porous fiber coating for toughened ceramic composite materials and method of producing same
JP3154537B2 (en) Silicon carbide reinforced carbon composite
US12071378B2 (en) High temperature fiber and method of making
Yang et al. SiC/Si–ZrSi2–ZrB2-HfB2/SiC coating for oxidation protection of C/C composites prepared by three-step method
EP2970020A2 (en) Ceramic matrix composites and methods for producing ceramic matrix composites
Peters et al. Mechanical characterisation of mullite-based ceramic matrix composites at test temperatures up to 1200° C
EP0435039B1 (en) Carbon fiber-reinforced composite material
Radsick et al. Damage tolerant oxide/oxide fiber laminate composites
JPH04243971A (en) Coated fiber reinforced functionally graded material
JPS5864280A (en) Manufacture of non-oxide ceramics sintered body
JPH08501266A (en) Ceramic composites used especially at temperatures above 1400 ° C
EP0444426B1 (en) Process for producing a silicon carbide whisker-reinforced silicon nitride composite material
JP3031853B2 (en) Heat and oxidation resistant carbon materials
Kajii et al. A new type of fiber-bonded-ceramic material synthesized from pre-oxidized Si-Ti-CO fiber
JPH11314985A (en) Heat and oxidation resistant carbon fiber reinforced carbon material
Ünal et al. Mechanical properties and microstructure of oxidized SiC/SiC composites
US20240279125A1 (en) Unitary ceramic components and methods of forming the same
Ueno et al. Preparation and properties of SiC fibre reinforced SiAION ceramic composite
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
Schwartz et al. Properties of silicon carbide fiber reinforced carbon composites