[go: up one dir, main page]

JPH04236428A - Plasma processor - Google Patents

Plasma processor

Info

Publication number
JPH04236428A
JPH04236428A JP1930691A JP1930691A JPH04236428A JP H04236428 A JPH04236428 A JP H04236428A JP 1930691 A JP1930691 A JP 1930691A JP 1930691 A JP1930691 A JP 1930691A JP H04236428 A JPH04236428 A JP H04236428A
Authority
JP
Japan
Prior art keywords
plasma
reactor
magnetic field
metal container
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1930691A
Other languages
Japanese (ja)
Inventor
Kyoichi Komachi
小町 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1930691A priority Critical patent/JPH04236428A/en
Publication of JPH04236428A publication Critical patent/JPH04236428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable uniform generation of plasma for wider area by ECR excitation under a lower pressure. CONSTITUTION:A plurality of permanent magnets 21 are radially provided around a reactor 1 at equal intervals, with the one pole S or N directed toward the reactor 1 and the other pole directed toward the outside and with the pole of the permanent magnet 1 directed toward the reactor 1 converted to the different pole alternately at the circumferencial direction of the reactor 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子サイクロトロン共
鳴(ECR) 励起により生成したプラズマを利用して
成膜, エッチング等の処理を行うプラズマ処理装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus that performs processes such as film formation and etching using plasma generated by electron cyclotron resonance (ECR) excitation.

【0002】0002

【従来の技術】ECR を利用したプラズマ装置は低ガ
ス圧で活性度の高いプラズマを生成でき、また比較的大
口径のプラズマ流を引き出せることから成膜, エッチ
ング処理等に適用し得るものとしてその研究、開発が進
められている。図3は成膜装置として構成した従来(特
開昭57−133636 号公報) のプラズマ処理装
置を示す縦断面図である。プラズマ生成室31は円筒状
に形成され、その上部壁中央に石英ガラス板31a に
て封止したマイクロ波導入口31b を、また下部壁中
央にプラズマ引出窓31c を備えている。マイクロ波
導入口31b にはマイクロ波導波管32が接続され、
またプラズマ引出窓31c に臨ませて試料室33が配
設され、更にプラズマ生成室31及び導波管32を囲む
よう同心円状に励磁コイル34を配設してある。試料室
の下部壁には排気口33a が開口され、また試料室3
3内の試料台35上に試料Sが載置されている。
[Prior Art] A plasma device using ECR can generate highly active plasma at low gas pressure, and can draw out a relatively large-diameter plasma flow, so it has been used as a device that can be applied to film formation, etching, etc. Research and development is underway. FIG. 3 is a longitudinal sectional view showing a conventional plasma processing apparatus (Japanese Patent Application Laid-Open No. 133636/1983) configured as a film forming apparatus. The plasma generation chamber 31 is formed in a cylindrical shape and has a microwave inlet 31b sealed with a quartz glass plate 31a at the center of its upper wall, and a plasma extraction window 31c at the center of its lower wall. A microwave waveguide 32 is connected to the microwave inlet 31b,
Further, a sample chamber 33 is arranged facing the plasma extraction window 31c, and an excitation coil 34 is arranged concentrically to surround the plasma generation chamber 31 and the waveguide 32. An exhaust port 33a is opened in the lower wall of the sample chamber, and the sample chamber 3
A sample S is placed on a sample stage 35 in the sample table 3.

【0003】36はプラズマ生成室31に連なるガス供
給系、37a,37b は冷却水の給水系、排水系であ
る。而してこのようなプラズマ処理装置ではプラズマ生
成室31、試料室33内を所定の真空度に設定した後、
プラズマ生成室31内に励磁コイル34にて磁界を形成
し、またマイクロ波導入口31b を通じてプラズマ生
成室31内にマイクロ波を導入しつつガス供給系36を
通じてガスを供給してプラズマ生成室31内にプラズマ
を生成させる。生成したプラズマは励磁コイル34にて
形成される発散磁界により試料S周辺に投射せしめられ
、試料S表面でプラズマ流中のイオン、ラジカル粒子に
よる表面反応を生起させて成膜処理を施すようになって
いる。
Reference numeral 36 indicates a gas supply system connected to the plasma generation chamber 31, and 37a and 37b indicate a cooling water supply system and a drainage system. In such a plasma processing apparatus, after setting the inside of the plasma generation chamber 31 and the sample chamber 33 to a predetermined degree of vacuum,
A magnetic field is formed in the plasma generation chamber 31 by the excitation coil 34, and while microwaves are introduced into the plasma generation chamber 31 through the microwave introduction port 31b, gas is supplied through the gas supply system 36 to enter the plasma generation chamber 31. Generate plasma. The generated plasma is projected around the sample S by the divergent magnetic field formed by the excitation coil 34, and a surface reaction is caused by the ions and radical particles in the plasma flow on the surface of the sample S, thereby forming a film. ing.

【0004】ところでこのような従来装置では、プラズ
マ引出窓31c を通じて試料室33に引出されるプラ
ズマの密度は中心部が大きく、周辺部が小さいという特
性のため、試料(ウェーハ)Sが大口径化すると均一な
処理を施すことが困難であった。この対策としてマイク
ロ波を用いて大面積にプラズマを発生させる図4に示す
如きプラズマ処理装置が提案されている(特開昭62−
5600 号公報) 。このプラズマ処理装置は金属製
容器51内を誘電損失の小さい耐熱性板52にて上下に
仕切り、上部室53の天井壁内面にマイクロ波導波路を
形成すべく誘電体層55を設けて誘電体線路を形成し、
その一端部を導波管56を介してマイクロ波発振器57
に連結する。また下部室54にはその周壁にガス導入管
58、排気管59を連結すると共に、底部に試料Sを載
置するようにしてある。60は試料Sの温度調節用ヒー
タである。
[0004] However, in such a conventional apparatus, the density of the plasma extracted into the sample chamber 33 through the plasma extraction window 31c is large at the center and small at the periphery. This made it difficult to perform uniform treatment. As a countermeasure to this problem, a plasma processing apparatus as shown in FIG. 4 has been proposed, which uses microwaves to generate plasma over a large area (Japanese Patent Application Laid-open No. 1983-1999-1).
5600). In this plasma processing apparatus, the inside of a metal container 51 is partitioned into upper and lower parts by heat-resistant plates 52 with small dielectric loss, and a dielectric layer 55 is provided on the inner surface of the ceiling wall of an upper chamber 53 to form a microwave waveguide. form,
One end of the waveguide 56 is connected to a microwave oscillator 57.
Connect to. Further, a gas introduction pipe 58 and an exhaust pipe 59 are connected to the peripheral wall of the lower chamber 54, and a sample S is placed at the bottom thereof. 60 is a heater for adjusting the temperature of the sample S.

【0005】[0005]

【発明が解決しようとする課題】ところでLSI の微
細化のため、マイクロローディング効果を押えた異方性
エッチングを行なおうとする場合、低圧(1mTorr
 以下) 処理することが必要になるが、上記した従来
装置では1mTorr 以下の圧力で活性度の高いプラ
ズマを生成することが難しいという難点があった。本発
明はかかる事情に鑑みなされたものであって、その目的
とするところは低圧力のもとでECR 励起によりプラ
ズマを大面積にわたって均一に発生させ得るプラズマ処
理装置を提供するにある。
[Problems to be Solved by the Invention] However, when attempting to perform anisotropic etching that suppresses the microloading effect in order to miniaturize LSIs, low pressure (1 mTorr)
However, the above-mentioned conventional apparatus has the disadvantage that it is difficult to generate highly active plasma at a pressure of 1 mTorr or less. The present invention has been made in view of the above circumstances, and its object is to provide a plasma processing apparatus capable of uniformly generating plasma over a large area by ECR excitation under low pressure.

【0006】[0006]

【課題を解決するための手段】本発明に係るプラズマ処
理装置は、処理すべき試料を配置する金属製容器内に誘
電体線路にてマイクロ波を、また磁場発生手段にて磁場
を形成し、電子サイクロトロン共鳴励起により金属製容
器内にプラズマを生成させるようにしたプラズマ処理装
置において、前記磁場発生手段は、複数の磁石を金属製
容器の周囲に一方の磁極を金属製容器側に向け、且つ周
方向に相隣する磁極は互いに異磁極となるよう配設して
構成したことを特徴とする。
[Means for Solving the Problems] A plasma processing apparatus according to the present invention generates microwaves using a dielectric line and a magnetic field using a magnetic field generating means in a metal container in which a sample to be processed is placed. In a plasma processing apparatus that generates plasma in a metal container by electron cyclotron resonance excitation, the magnetic field generating means includes a plurality of magnets arranged around the metal container with one magnetic pole facing toward the metal container, and The magnetic poles adjacent to each other in the circumferential direction are arranged so as to be different magnetic poles from each other.

【0007】[0007]

【作用】本発明はこれによって金属製容器内の周辺部に
沿って強い磁場が環状に形成され、金属製容器内周辺部
寄りのプラズマ密度が高められ、全体としてのプラズマ
密度の均一化が図れる。
[Operation] According to the present invention, a strong magnetic field is formed in an annular shape along the periphery of the metal container, increasing the plasma density near the periphery of the metal container, and making the plasma density uniform as a whole. .

【0008】[0008]

【実施例】図1は本発明に係るプラズマ処理装置の模式
的正面断面図である。図中1は中空円筒形の反応器であ
って上部壁を除く全体が金属製であり、特に周囲壁は二
重構造であって内部に冷却水用の通水室11を備えてい
る。反応器1の上部壁はマイクロ波の透過が可能であっ
て、しかも誘電損失が小さな耐熱性板12、例えば石英
ガラス、Al2 O3 板等にて気密状態に封止されて
いる。反応器1の内部には試料Sが図示しないホルダ等
を用いて配設されるようにしてあり、また上部周壁には
これを貫通してガス供給管13が、更に底壁には排気管
14が夫々連結されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic front sectional view of a plasma processing apparatus according to the present invention. In the figure, reference numeral 1 denotes a hollow cylindrical reactor, and the entire reactor except for the upper wall is made of metal.In particular, the surrounding wall has a double structure and is provided with a water passage chamber 11 for cooling water inside. The upper wall of the reactor 1 is hermetically sealed with a heat-resistant plate 12 that allows microwaves to pass therethrough and has a small dielectric loss, such as a quartz glass or Al2O3 plate. A sample S is placed inside the reactor 1 using a holder (not shown), and a gas supply pipe 13 is provided through the upper circumferential wall, and an exhaust pipe 14 is provided on the bottom wall. are connected to each other.

【0009】耐熱性板12の上方には、耐熱性板12と
の間に所要の空間を隔てて反応器1の上面を覆い得る大
きさの導電性板17、例えばAl板と、その下面に貼付
された誘電損失の小さい、例えばフッ素樹脂製の誘電体
層18とを積層した状態で配置して誘電体線路16が形
成さている。 誘電体線路16の側部には導波管19を介してマイクロ
波発振器20が連結されており、マイクロ波発振器20
から発振されたマイクロ波は導波管19、誘電体線路1
6を経て伝送され、反応器1の内部に電界を形成するよ
うになっている。
Above the heat-resistant plate 12, there is a conductive plate 17, such as an Al plate, large enough to cover the upper surface of the reactor 1 with a required space between it and the heat-resistant plate 12, and a conductive plate 17, for example, an Al plate, on the lower surface thereof. The dielectric line 16 is formed by arranging a dielectric layer 18 having a small dielectric loss and made of, for example, fluororesin, in a laminated state. A microwave oscillator 20 is connected to the side of the dielectric line 16 via a waveguide 19.
The microwave oscillated from the waveguide 19 and the dielectric line 1
6 to form an electric field inside the reactor 1.

【0010】そして本発明装置にあっては反応器1の上
部周壁の外側に沿って磁場発生手段2を構成する複数の
永久磁石21を配設してある。図2は永久磁石21の配
設態様を示す説明図であり、永久磁石21は夫々その一
方の磁極を反応器1側に向け、他方の磁極を外方に向け
た放射状であって、しかも周方向において隣り合う永久
磁石21の磁極は互いにに異磁極となるよう配設されて
おり、これによって反応器1内に環状の磁場21a が
形成されるようになっている。
In the apparatus of the present invention, a plurality of permanent magnets 21 constituting the magnetic field generating means 2 are arranged along the outside of the upper peripheral wall of the reactor 1. FIG. 2 is an explanatory diagram showing the arrangement of the permanent magnets 21. Each of the permanent magnets 21 has a radial shape with one magnetic pole facing the reactor 1 side and the other magnetic pole facing outward. The magnetic poles of the permanent magnets 21 adjacent in the direction are arranged so as to have different magnetic poles from each other, so that an annular magnetic field 21a is formed within the reactor 1.

【0011】永久磁石21の個数については特に限定す
るもではないが、周方向において相隣する磁極が異磁極
となるためには偶数個となり、しかも2個では十分な磁
場が形成出来ないため、少なくとも4個以上とするのが
望ましい。
The number of permanent magnets 21 is not particularly limited, but in order for adjacent magnetic poles in the circumferential direction to be different magnetic poles, an even number is required, and two permanent magnets cannot form a sufficient magnetic field. It is desirable that there be at least four or more.

【0012】而してこのような本発明装置にあっては誘
電体線路16を通じて反応器1内に電場を、また磁場発
生手段にて磁場を形成し、更にガス供給管13を通じて
ガスを供給する。
In the apparatus of the present invention, an electric field is generated in the reactor 1 through the dielectric line 16, a magnetic field is generated by the magnetic field generating means, and gas is further supplied through the gas supply pipe 13. .

【0013】これによって図2に示す如き磁場21a 
周辺で広範囲にプラズマが発生し、大面積にわたって均
一なプラズマを発生させることができる。しかも永久磁
石21を用いて磁場を発生させているので、励磁コイル
を用いる場合に比べて非常に小型化できる。勿論小型化
が特に必要とされない場合には永久磁石に代えて励磁コ
イルを用いてよいことは言うまでもない。更に誘電体線
路16を用いているので、プラズマによるマイクロ波へ
の影響が小さく、伝搬特性が安定する。
This creates a magnetic field 21a as shown in FIG.
Plasma is generated in a wide area around the area, and it is possible to generate uniform plasma over a large area. Moreover, since the permanent magnet 21 is used to generate the magnetic field, the size can be significantly reduced compared to the case where an excitation coil is used. Of course, if miniaturization is not particularly required, an excitation coil may be used in place of the permanent magnet. Furthermore, since the dielectric line 16 is used, the influence of plasma on the microwave is small, and the propagation characteristics are stabilized.

【0014】〔試験例〕 図1に示すプラズマ処理装置を用いてSiウェーハ上に
SiNを成膜する試験を行った。誘電体線路16にはフ
ッ素樹脂製の誘電体層を用いた。直径8インチのSiウ
ェーハを反応器1内にセットし、所定圧力下で反応器1
内にN2 ,SiH4 ガスを導入し、プラズマを発生
させてウェーハ表面にSiN膜を形成した。形成された
SiN膜は均一で、かつ均質であることが確認された。
[Test Example] A test was conducted to form a SiN film on a Si wafer using the plasma processing apparatus shown in FIG. A dielectric layer made of fluororesin was used for the dielectric line 16. A Si wafer with a diameter of 8 inches was set in reactor 1, and the reactor 1 was heated under a predetermined pressure.
N2 and SiH4 gases were introduced into the chamber to generate plasma and form a SiN film on the wafer surface. It was confirmed that the formed SiN film was uniform and homogeneous.

【0015】[0015]

【発明の効果】本発明装置にあっては広い面積にわたっ
て均一で活性度の高いプラズマが得られ、装置全体の構
成が簡略化され、その上優れた膜質の成膜、或いはエッ
チングが可能となるなど本発明は優れた効果を奏するも
のである。
[Effects of the Invention] With the device of the present invention, uniform and highly active plasma can be obtained over a wide area, the configuration of the entire device is simplified, and film formation or etching with excellent film quality is possible. The present invention has excellent effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明装置の模式的縦断面図である。FIG. 1 is a schematic vertical sectional view of the device of the present invention.

【図2】本発明装置における磁場発生手段における永久
磁石器の配置態様を示す模式図である。
FIG. 2 is a schematic diagram showing the arrangement of permanent magnets in the magnetic field generating means in the device of the present invention.

【図3】従来装置の模式的縦断面図である。FIG. 3 is a schematic longitudinal sectional view of a conventional device.

【図4】他の従来装置の模式的縦断面図である。FIG. 4 is a schematic longitudinal sectional view of another conventional device.

【符号の説明】[Explanation of symbols]

1    反応器 11    通水室 12    耐熱性板 13    ガス供給管 14    排気管 16    誘電体線路 17    導電性板 18    誘電体層 19    導波管 20    マイクロ波発振器 S    試料 1 Reactor 11 Water flow room 12 Heat resistant board 13 Gas supply pipe 14 Exhaust pipe 16 Dielectric line 17 Conductive plate 18 Dielectric layer 19 Waveguide 20 Microwave oscillator S Sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  処理すべき試料を配置する金属製容器
内に誘電体線路にてマイクロ波を、また磁場発生手段に
て磁場を形成し、電子サイクロトロン共鳴励起により前
記金属製容器内にプラズマを生成させるようにしたプラ
ズマ処理装置において、前記磁場発生手段は、複数の磁
石を金属製容器の周囲に一方の磁極を金属製容器側に向
け、且つ周方向に相隣する磁極は互いに異磁極となるよ
う配設して構成したことを特徴とするプラズマ処理装置
[Claim 1] Microwaves are generated by a dielectric line in a metal container in which a sample to be processed is placed, and a magnetic field is generated by a magnetic field generating means, and plasma is generated in the metal container by electron cyclotron resonance excitation. In the plasma processing apparatus, the magnetic field generating means arranges a plurality of magnets around a metal container with one magnetic pole facing toward the metal container, and magnetic poles adjacent to each other in the circumferential direction are different magnetic poles from each other. A plasma processing apparatus characterized in that it is arranged and configured so that
JP1930691A 1991-01-18 1991-01-18 Plasma processor Pending JPH04236428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1930691A JPH04236428A (en) 1991-01-18 1991-01-18 Plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1930691A JPH04236428A (en) 1991-01-18 1991-01-18 Plasma processor

Publications (1)

Publication Number Publication Date
JPH04236428A true JPH04236428A (en) 1992-08-25

Family

ID=11995737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1930691A Pending JPH04236428A (en) 1991-01-18 1991-01-18 Plasma processor

Country Status (1)

Country Link
JP (1) JPH04236428A (en)

Similar Documents

Publication Publication Date Title
JP3233575B2 (en) Plasma processing equipment
JP3555966B2 (en) Multi-zone plasma processing method
JP4527431B2 (en) Plasma processing equipment
US6712020B2 (en) Toroidal plasma source for plasma processing
JP2001181848A (en) Plasma treatment equipment
JPH04236428A (en) Plasma processor
JP2875221B2 (en) Plasma generator
JP2005302878A (en) Method and apparatus for plasma processing
JPH10289881A (en) Plasma CVD equipment
JPS59202635A (en) Plasma treating device
JP2000082698A (en) Plasma processing apparatus
JPH02228476A (en) Plasma processing device
JP3192351B2 (en) Plasma processing equipment
JPH02312231A (en) Dryetching device
JP5174848B2 (en) Plasma processing method and plasma processing apparatus
JP2000173797A (en) Microwave plasma processing equipment
JP2511433B2 (en) Microwave plasma processing equipment
JPH0415921A (en) Method and apparatus for activating plasma
JP2920852B2 (en) Microwave plasma device
JPH0680640B2 (en) Plasma equipment
JP2576139B2 (en) Plasma equipment
TWI725657B (en) Plasma etching device
JP3546331B2 (en) Plasma process equipment
JPH04214874A (en) Plasma device
JP2630155B2 (en) Vacuum processing equipment