[go: up one dir, main page]

JPH04238858A - Low temperature fired glass ceramic body - Google Patents

Low temperature fired glass ceramic body

Info

Publication number
JPH04238858A
JPH04238858A JP41611190A JP41611190A JPH04238858A JP H04238858 A JPH04238858 A JP H04238858A JP 41611190 A JP41611190 A JP 41611190A JP 41611190 A JP41611190 A JP 41611190A JP H04238858 A JPH04238858 A JP H04238858A
Authority
JP
Japan
Prior art keywords
glass
low
temperature
ceramic
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41611190A
Other languages
Japanese (ja)
Other versions
JP2892163B2 (en
Inventor
Satoshi Hamano
智 濱野
Hideo Emura
秀雄 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP41611190A priority Critical patent/JP2892163B2/en
Publication of JPH04238858A publication Critical patent/JPH04238858A/en
Application granted granted Critical
Publication of JP2892163B2 publication Critical patent/JP2892163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To provide a low-temperature burnt glass ceramic material suitable as an insulating substrate for multilayer circuit board, having high mechanical strength of insulating substrate, low coefficient of thermal expansion and dielectric constant, using copper as a conductive material, simultaneously burnable at low temperature close to 1,000 deg.C. CONSTITUTION:Borosilicate glass is blended with a ceramic insulating material and burnt at 900-1,050 deg.C to give a sintered material of glass ceramics consisting of a crystal layer comprising 18-24wt.% alumina, 8-17wt.% quartz and 13-25wt.% cordierite and the rest of borosilicate glass having 770-850 deg.C softening point.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体集積回路素子を搭
載する多層配線基板等の絶縁基体として利用し得る低温
焼成ガラスセラミック体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature fired glass-ceramic body which can be used as an insulating substrate for multilayer wiring boards and the like on which semiconductor integrated circuit elements are mounted.

【0002】0002

【従来の技術】従来、半導体素子、特にシリコンで構成
された半導体集積回路素子を搭載する多層配線基板等の
絶縁基体には、一般に電気絶縁性及び耐熱性に優れ、強
度の大なるアルミナセラミックス等の電気絶縁材料が使
用されており、該アルミナセラミックス等から成る基板
上にモリブデン(Mo)、タングステン(W)等の高融
点金属から成るメタライズ金属層を厚膜印刷して電気配
線回路を形成したものを多層化し、一体化焼成して多層
セラミック配線基板が得られていた。
[Prior Art] Conventionally, insulating substrates such as multilayer wiring boards on which semiconductor elements, particularly semiconductor integrated circuit elements made of silicon, are mounted are generally made of alumina ceramics, which have excellent electrical insulation properties, heat resistance, and high strength. An electric wiring circuit is formed by printing a thick film of a metallized metal layer made of a high melting point metal such as molybdenum (Mo) or tungsten (W) on a substrate made of such alumina ceramics. A multilayer ceramic wiring board was obtained by forming multiple layers and firing them together.

【0003】しかしながら、近時、半導体素子の大型化
、信号の伝播速度の高速化が急激に進み、該半導体素子
を上記従来の多層セラミック配線基板に搭載した場合、
半導体集積回路素子を構成するアルミナセラミックスの
熱膨張率が6.0〜7.5×10 −6 /℃であるの
に対し、前記シリコンの熱膨張率が3.5×10 −6
 /℃前後と互いに大きく相違することから、半導体集
積回路素子を搭載する際等に大きな熱応力が発生し、該
熱応力によって半導体集積回路素子が破損したり、絶縁
基体より剥離する等の問題があった。
However, in recent years, the size of semiconductor elements and the speed of signal propagation have rapidly increased, and when the semiconductor elements are mounted on the above-mentioned conventional multilayer ceramic wiring board,
The coefficient of thermal expansion of alumina ceramics constituting semiconductor integrated circuit elements is 6.0 to 7.5×10 −6 /°C, whereas the coefficient of thermal expansion of silicon is 3.5×10 −6
/℃, which causes large thermal stress when mounting semiconductor integrated circuit elements, which can cause problems such as damage to semiconductor integrated circuit elements and peeling from insulating substrates. there were.

【0004】また、前記絶縁基体を構成するアルミナセ
ラミックスはその誘電率が9〜10(室温、1MHz)
と高く、高周波伝播の遅延時間は誘電率の平方根に比例
することから、絶縁基体に設けたメタライズ金属層を伝
わる信号の伝播速度が遅く、信号の高速伝播のためには
より誘電率の低い絶縁基体が要求されていた。
[0004] Furthermore, the alumina ceramics constituting the insulating substrate has a dielectric constant of 9 to 10 (at room temperature, 1 MHz).
Since the delay time of high-frequency propagation is proportional to the square root of the dielectric constant, the propagation speed of the signal through the metallized metal layer provided on the insulating substrate is slow, and for high-speed signal propagation, insulation with a lower dielectric constant is required. A base was required.

【0005】更に、前記アルミナセラミックスから成る
絶縁基体は焼成温度が1600℃前後と高いことから、
電気配線回路を形成するメタライズ金属層も高融点金属
のモリブデン、タングステン等に限定され、高い電気抵
抗率と高密度配線から電気配線回路の配線抵抗が大とな
り、それに伴い電圧降下が増大し、信号の伝播速度の遅
延を招くため、低抵抗率の例えば金、銅等の金属が電気
配線回路用材料として使用できることが要求されていた
Furthermore, since the insulating substrate made of alumina ceramics has a high firing temperature of around 1600°C,
The metallized metal layer that forms the electrical wiring circuit is also limited to high-melting point metals such as molybdenum and tungsten, and due to the high electrical resistivity and high density wiring, the wiring resistance of the electrical wiring circuit becomes large, and the voltage drop increases accordingly. Therefore, it has been required that metals with low resistivity, such as gold and copper, can be used as materials for electrical wiring circuits.

【0006】そこで上記諸問題を解決するために、特開
昭63−248199号公報には多層配線基板の絶縁基
体を、アルミナセラミックスに代えて半導体集積回路素
子を構成するシリコンの熱膨張率と近似した熱膨張率を
有し、かつ誘電率が4.6以下と低く、高シリカガラス
と焼成温度を1000℃近辺とすることを可能とした低
軟化点ガラスである硼珪酸ガラスにアルミナ粉末を添加
して成るガラスセラミック多層配線基板が提案されてい
る。
In order to solve the above-mentioned problems, Japanese Patent Application Laid-Open No. 63-248199 proposes that the insulating substrate of the multilayer wiring board be replaced with alumina ceramics and have a coefficient of thermal expansion that approximates that of silicon constituting the semiconductor integrated circuit element. Alumina powder is added to borosilicate glass, which is a low softening point glass that has a high coefficient of thermal expansion and a low dielectric constant of 4.6 or less, making it possible to achieve a firing temperature of around 1000℃ compared to high silica glass. A glass ceramic multilayer wiring board has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記高
シリカガラスと低軟化点ガラスである硼珪酸ガラスにア
ルミナ粉末を添加して成るガラスセラミック多層配線基
板では、誘電率は低いものの抗折強度が15kg/mm
2 以下と低くなり、例え基板の厚みを増すことにより
基板としての実用上の機械的強度を得んとしても、前記
基板を外部回路と電気的に接続するための電気信号の入
出力用ピン等をろう付けする工程で、局所的に加熱され
ると、ろう材と基板材料との熱膨張差により生じる熱応
力が原因となって、前記基板にクラックや基板表面のメ
タライズ金属層の剥離等が発生し、信頼性に優れた高品
質の多層配線基板が得られないという課題があった。
However, a glass ceramic multilayer wiring board made by adding alumina powder to the high silica glass and borosilicate glass, which is a low softening point glass, has a low dielectric constant but a bending strength of 15 kg. /mm
2 or less, and even if practical mechanical strength as a board can be obtained by increasing the thickness of the board, pins for input/output of electrical signals to electrically connect the board to an external circuit, etc. When locally heated during the brazing process, thermal stress caused by the difference in thermal expansion between the brazing material and the substrate material can cause cracks in the substrate and peeling of the metallized metal layer on the substrate surface. There was a problem that a high-quality multilayer wiring board with excellent reliability could not be obtained.

【0008】また、微量の炭素が基板に残留すると基板
が多孔性となったり、色調にムラを生じたり、かつ基板
の機械的及び電気的な特性が低下する等のため、図1に
示す炭素と水蒸気との反応における温度と自由エネルギ
ー変化の関係図から明らかなように、炭素が水蒸気と反
応して炭酸ガスとなって飛散する温度である680℃以
上、好ましくは750℃以上の温度で脱バインダーする
必要がある。
Furthermore, if a trace amount of carbon remains on the substrate, the substrate becomes porous, the color tone becomes uneven, and the mechanical and electrical properties of the substrate deteriorate. As is clear from the diagram of the relationship between temperature and free energy change in the reaction between carbon and water vapor, desorption occurs at a temperature of 680°C or higher, preferably 750°C or higher, which is the temperature at which carbon reacts with water vapor and scatters as carbon dioxide gas. Need a binder.

【0009】しかしながら、前記ガラスセラミック多層
配線基板には軟化点が1000℃以下のガラスが使用さ
れているため、軟化点の低いものではガラスの軟化流動
により閉気孔が形成され、完全に脱バインダーすること
ができず炭素が100ppm以上残留してしまう。
However, since glass with a softening point of 1000° C. or lower is used in the glass ceramic multilayer wiring board, closed pores are formed due to the softening flow of the glass, and the binder cannot be completely removed if the glass has a low softening point. Therefore, carbon of 100 ppm or more remains.

【0010】逆に750℃以上の温度で軟化流動しない
ガラスを使用しようとすると、一般的に前記温度範囲か
らガラスの軟化点は850℃以上となり、緻密な焼結体
を得ようとすると焼成温度は1050℃を越えてしまい
、銅の融点近辺の温度となり銅の導体層の形成と同時に
焼成できないという課題があった。
On the other hand, if you try to use glass that does not soften and flow at temperatures above 750°C, the softening point of the glass will generally be above 850°C within the above temperature range, and if you try to obtain a dense sintered body, the firing temperature will increase. The temperature exceeds 1050° C., which is close to the melting point of copper, and there is a problem in that it cannot be fired at the same time as forming the copper conductor layer.

【0011】[0011]

【発明の目的】本発明は上記欠点を解消するために開発
されたもので、その目的は絶縁基体の機械的強度が高く
、該絶縁基体に設けたメタライズ金属層にピン等の外部
リード端子を強固にろう付けすることができるとともに
、絶縁基体の熱膨張率及び誘電率が低く、かつ銅を導体
材料とし、残留炭素を極めて少なくして脱バインダーす
ることができ、かつ1000℃近辺の低温焼成を可能と
する極めて信頼性の高い多層配線基板用絶縁基体として
利用し得る低温焼成ガラスセラミック体を提供すること
にある。
OBJECTS OF THE INVENTION The present invention was developed in order to eliminate the above-mentioned drawbacks, and its purpose is to provide an insulating base with high mechanical strength, and to attach external lead terminals such as pins to the metallized metal layer provided on the insulating base. In addition to being able to be firmly brazed, the insulating substrate has a low coefficient of thermal expansion and dielectric constant, copper is used as the conductor material, and binder removal can be achieved with extremely low residual carbon, and low-temperature firing at around 1000°C is possible. An object of the present invention is to provide a low-temperature fired glass-ceramic body that can be used as an extremely reliable insulating substrate for a multilayer wiring board.

【0012】0012

【課題を解決するための手段】本発明の低温焼成ガラス
セラミック体は、硼珪酸ガラスにセラミック絶縁材料を
添加し、900〜1050℃の焼成温度から成るガラス
セラミック焼結体の結晶相が、18〜24重量%のアル
ミナ(Al2O3 )、8〜17重量%の石英(SiO
2 )及び13〜25重量%のコージエライト(2Mg
O・2Al2 O3 ・5SiO2 )を含有し、残部
が770〜850℃の範囲の軟化点を有する硼珪酸ガラ
スより成ることを特徴とするものである。
[Means for Solving the Problems] The low-temperature fired glass-ceramic body of the present invention is obtained by adding a ceramic insulating material to borosilicate glass, and the crystal phase of the glass-ceramic sintered body is 18 ~24 wt% alumina (Al2O3), 8-17 wt% quartz (SiO
2) and 13-25% by weight of cordierite (2Mg
O.2Al2O3.5SiO2), and the remainder is made of borosilicate glass having a softening point in the range of 770 to 850°C.

【0013】即ち、前記硼珪酸ガラスの軟化点が770
℃未満では、脱バインダー時のガラスの軟化流動が激し
く、そのためにガラスセラミック焼結体の収縮が大きく
、炭素がガラスセラミック焼結体中に100ppm以上
残留してしまい、該焼結体の強度劣化や耐電圧劣化等を
引き起こす。また、前記硼珪酸ガラスの軟化点が850
℃を越えると焼成温度を1050℃以上にしないと緻密
な焼結体が得られない。
That is, the softening point of the borosilicate glass is 770
If the temperature is below ℃, the glass softens and flows violently during binder removal, resulting in large shrinkage of the glass-ceramic sintered body, and 100 ppm or more of carbon remains in the glass-ceramic sintered body, resulting in deterioration of the strength of the sintered body. or cause deterioration of withstand voltage. Further, the softening point of the borosilicate glass is 850.
If the temperature exceeds 1050°C, a dense sintered body cannot be obtained unless the firing temperature is 1050°C or higher.

【0014】前記ガラスセラミック焼結体の結晶層はア
ルミナ(Al2 O3 )の含有量が18重量%未満で
は、焼結体の抗折強度が15kg/mm2 以下と低く
なるとともに、耐酸性が悪くなり、めっき等の工程で導
体層と焼結体との界面のガラスが侵され、該侵食部に残
留する微量の水分が後の工程で加熱されるとメタライズ
金属層にフクレを生じたり、該メタライズ金属層が剥離
してしまう。また、24重量%を越えると焼結体の誘電
率が5以上と大になり実用範囲外となる。
If the content of alumina (Al2O3) in the crystal layer of the glass ceramic sintered body is less than 18% by weight, the flexural strength of the sintered body will be as low as 15 kg/mm2 or less, and the acid resistance will deteriorate. During the plating process, the glass at the interface between the conductor layer and the sintered body is corroded, and when a small amount of moisture remaining in the corroded area is heated in a later process, it may cause blisters in the metallized metal layer or damage the metallized metal layer. The metal layer will peel off. Moreover, if it exceeds 24% by weight, the dielectric constant of the sintered body becomes 5 or more, which is beyond the practical range.

【0015】また、石英(SiO2 )の含有量が8重
量%未満では、焼成温度が1050℃以上となり、誘電
率も5以上と大になる。一方、17%を越えると焼結体
の耐酸性が悪くなるか、もしくは熱膨張率が4.5×1
0−6 /℃より大となる。
Furthermore, if the content of quartz (SiO2) is less than 8% by weight, the firing temperature will be 1050° C. or higher, and the dielectric constant will be as high as 5 or higher. On the other hand, if it exceeds 17%, the acid resistance of the sintered body will deteriorate or the thermal expansion coefficient will be 4.5×1.
It becomes larger than 0-6/℃.

【0016】次に、コージエライト(2MgO・2Al
2 O3 ・5SiO2 )の含有量が13重量%未満
では、焼結体の熱膨張率が4.5×10 −6 /℃よ
り大となり、また25重量%を越えると焼結体の熱膨張
率が3.5×10 −6 /℃より小さくなり、半導体
集積回路素子を構成するシリコンの熱膨張率より小さく
成り過ぎ、いずれも実用的ではなくなる。
Next, cordierite (2MgO.2Al
If the content of 2O3 ・5SiO2) is less than 13% by weight, the coefficient of thermal expansion of the sintered body will be greater than 4.5×10 -6 /℃, and if it exceeds 25% by weight, the coefficient of thermal expansion of the sintered body will decrease. is smaller than 3.5×10 −6 /° C., which is too small than the coefficient of thermal expansion of silicon constituting the semiconductor integrated circuit element, making both of them impractical.

【0017】また、前記焼成温度が900℃未満では、
低抵抗率を有する金(Au)、銀(Ag)、銅(Cu)
等の金属から成る導体層を十分に被着形成することがで
きず、1050℃を越えると、前記低抵抗を有する金属
が溶融してしまい、電気配線回路を形成することができ
ない。故に、前記硼珪酸ガラスの軟化点およびガラスセ
ラミック焼結体の結晶層の含有量及び焼成温度は前記範
囲に特定される。
[0017] Furthermore, if the firing temperature is less than 900°C,
Gold (Au), silver (Ag), copper (Cu) with low resistivity
If the temperature exceeds 1050° C., the low-resistance metal will melt, making it impossible to form an electric wiring circuit. Therefore, the softening point of the borosilicate glass, the content of the crystal layer of the glass ceramic sintered body, and the firing temperature are specified within the above ranges.

【0018】尚、焼成温度、熱膨張率、誘電率及び耐酸
性の諸特性の点から、低温焼成ガラスセラミック体とし
ては19〜21重量%のアルミナ(Al2 O3 )、
11〜15重量%の石英(SiO2 )、18〜23重
量%のコージエライト(2MgO・2Al2 O3 ・
5SiO2 )の結晶層と残部が780〜820℃の範
囲の軟化点を有する硼珪酸ガラスより成ることがより望
ましい。
From the viewpoint of firing temperature, coefficient of thermal expansion, dielectric constant, and acid resistance, it is recommended to use alumina (Al2O3) of 19 to 21% by weight as a low-temperature fired glass-ceramic body.
11-15% by weight of quartz (SiO2), 18-23% by weight of cordierite (2MgO.2Al2O3.
It is more desirable that the crystal layer of 5SiO2) and the remainder be made of borosilicate glass having a softening point in the range of 780 to 820C.

【0019】[0019]

【作用】硼珪酸ガラスにセラミック絶縁材料を添加して
成る低温焼成ガラスセラミック体中に、強度は低いが誘
電率が小さい硼珪酸ガラスを主成分とし、該硼珪酸ガラ
スに誘電率及び熱膨張率及び強度が大なるアルミナの結
晶層と、誘電率が小なる石英の結晶層及び熱膨張率、誘
電率が共に小なるコージエライトの結晶層を含有させる
ことにより、前記ガラスセラミック焼結体の誘電率及び
熱膨張率は低く、なおかつ強度は高く調整できることと
なる。
[Function] A low-temperature fired glass-ceramic body made by adding a ceramic insulating material to borosilicate glass contains borosilicate glass, which has low strength but a small dielectric constant, as the main component, and the borosilicate glass has a dielectric constant and a coefficient of thermal expansion. The dielectric constant of the glass-ceramic sintered body is increased by including an alumina crystal layer with high strength, a quartz crystal layer with a low dielectric constant, and a cordierite crystal layer with a low coefficient of thermal expansion and dielectric constant. The coefficient of thermal expansion is low, and the strength can be adjusted to be high.

【0020】また、軟化点が770〜850℃の硼珪酸
ガラスを使用することにより、非酸化性雰囲気中で脱バ
インダーにより残留炭素を100ppm以下にして、電
気抵抗の低い銅を導体材料として使用できることとなる
[0020] Furthermore, by using borosilicate glass with a softening point of 770 to 850°C, residual carbon can be reduced to 100 ppm or less by debinding in a non-oxidizing atmosphere, and copper with low electrical resistance can be used as a conductor material. becomes.

【0021】[0021]

【実施例】次に、本発明の低温焼成ガラスセラミック体
を実施例に基づき詳細に説明する。原料粉末の組成が重
量比で72〜76%のSiO2 、15〜17%のB2
 O3 、2〜4%のAl2 O3 、1.5%以下の
MgO、1.1〜1.4のZrO2 、Na2 O、K
2 O及びLi2 Oの合計量が2.0〜3.0%から
成る硼珪酸ガラス粉末にアルミナ(Al2 O3 )、
石英(SiO2 )及びコージエライト(2MgO・2
Al2 O3 ・5SiO2 )の各粉末をガラスセラ
ミック焼結体の組成が表1に示す値となるように調合し
、該調合粉末をメタノールを溶媒としてボールミルを用
いて湿式混合した後、乾燥した混合粉末にパラフィンワ
ックスを加えて造粒し、約1000kg/cm2 の成
形圧力にて円板状及び2種類の角柱状の各成形体をプレ
ス成形した。次いで、前記成形体を350℃の温度で脱
バインダーした後、880〜1080℃の温度にて焼成
し、それぞれ円板状と2種類の角柱状のガラスセラミッ
ク焼結体を得た。
EXAMPLES Next, the low-temperature fired glass-ceramic body of the present invention will be explained in detail based on examples. The composition of the raw material powder is 72-76% SiO2 and 15-17% B2 by weight.
O3, 2-4% Al2O3, 1.5% or less MgO, 1.1-1.4% ZrO2, Na2O, K
Alumina (Al2O3),
Quartz (SiO2) and cordierite (2MgO・2
Each powder of Al2O3 ・5SiO2) was mixed so that the composition of the glass ceramic sintered body had the value shown in Table 1, and the mixed powder was wet-mixed using a ball mill using methanol as a solvent, and then the mixed powder was dried. Paraffin wax was added to the mixture to granulate it, and press molding was performed at a molding pressure of about 1000 kg/cm2 into disc-shaped and two types of prismatic molded bodies. Next, after removing the binder from the molded body at a temperature of 350°C, it was fired at a temperature of 880 to 1080°C to obtain glass ceramic sintered bodies having a disk shape and two types of prismatic shapes, respectively.

【0022】まず、上記ガラスセラミック焼結体の一種
を用いてX線回折を行い、アルミナ、石英、コージエラ
イトの標準試料の回折パターンのピーク比から作成した
各結晶層の検量線図と対照し、各結晶層の含有量を確認
した。次いで、前記円板状のガラスセラミック焼結体を
研磨した直径60mm、厚さ2mmの評価試料を作製し
、該評価試料によりJIS−C−2141の規定に準じ
て周波数1MHz、入力信号レベル1.0Vrmsの測
定条件にて誘電率を測定した。同様に、角柱状ガラスセ
ラミック焼結体から縦6mm、横6mm、長さ50mm
に研磨した評価試料を用いて40〜400℃の温度範囲
における平均熱膨張率を測定した。
First, X-ray diffraction was performed using one of the above glass ceramic sintered bodies, and compared with a calibration curve diagram of each crystal layer created from the peak ratios of the diffraction patterns of standard samples of alumina, quartz, and cordierite. The content of each crystal layer was confirmed. Next, an evaluation sample with a diameter of 60 mm and a thickness of 2 mm was prepared by polishing the disk-shaped glass ceramic sintered body, and with this evaluation sample, a frequency of 1 MHz and an input signal level of 1. The dielectric constant was measured under the measurement condition of 0 Vrms. Similarly, from a prismatic glass ceramic sintered body, the length is 6 mm, the width is 6 mm, and the length is 50 mm.
The average coefficient of thermal expansion in the temperature range of 40 to 400° C. was measured using the evaluation sample polished to 400° C.

【0023】また、同様にして縦3mm、横4mm、長
さ40mmに研磨した評価試料を使用して、JIS−R
−1601の規定に準じ3点曲げ試験を行い、抗折強度
をもとめた。更に、上記評価試料を室温で10%濃度の
塩酸溶液中に15分間浸漬し、浸漬前後の重量変化を測
定して耐酸性評価を行った。一方、ガラスセラミック焼
結体の組成が前記と同様にして表1に示す値となるよう
に調合粉砕した混合粉末に、アクリル樹脂を主成分とす
るバインダー及び分散剤、可塑剤、有機溶媒を加えて泥
漿化し、該泥漿をドクターブレード法により厚さ約0.
2mmのグリーンシート成形体を得た。次いで、前記グ
リーンシート表面に銅を主成分とする導体ペーストを用
いてスクリーン印刷法により評価用配線パターンを厚膜
印刷し、乾燥後、該評価用配線パターンを有するグリー
ンシート複数枚を55℃の温度下で100kg/cm2
 の圧力を加えて熱圧着した。
[0023] Also, using an evaluation sample polished to 3 mm in length, 4 mm in width, and 40 mm in length, JIS-R
A three-point bending test was conducted in accordance with the regulations of -1601 to determine the bending strength. Furthermore, the above evaluation sample was immersed in a 10% hydrochloric acid solution at room temperature for 15 minutes, and the weight change before and after immersion was measured to evaluate acid resistance. On the other hand, a binder mainly composed of acrylic resin, a dispersant, a plasticizer, and an organic solvent were added to a mixed powder prepared and pulverized so that the composition of the glass ceramic sintered body became the values shown in Table 1 in the same manner as above. The slurry is made into a slurry by a doctor blade method to a thickness of about 0.0mm.
A 2 mm green sheet molded body was obtained. Next, a wiring pattern for evaluation is thickly printed on the surface of the green sheet by a screen printing method using a conductive paste containing copper as a main component, and after drying, a plurality of green sheets having the wiring pattern for evaluation are heated at 55°C. 100kg/cm2 at temperature
Heat compression bonding was carried out by applying a pressure of .

【0024】この積層体を水蒸気を含有した窒素雰囲気
中、750〜800℃の温度で脱バインダーを行い、続
いて窒素雰囲気中、880〜1100℃の温度にて焼成
した。かくして得られた焼結体をアルミナ乳鉢中で粉砕
した後、大気中、1200℃の温度で熱処理し、この時
に発生する炭酸ガス量より焼結体中の残留炭素量を求め
た。以上の結果を表1及び表2に示す。
The binder was removed from this laminate at a temperature of 750 to 800°C in a nitrogen atmosphere containing water vapor, and then it was fired at a temperature of 880 to 1100°C in a nitrogen atmosphere. The thus obtained sintered body was pulverized in an alumina mortar and then heat treated in the atmosphere at a temperature of 1200°C, and the amount of residual carbon in the sintered body was determined from the amount of carbon dioxide gas generated at this time. The above results are shown in Tables 1 and 2.

【0025】表1Table 1

【0026】表2Table 2

【0027】[0027]

【発明の効果】叙上の如く、本発明の低温焼成ガラスセ
ラミック体は、軟化点が770〜850℃の硼珪酸ガラ
スにセラミック絶縁材料を添加し、焼成温度を900〜
1050℃と低温で焼成して成るガラスセラミック焼結
体の結晶層が、18から24重量%のアルミナ(Al2
 O3 )、8〜17重量%の石英(SiO2 )及び
13〜25重量%のコージエライト(2MgO・2Al
2 O3 ・5SiO2 )と残部が前記硼珪酸ガラス
よりなることから、焼結体中の残留炭素を極めて低く抑
えることができ、絶縁基体の機械的強度が高く、熱膨張
率も半導体集積回路素子を構成するシリコンの熱膨張率
と同程度で、誘電率も極めて低く、かつ低抵抗率の銅を
導体層として被着形成することが可能となる等、高品質
の多層配線基板用等の絶縁材料として好適な低温焼成ガ
ラスセラミック体を提供することができる。
Effects of the Invention As described above, the low-temperature fired glass-ceramic body of the present invention is obtained by adding a ceramic insulating material to borosilicate glass having a softening point of 770 to 850°C, and increasing the firing temperature to 900 to 850°C.
The crystal layer of the glass-ceramic sintered body, which is fired at a low temperature of 1050°C, contains 18 to 24% by weight of alumina (Al2).
), 8-17% by weight of quartz (SiO2) and 13-25% by weight of cordierite (2MgO.2Al
2O3 .5SiO2) and the remainder is the borosilicate glass, the residual carbon in the sintered body can be kept extremely low, the mechanical strength of the insulating base is high, and the coefficient of thermal expansion is comparable to that of semiconductor integrated circuit elements. A high-quality insulating material for multilayer wiring boards that has a coefficient of thermal expansion comparable to that of the constituent silicon, has an extremely low dielectric constant, and can be deposited with low-resistivity copper as a conductor layer. It is possible to provide a low-temperature fired glass-ceramic body suitable as

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の硼珪酸ガラスの軟化点を説明するため
の炭素と水蒸気との反応における温度と自由エネルギー
変化の関係図である。
FIG. 1 is a diagram showing the relationship between temperature and free energy change in the reaction between carbon and water vapor to explain the softening point of the borosilicate glass of the present invention.

【表1】[Table 1]

【表2】[Table 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  硼珪酸ガラスにセラミック絶縁体材料
を添加して成るガラスセラミック焼結体において、焼成
温度が900〜1050℃から成るガラスセラミック焼
結体が結晶相として18〜24重量%のアルミナ(Al
2 O3 ),8〜17重量%の石英(SiO2 )及
び13〜25重量%のコージエライト(2MgO・2A
l2 O3 ・5SiO2 )を含有し、残部が770
〜850℃の範囲の軟化点を有する硼珪酸ガラスより成
ることを特徴とする低温焼成ガラスセラミック体。
Claim 1: A glass-ceramic sintered body made of borosilicate glass added with a ceramic insulating material, wherein the glass-ceramic sintered body is fired at a temperature of 900 to 1050°C and contains 18 to 24% by weight of alumina as a crystal phase. (Al
2O3), 8-17% by weight of quartz (SiO2) and 13-25% by weight of cordierite (2MgO.2A
12 O3 ・5SiO2 ), with the remainder being 770
A low-temperature-fired glass-ceramic body, characterized in that it consists of a borosilicate glass having a softening point in the range of ~850°C.
JP41611190A 1990-12-28 1990-12-28 Low temperature firing glass ceramic body Expired - Fee Related JP2892163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41611190A JP2892163B2 (en) 1990-12-28 1990-12-28 Low temperature firing glass ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41611190A JP2892163B2 (en) 1990-12-28 1990-12-28 Low temperature firing glass ceramic body

Publications (2)

Publication Number Publication Date
JPH04238858A true JPH04238858A (en) 1992-08-26
JP2892163B2 JP2892163B2 (en) 1999-05-17

Family

ID=18524354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41611190A Expired - Fee Related JP2892163B2 (en) 1990-12-28 1990-12-28 Low temperature firing glass ceramic body

Country Status (1)

Country Link
JP (1) JP2892163B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572955B2 (en) * 2000-04-27 2003-06-03 Kyocera Corporation Ceramics having excellent high-frequency characteristics and method of producing the same
CN114031297A (en) * 2021-11-24 2022-02-11 中建材蚌埠玻璃工业设计研究院有限公司 Cordierite-based porous glass ceramic and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572955B2 (en) * 2000-04-27 2003-06-03 Kyocera Corporation Ceramics having excellent high-frequency characteristics and method of producing the same
CN114031297A (en) * 2021-11-24 2022-02-11 中建材蚌埠玻璃工业设计研究院有限公司 Cordierite-based porous glass ceramic and preparation method thereof
CN114031297B (en) * 2021-11-24 2023-08-22 中建材玻璃新材料研究院集团有限公司 Cordierite-based porous glass ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2892163B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JPH0715101A (en) Oxide ceramic circuit board and its manufacture
JP3426926B2 (en) Wiring board and its mounting structure
CA2050095A1 (en) Dielectric composition containing cordierite and glass
JP3121990B2 (en) Glass-ceramic substrate
JPWO2001044143A1 (en) Bonded body of crystallized glass and sintered aluminum nitride and method for producing the same
JPH04238858A (en) Low temperature fired glass ceramic body
JPH0758454A (en) Glass-ceramic multilayer substrate
JPH0360443A (en) Low-temperature calcined glass ceramic body
JP3377898B2 (en) Low temperature firing porcelain composition
JP3164700B2 (en) Glass ceramic substrate and method for manufacturing the same
JP2539169B2 (en) Glass ceramics composition
JPH06199541A (en) Glass-ceramic composition
JP3420426B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
JP3792355B2 (en) High-strength ceramic sintered body, method for producing the same, and wiring board
JP2676221B2 (en) Glaze-treated ceramic substrate and method of manufacturing the same
JPH11186727A (en) Wiring board and method of manufacturing the same
JPS62123059A (en) Ceramic composition with surface smoothness
JPH11135899A (en) Ceramic circuit board
JP3315233B2 (en) Composition for ceramic substrate
JP2003137657A (en) Glass ceramic, method for producing the same, and wiring board
JPS59162169A (en) Ceramics and multilayer distribution panel
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JP3314131B2 (en) Wiring board
TW460430B (en) Low-fire, low-dielectric-constant and low-loss ceramic compositions
JPS6117086B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees