JPH04235926A - Sustained release preparation - Google Patents
Sustained release preparationInfo
- Publication number
- JPH04235926A JPH04235926A JP1679391A JP1679391A JPH04235926A JP H04235926 A JPH04235926 A JP H04235926A JP 1679391 A JP1679391 A JP 1679391A JP 1679391 A JP1679391 A JP 1679391A JP H04235926 A JPH04235926 A JP H04235926A
- Authority
- JP
- Japan
- Prior art keywords
- release
- microspheres
- poly
- hydroxybutyric acid
- sustained
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003405 delayed action preparation Substances 0.000 title claims description 20
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000003814 drug Substances 0.000 abstract description 24
- 238000013268 sustained release Methods 0.000 abstract description 8
- 239000012730 sustained-release form Substances 0.000 abstract description 8
- 239000013543 active substance Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 239000000825 pharmaceutical preparation Substances 0.000 abstract 2
- 230000002459 sustained effect Effects 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 51
- 239000004005 microsphere Substances 0.000 description 32
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 24
- 229940079593 drug Drugs 0.000 description 23
- 101001129610 Homo sapiens Prohibitin 1 Proteins 0.000 description 19
- 102100031169 Prohibitin 1 Human genes 0.000 description 19
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 18
- 239000000243 solution Substances 0.000 description 17
- 229960004857 mitomycin Drugs 0.000 description 12
- 108010010803 Gelatin Proteins 0.000 description 10
- 229920000159 gelatin Polymers 0.000 description 10
- 239000008273 gelatin Substances 0.000 description 10
- 235000019322 gelatine Nutrition 0.000 description 10
- 235000011852 gelatine desserts Nutrition 0.000 description 10
- 238000003756 stirring Methods 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- USZYSDMBJDPRIF-SVEJIMAYSA-N aclacinomycin A Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1CCC(=O)[C@H](C)O1 USZYSDMBJDPRIF-SVEJIMAYSA-N 0.000 description 7
- 229960004176 aclarubicin Drugs 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229960001747 cinchocaine Drugs 0.000 description 6
- PUFQVTATUTYEAL-UHFFFAOYSA-N cinchocaine Chemical compound C1=CC=CC2=NC(OCCCC)=CC(C(=O)NCCN(CC)CC)=C21 PUFQVTATUTYEAL-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000008363 phosphate buffer Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 4
- 229920002988 biodegradable polymer Polymers 0.000 description 4
- 239000004621 biodegradable polymer Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229920000747 poly(lactic acid) Polymers 0.000 description 4
- 239000004626 polylactic acid Substances 0.000 description 4
- 239000008213 purified water Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 235000015110 jellies Nutrition 0.000 description 2
- 239000008274 jelly Substances 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- -1 3',5'-dipentanoyl-5-fluoro-2'-deoxyuridine Chemical compound 0.000 description 1
- 101100029588 Arabidopsis thaliana PHB6 gene Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Landscapes
- Medicinal Preparation (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、生体内における生理活
性物質の放出速度が制御された徐放性製剤、より詳しく
は、分子量5〜10万のポリ−β−ヒドロキシ酪酸を主
材料とする生理活性物質の放出速度を制御した徐放性製
剤に関する。[Industrial Application Field] The present invention relates to a sustained-release preparation in which the release rate of a physiologically active substance in the body is controlled, and more specifically, a sustained-release preparation whose main material is poly-β-hydroxybutyric acid with a molecular weight of 50,000 to 100,000. The present invention relates to a sustained release formulation in which the release rate of a physiologically active substance is controlled.
【0002】0002
【従来の技術】最近の薬物療法では薬剤を患部周辺のみ
に分布させ、正常細胞組織への副作用を防止し、同時に
樹脂などの高分子賦形剤を用いて薬効の接続を考慮した
投与方法や剤形の研究が盛んに行われている。患部周辺
のみに長時間にわたって継続的に有効濃度の薬物を供給
する、いわゆる徐放性局部投与方法として、例えば薬剤
をカプセル中にいれたり、または錠剤ないしペレット状
に成形した製剤を患部の局部周辺に埋め込む方法や、薬
剤をコアセルベイション法などにより重合物被膜でマイ
クロカプセルまたはマイクロスフィア化し、これにより
塞栓された患部血管のみに薬剤が浸出するのを利用する
方法などが挙げられる。従来、重合物の被膜やマトリッ
クスを用いて微小球にしたものには、エチルセルロース
やワックスを用いて製剤したもの(特開昭54−163
808)や無毒の生体内分解性高分子であるポリ乳酸な
どを用いてマイクロカプセルまたはマイクロスフィアに
製剤したもの(特開昭54−55717、特開昭59−
33214)などが知られている。しかしながら、ポリ
乳酸はガラス転移温度が低く、溶融粘度が高いなどの物
性上の制約があり、均一なマイクロカプセル化された微
小球は得られにくく、このマイクロカプセル化された製
剤を患部に投与した場合、投与初期の薬物放出速度が非
常に速くて長時間に亘っての徐放性は得られにくいとの
問題がある。上記のように、微小球の被膜やマトリック
スとして用いる生体内分解性高分子の種類によっては、
製剤化において、種々の問題があり、さらに製剤された
微小球の薬理作用を好ましい状態とするために適切な工
夫がなされなければならない。[Prior Art] In recent drug therapy, drugs are distributed only around the affected area to prevent side effects on normal tissue, and at the same time, polymeric excipients such as resins are used to improve drug efficacy. Research on dosage forms is being actively conducted. As a so-called sustained-release local administration method that continuously supplies an effective concentration of a drug only to the area surrounding the affected area over a long period of time, for example, the drug is placed in a capsule, or a preparation formed into a tablet or pellet is administered around the affected area. Examples include a method of embedding the drug into a microcapsule or microsphere using a polymer coating using a coacervation method or the like, whereby the drug leaches only into the embolized diseased blood vessel. Conventionally, microspheres made using a polymer coating or matrix have been formulated using ethyl cellulose or wax (Japanese Patent Laid-Open No. 54-163).
808) and those formulated into microcapsules or microspheres using polylactic acid, a non-toxic biodegradable polymer (JP-A-54-55717, JP-A-59-
33214) are known. However, polylactic acid has physical property limitations such as a low glass transition temperature and high melt viscosity, making it difficult to obtain uniform microencapsulated microspheres, so this microencapsulated preparation was administered to the affected area. In this case, there is a problem that the drug release rate at the initial stage of administration is very fast and it is difficult to obtain sustained release over a long period of time. As mentioned above, depending on the type of biodegradable polymer used as the coating or matrix of the microspheres,
There are various problems in formulation, and appropriate measures must be taken to achieve favorable pharmacological action of the formulated microspheres.
【0003】0003
【発明が解決しようとする課題】発酵法により容易に生
産されるポリ−β−ヒドロキシ酪酸(以下PHBと略す
)は、下記の構造に示される生体適合性のある生体内分
解性の高分子であり、分子量20〜100万のPHBが
従来検討されている。[Problems to be Solved by the Invention] Poly-β-hydroxybutyric acid (hereinafter abbreviated as PHB), which is easily produced by fermentation, is a biocompatible and biodegradable polymer shown in the structure below. PHB with a molecular weight of 200,000 to 1,000,000 has been studied.
【0004】0004
【化1】[Chemical formula 1]
【0005】このPHBは、ポリグリコール酸、ポリ乳
酸と同様に生体内分解性高分子であるが、その物性はポ
リグリコール酸、ポリ乳酸と異なり、ガラス転位温度が
低く、その上脆く、成形上問題があり医用ポリマー材料
として殆ど使用されていないのが現状である。又、徐放
性製剤としての使用についても、従来のPHBのみをマ
トリックスとして使用する場合は、マイクロスフィアの
製剤化がうまく行かず、又、得られたマトリックスの徐
放速度が極めて低いなど問題があり、使用することは出
来なかった。すなわち、本発明の目的は、PHBをマト
リックスとし、薬物効果が必要な期間中は、常に必要な
活性濃度が維持できるように放出速度を制御できる徐放
性製剤を提供することである。PHB is a biodegradable polymer like polyglycolic acid and polylactic acid, but its physical properties differ from polyglycolic acid and polylactic acid in that it has a low glass transition temperature, is brittle, and is difficult to mold. Currently, it is rarely used as a medical polymer material due to problems. In addition, when using conventional PHB as a matrix, it is difficult to formulate microspheres and the sustained release rate of the resulting matrix is extremely low. Yes, I couldn't use it. That is, an object of the present invention is to provide a sustained-release preparation that uses PHB as a matrix and can control the release rate so that the necessary active concentration can be maintained at all times during the period when the drug effect is required.
【0006】[0006]
【問題を解決するための手段】本発明者らは、PHBを
マトリックスとして用い、注射用または埋込に用いるマ
イクロスフィア構造の徐放性製剤の開発を目的として鋭
意研究を行ったところ分子量5〜10万のPHBを用い
ることにより、マイクロスフィア構造の徐放性製剤が得
られることを見いだし、本発明を完成した。すなわち、
本発明は分子量が5〜10万のポリ−β−ヒドロキシ酪
酸を含有する徐放性製剤である。本発明に用いられる薬
物は、従来より徐放性が望まれる薬物として知られてい
る薬物なら全てに適用可能であるが、特にその作用の時
間依存性の大きな制ガン薬、局所麻酔薬あるいはインシ
ュリン、プロスタグランジン類に使用されるこれらの薬
物は、通常、徐放性製剤の全重量に対して2〜50重量
%を含有することが好ましい。本発明に用いるPHBと
しては分子量が5〜10万のものが好ましく、10万を
越えるPHBを用いた場合には徐放性製剤を得ることは
出来ない。PHBの使用量は得られる徐放性製剤に対し
て50〜98重量%が好ましく、特に30重量%未満で
は所望の強度および均一な徐放性製剤を得ることはでき
ない。本発明の分子量5〜10万のPHBおよび薬剤か
らなる徐放性製剤は常法に従い、たとえば以下のような
方法により得ることが出来る。分子量5〜10万のPH
Bをクロロホルム、ジクロロメタンなどの有機溶剤に完
全に溶解し、これに薬物を溶解または懸濁し、これをゼ
ラチンあるいはポリビニルアルコール溶液中に撹拌下に
滴下懸濁させ、次いで溶剤を蒸発除去して得られる顆粒
状のマイクロスフィアを水溶性媒体から濾過分離する。
また、分子量5〜10万のPHBをクロロホルム、ジク
ロロメタンあるいは塩化メチレンなどの有機溶剤に完全
に溶解して、これに薬物を溶解または懸濁し、これを成
形したのち、有機溶剤を蒸発させる。本発明により得ら
れる徐放性製剤は、分子量が5 〜10万のPHBがマ
トリックスとなり、徐放される薬物と均質に分散してお
り、粒径10乃至500μmである微粒子製剤あるいは
、膜、糸、板状に成形された製剤である。微粒製剤は注
射用に、また成型製剤は埋込み用として使用される。
本発明において、分子量5〜10万のPHBのうち用い
るPHBの種類とその使用割合を適宜選択することによ
り、薬物の放出速度が制御でき、したがって、その一定
の濃度を維持することが出来る。また、PHBは生体内
の酵素により加水分解され、体内に残留しないので、体
外に取り出す必要がなく、良好な徐放性製剤である。[Means for Solving the Problems] The present inventors conducted intensive research with the aim of developing a microsphere-structure sustained release preparation for injection or implantation using PHB as a matrix, and found that the molecular weight was 5 to 5. The present invention was completed by discovering that a sustained release preparation with a microsphere structure can be obtained by using 100,000 PHB. That is,
The present invention is a sustained release preparation containing poly-β-hydroxybutyric acid with a molecular weight of 50,000 to 100,000. The drugs used in the present invention can be applied to all drugs that are conventionally known as drugs that require sustained release, but are particularly applicable to anticancer drugs, local anesthetics, and insulin whose action is highly time-dependent. These drugs used for prostaglandins are usually preferably contained in an amount of 2 to 50% by weight based on the total weight of the sustained release preparation. The PHB used in the present invention preferably has a molecular weight of 50,000 to 100,000, and if a PHB exceeding 100,000 is used, a sustained release preparation cannot be obtained. The amount of PHB to be used is preferably 50 to 98% by weight based on the obtained sustained-release preparation, and in particular, if it is less than 30% by weight, a sustained-release preparation with desired strength and uniformity cannot be obtained. The sustained release preparation of the present invention comprising PHB with a molecular weight of 50,000 to 100,000 and a drug can be obtained according to a conventional method, for example, by the following method. PH with molecular weight 50,000 to 100,000
Obtained by completely dissolving B in an organic solvent such as chloroform or dichloromethane, dissolving or suspending the drug in this, suspending this dropwise in a gelatin or polyvinyl alcohol solution with stirring, and then removing the solvent by evaporation. The granular microspheres are filtered off from the aqueous medium. Alternatively, PHB having a molecular weight of 50,000 to 100,000 is completely dissolved in an organic solvent such as chloroform, dichloromethane, or methylene chloride, a drug is dissolved or suspended therein, and after the product is shaped, the organic solvent is evaporated. The sustained-release preparation obtained by the present invention has a matrix of PHB with a molecular weight of 50,000 to 100,000, which is homogeneously dispersed with the drug to be released, and a fine particle preparation with a particle size of 10 to 500 μm, or a membrane or thread. , which is a tablet-shaped preparation. Micronized preparations are used for injection, and molded preparations are used for implantation. In the present invention, by appropriately selecting the type of PHB used among PHBs having a molecular weight of 50,000 to 100,000 and the proportion thereof, the release rate of the drug can be controlled, and therefore a constant concentration can be maintained. In addition, since PHB is hydrolyzed by enzymes in the body and does not remain in the body, there is no need to take it out of the body, making it a good sustained-release preparation.
【0007】[0007]
【実施例】以下、実施例によって本発明をさらに具体的
に説明する。
実施例1
ポリ−β−ヒドロキシ酪酸50mgをジクロロメタン1
mlに撹拌しながら溶解した後、マイトマイシンC
10mgを溶解させた。別にアルカリで処理したゼラチ
ン(宮城化学株式会社製、ゼリー強度250ブルーム)
0.9gを、89.1gの水に加え50℃で加温溶解し
て1 %ゼラチン水溶液を調製した。100ml容量ビ
ーカー中に該1%ゼラチン水溶液を移しこれにポリ−β
−ヒドロキシ酪酸およびマイトマイシンC含有ジクロロ
メタン溶液を加え乳化し、500rpmで25分間撹拌
しながらジクロロメタンを蒸発させ、ジクロロメタンが
完全に消失したことを確認して、マイクロスフィア化を
終えた。この溶液をG4ガラスフィルターを用いて濾過
し、精製水で洗浄した後、18時間減圧下で乾燥し、紫
色球状のマイクロスフィアを得た。なお、ポリ−β−ヒ
ドロキシ酪酸として分子量65,000(以下PHB6
5Kと記す)、70,000(以下PHB70Kと記す
)、90,000(以下PHB90Kと記す)および1
30,000(以下PHB130Kと記す)のものをそ
れぞれ用いて4種類のマイクロスフィアを得た。作成し
た各々のマイクロスフィア中のマイトマイシンCの含有
率はPHB65Kの場合3.7%、PHB70Kの場合
4.5%、PHB90Kの場合6.3%およびPHB1
30Kの場合6.3%であった。上記の4種類のマイク
ロスフィアを用いて、マイトマイシンCの放出実験を下
記の方法で行い、図1の結果を得た。PHB65K、P
HB70KおよびPHB90KではマイトマイシンCの
放出がみられたが、PHB130Kでは、ほとんどみら
れなかった。また、1 週間後のマイトマイシンCの放
出量はPHB65Kで99.8%、PHB70Kで98
.9%、PHB90Kで99.1%であるのに対し、P
HB130Kでは4.7%と著しく少ないものであった
。[Examples] The present invention will be explained in more detail below with reference to Examples. Example 1 50 mg of poly-β-hydroxybutyric acid was added to 1 part of dichloromethane.
ml with stirring, then add mitomycin C.
10 mg was dissolved. Separately treated gelatin with alkali (manufactured by Miyagi Chemical Co., Ltd., jelly strength 250 bloom)
0.9 g was added to 89.1 g of water and dissolved by heating at 50°C to prepare a 1% aqueous gelatin solution. Transfer the 1% aqueous gelatin solution into a 100 ml beaker and add poly-β to it.
A dichloromethane solution containing -hydroxybutyric acid and mitomycin C was added and emulsified, and the dichloromethane was evaporated while stirring at 500 rpm for 25 minutes. After confirming that the dichloromethane had completely disappeared, microsphere formation was completed. This solution was filtered using a G4 glass filter, washed with purified water, and then dried under reduced pressure for 18 hours to obtain purple spherical microspheres. In addition, poly-β-hydroxybutyric acid has a molecular weight of 65,000 (hereinafter referred to as PHB6).
5K), 70,000 (hereinafter referred to as PHB70K), 90,000 (hereinafter referred to as PHB90K), and 1
30,000 (hereinafter referred to as PHB130K) were used to obtain four types of microspheres. The content of mitomycin C in each of the microspheres prepared was 3.7% for PHB65K, 4.5% for PHB70K, 6.3% for PHB90K, and PHB1.
In the case of 30K, it was 6.3%. Using the above four types of microspheres, a mitomycin C release experiment was conducted in the following manner, and the results shown in FIG. 1 were obtained. PHB65K, P
Release of mitomycin C was observed in HB70K and PHB90K, but almost no release was observed in PHB130K. Furthermore, the amount of mitomycin C released after one week was 99.8% for PHB65K and 98% for PHB70K.
.. 9% and 99.1% for PHB90K, while P
In HB130K, the amount was significantly lower at 4.7%.
【0008】(薬剤の放出実験)マイクロスフィア5m
gを0.01%Teen80含有のpH8.0のリン酸
緩衝液10ml中に投入し、37℃の恒温振とう槽で振
とうし、経時的に放出液を採取し、薬物を含まない液を
加えて常に放出液の容量を一定に保った。取得した放出
液中の薬物量は液体クロマトグラフィー(HPLC)あ
るいは、紫外部の吸光度を測定することによって求めた
。
(HPLC測定条件)
カラム:Lichrospher 5μm RP−
18、250mm×4mm
移動相:メタノール:0.01Mリン酸緩衝液(pH6
)=2:3
検出器:UV検出器(350nm)(Drug release experiment) Microsphere 5m
g into 10 ml of pH 8.0 phosphate buffer containing 0.01% Teen80, shaken in a constant temperature shaking tank at 37°C, collected the released liquid over time, and prepared a drug-free solution. In addition, the volume of the ejected liquid was always kept constant. The amount of drug in the obtained released liquid was determined by liquid chromatography (HPLC) or by measuring absorbance in ultraviolet light. (HPLC measurement conditions) Column: Lichrospher 5 μm RP-
18, 250 mm x 4 mm Mobile phase: methanol: 0.01M phosphate buffer (pH 6
)=2:3 Detector: UV detector (350nm)
【0009】実施例2
ポリ−β−ヒドロキシ酪酸25mgをジクロロメタン0
.5mlに撹拌しながら溶解した後、マイトマイシンC
10mgを溶解させた。別にアルカリで処理したゼ
ラチン(宮城化学株式会社製、ゼリー強度250ブルー
ム)0.3gを、29.7gの水に加え50℃で加温溶
解して1 %ゼラチン水溶液を調整した。50ml容量
ビーカー中に該1%ゼラチン水溶液を移し、これにポリ
−β−ヒドロキシ酪酸およびマイトマイシンC含有ジク
ロロメタン溶液を加て乳化し、50rpmで25分間撹
拌しながらジクロロメタンを蒸発させ、ジクロロメタン
が完全に消失したことを確認して、マイクロスフィア化
を終えた。この溶液をG4ガラスフィルターを用いて濾
過し、精製水で洗浄した後、18時間減圧下で乾燥し、
紫色球状のマイクロスフィアを得た。なお、ポリ−β−
ヒドロキシ酪酸として分子量65,000(以下PHB
65Kと記す)、70,000(以下70Kと記す)お
よび130,000(以下130Kと記す)のものをそ
れぞれ用いて3種類のマイクロスフィアを得た。作成し
た各々のマイクロスフィア中のマイトマイシンCの含有
率はPHB65Kの場合16.2%、PHB70Kの場
合17.2%およびPHB130Kの場合19.0%で
あった。上記の3 種類のマイクロスフィアを用いて、
マイトマイシンCの放出実験を実施例1と同様な方法に
より行い、図2の結果を得た。PHB65KおよびPH
B70KではマイトマイシンCの放出がみられたが、P
HB130Kでは、ほとんどみられなかった。また、1
週間後のマイトマイシンCの放出量はPHB65Kで
59.7%、PHB70Kで92.3%であるのに対し
、PHB130Kでは4.5%と著しく少ないものであ
った。Example 2 25 mg of poly-β-hydroxybutyric acid was dissolved in dichloromethane 0
.. After dissolving in 5 ml with stirring, add mitomycin C.
10 mg was dissolved. Separately, 0.3 g of alkali-treated gelatin (manufactured by Miyagi Chemical Co., Ltd., Jelly Strength 250 Bloom) was added to 29.7 g of water and dissolved by heating at 50° C. to prepare a 1% aqueous gelatin solution. Transfer the 1% aqueous gelatin solution into a 50 ml beaker, add poly-β-hydroxybutyric acid and mitomycin C-containing dichloromethane solution to emulsify it, and evaporate dichloromethane while stirring at 50 rpm for 25 minutes until dichloromethane completely disappears. I finished making microspheres after confirming what I had done. This solution was filtered using a G4 glass filter, washed with purified water, and then dried under reduced pressure for 18 hours.
Purple spherical microspheres were obtained. In addition, poly-β-
Hydroxybutyric acid has a molecular weight of 65,000 (hereinafter referred to as PHB).
Three types of microspheres were obtained using microspheres of 65K), 70,000 (hereinafter referred to as 70K), and 130,000 (hereinafter referred to as 130K), respectively. The content of mitomycin C in each of the microspheres prepared was 16.2% for PHB65K, 17.2% for PHB70K, and 19.0% for PHB130K. Using the three types of microspheres mentioned above,
A mitomycin C release experiment was conducted in the same manner as in Example 1, and the results shown in FIG. 2 were obtained. PHB65K and PH
Release of mitomycin C was observed in B70K, but P
It was hardly seen in HB130K. Also, 1
The amount of mitomycin C released after a week was 59.7% for PHB65K and 92.3% for PHB70K, while it was significantly lower at 4.5% for PHB130K.
【0010】実施例3
ポリ−β−ヒドロキシ酪酸50mgを塩化メチレン1m
lに撹拌しながら溶解した後、3’,5’−ジペンタノ
イル−5−フルオロ−2’−デオキシウリジン(以下F
UdR−C5と記す)10mgを溶解させた。別に酸処
理のゼラチン(宮城化学株式会社製、ゼリー強度250
ブルーム)0.9gを、89.1gの水に加え50℃で
加温溶解して1 %ゼラチン水溶液を調製した。100
ml容量ビーカー中に該1%ゼラチン水溶液を移し、こ
れにポリ−β−ヒドロキシ酪酸およびFUdR−C5含
有塩化メチレン溶液を加乳化し、500rpmで25分
間撹拌しながら塩化メチレンを蒸発させ、塩化メチレン
が完全に消失したことを確認して、マイクロスフィア化
を終えた。この溶液をG4ガラスフィルターを用いて濾
過し、精製水で洗浄した後、18時間減圧下で乾燥し、
白色球状のマイクロスフィアを得た。なお、ポリ−β−
ヒドロキシ酪酸として分子量65,000(以下PHB
65Kと記す)、130,000(以下PHB130K
と記す)および456,000(以下PHB456Kと
記す)のものをそれぞれ用いて3種類のマイクロスフィ
アを得た。作成した各々のマイクロスフィア中のFUd
−C5の含有率はPHB65Kの場合16.6%、PH
B130Kの場合14.2%およびPHB456Kの場
合15.3%であった。上記の3 種類のマイクロスフ
ィアを用いて、FUdR−C5の放出実験を実施例1と
同様な方法により行い、図3の結果を得た。なお、FU
dR−C5の量は、268nmの吸光度を測定すること
により求めた。Example 3 50 mg of poly-β-hydroxybutyric acid was added to 1 m of methylene chloride.
1 with stirring, 3',5'-dipentanoyl-5-fluoro-2'-deoxyuridine (hereinafter F
10 mg (denoted as UdR-C5) was dissolved. Separately acid-treated gelatin (manufactured by Miyagi Chemical Co., Ltd., jelly strength 250)
Bloom) was added to 89.1 g of water and dissolved by heating at 50°C to prepare a 1% aqueous gelatin solution. 100
Transfer the 1% aqueous gelatin solution into a ml beaker, emulsify the methylene chloride solution containing poly-β-hydroxybutyric acid and FUdR-C5, and evaporate the methylene chloride while stirring at 500 rpm for 25 minutes. After confirming that the particles had completely disappeared, the process of forming microspheres was completed. This solution was filtered using a G4 glass filter, washed with purified water, and then dried under reduced pressure for 18 hours.
White spherical microspheres were obtained. In addition, poly-β-
Hydroxybutyric acid has a molecular weight of 65,000 (hereinafter referred to as PHB).
65K), 130,000 (hereinafter referred to as PHB130K)
Three types of microspheres were obtained using PHB456K (hereinafter referred to as PHB456K) and PHB456,000 (hereinafter referred to as PHB456K). FUd in each microsphere created
-C5 content is 16.6% for PHB65K, PH
It was 14.2% for B130K and 15.3% for PHB456K. Using the three types of microspheres mentioned above, a FUdR-C5 release experiment was conducted in the same manner as in Example 1, and the results shown in FIG. 3 were obtained. In addition, F.U.
The amount of dR-C5 was determined by measuring absorbance at 268 nm.
【0011】実施例4
ポリ−β−ヒドロキシ酪酸50mgを塩化メチレン1m
lに撹拌しながら溶解した後、ジブカイン8.3mgを
溶解させた。100ml容ビーカー中に該0.1%ポリ
ビニルアルコール水溶液を入れ、これにポリ−β−ヒド
ロキシ酪酸およびジブカイン含有塩化メチレン溶液を加
え乳化し、500rpmで25分間撹拌しながら塩化メ
チレンを蒸発させ、塩化メチレンが完全に消失したこと
を確認して、マイクロスフィア化を終えた。この溶液を
G4ガラスフィルターを用いて濾過し、精製水で洗浄し
た後、18時間減圧下で乾燥し、白色球状のマイクロス
フィアを得た。なお、ポリ−β−ヒドロキシ酪酸として
分子量63,000(以下PHB63Kと記す)、およ
び73,000(以下PHB73Kと記す)のものをそ
れぞれ用いて2種類のマイクロスフィアを得た。作成し
た各々のマイクロスフィア中のジブカインの含有率はP
HB63KおよびPHB73Kの両方とも9.6%であ
った。上記の2種類のマイクロスフィアを用いて、ジブ
カインの放出実験を実施例1と同様な方法により行い、
図4の結果を得た。PHB63KおよびPHB73Kの
両マイクロスフィアでジブカインの放出がみられた。な
お、ジブカインの定量は、326nmの吸光度を測定す
ることにより求めた。Example 4 50 mg of poly-β-hydroxybutyric acid was added to 1 m of methylene chloride.
8.3 mg of dibucaine was dissolved in the solution with stirring. The 0.1% polyvinyl alcohol aqueous solution was placed in a 100 ml beaker, and a methylene chloride solution containing poly-β-hydroxybutyric acid and dibucaine was added thereto to emulsify it, and the methylene chloride was evaporated while stirring at 500 rpm for 25 minutes. After confirming that the particles had completely disappeared, we finished converting them into microspheres. This solution was filtered using a G4 glass filter, washed with purified water, and then dried under reduced pressure for 18 hours to obtain white spherical microspheres. Two types of microspheres were obtained using poly-β-hydroxybutyric acid having a molecular weight of 63,000 (hereinafter referred to as PHB63K) and 73,000 (hereinafter referred to as PHB73K). The content of dibucaine in each microsphere prepared is P
Both HB63K and PHB73K were 9.6%. Using the above two types of microspheres, a dibucaine release experiment was conducted in the same manner as in Example 1,
The results shown in Figure 4 were obtained. Dibucaine release was observed in both PHB63K and PHB73K microspheres. Note that dibucaine was quantified by measuring absorbance at 326 nm.
【0012】実施例5
分子量が73,000のポリ−β−ヒドロキシ酪酸10
mgおよび塩酸アクラルビシンを1mg、2.6mgあ
るいは4.2mgをクロロホルム1mlに溶解し、直径
15mmの円形カバーグラス上に滴下し、シャーレ内で
4℃でクロロホルムを蒸発させて3種類の膜を作成した
。この3種類の膜を用いて、塩酸アクラルビシンの放出
実験を実施例1と同様な方法により行った。各膜の12
0時間後の塩酸アクラルビシンの放出量は、塩酸アクラ
ルビシン1mgを使用した膜では1.3%、塩酸アクラ
ルビシン2.6mgを使用した膜では、6.3%、塩酸
アクラルビシン4.2mgを使用した膜では、2.3%
であり、膜からの放出が認められた。なお、塩酸アクラ
ルビシンの定量は、258nm吸光度を測定することに
より求めた。Example 5 Poly-β-hydroxybutyric acid 10 with a molecular weight of 73,000
1 mg, 2.6 mg, or 4.2 mg of aclarubicin hydrochloride were dissolved in 1 ml of chloroform, dropped onto a circular cover glass with a diameter of 15 mm, and the chloroform was evaporated at 4°C in a petri dish to create three types of membranes. . Using these three types of membranes, a release experiment of aclarubicin hydrochloride was conducted in the same manner as in Example 1. 12 of each membrane
The amount of aclarubicin hydrochloride released after 0 hours was 1.3% for the membrane using 1 mg of aclarubicin hydrochloride, 6.3% for the membrane using 2.6 mg of aclarubicin hydrochloride, and 6.3% for the membrane using 4.2 mg of aclarubicin hydrochloride. , 2.3%
, and release from the membrane was observed. Note that aclarubicin hydrochloride was quantified by measuring absorbance at 258 nm.
【0013】[0013]
【発明の効果】本発明によれば、生体適合性の生分解性
物質であるポリ−β−ヒドロキシ酪酸を用いて、徐放性
が望まれる薬剤を含む徐放性製剤を容易に得ることが出
来る。[Effects of the Invention] According to the present invention, it is possible to easily obtain a sustained-release preparation containing a drug for which sustained release is desired using poly-β-hydroxybutyric acid, which is a biocompatible biodegradable substance. I can do it.
【図1】分子量の異なるポリ−β−ヒドロキシ酪酸を含
む4種類の徐放性製剤からの、薬剤のリン酸緩衝液への
放出の様子を表す。FIG. 1 shows the release of drugs into a phosphate buffer from four types of sustained-release preparations containing poly-β-hydroxybutyric acid with different molecular weights.
【図2】分子量の異なるポリ−β−ヒドロキシ酪酸を含
む3種類の徐放性製剤からの、薬剤のリン酸緩衝液への
放出の様子を表す。FIG. 2 shows the release of drugs into a phosphate buffer from three types of sustained-release preparations containing poly-β-hydroxybutyric acid with different molecular weights.
【図3】分子量の異なるポリ−β−ヒドロキシ酪酸を含
む3種類の徐放性製剤からの、薬剤のリン酸緩衝液への
放出の様子を表す。FIG. 3 shows the release of drugs into a phosphate buffer from three types of sustained-release preparations containing poly-β-hydroxybutyric acid with different molecular weights.
【図4】分子量の異なるポリ−β−ヒドロキシ酪酸を含
む2種類の徐放性製剤からの、薬剤のリン酸緩衝液への
放出の様子を表す。FIG. 4 shows the release of drugs into a phosphate buffer from two types of sustained-release preparations containing poly-β-hydroxybutyric acid with different molecular weights.
Claims (1)
キシ酪酸を含有する徐放性製剤。1. A sustained release preparation containing poly-β-hydroxybutyric acid with a molecular weight of 50,000 to 100,000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1679391A JPH04235926A (en) | 1991-01-18 | 1991-01-18 | Sustained release preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1679391A JPH04235926A (en) | 1991-01-18 | 1991-01-18 | Sustained release preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04235926A true JPH04235926A (en) | 1992-08-25 |
Family
ID=11926054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1679391A Pending JPH04235926A (en) | 1991-01-18 | 1991-01-18 | Sustained release preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04235926A (en) |
-
1991
- 1991-01-18 JP JP1679391A patent/JPH04235926A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6627600B2 (en) | Compressed microparticles for dry injection | |
JP2542122B2 (en) | Spherical nucleus, spherical granule and method for producing the same | |
JPS63501080A (en) | Novel formulations with controlled release of active compounds and methods for their production | |
CZ302888B6 (en) | Pharmaceutical composition for oral administration comprising rivastigmine and use of rivastigmine | |
JP2004510812A (en) | Delayed release pharmaceutical formulations | |
JPH0772129B2 (en) | Sustained release complex unit formulation | |
JP2000515871A (en) | Tramadol multiple unit preparation | |
WO2000009133A1 (en) | Sustained release oral preparations of fasudil hydrochloride | |
JP4073478B2 (en) | Biodegradable controlled-release microspheres and their production | |
Lin et al. | Microencapsulation and controlled release of insulin from polylactic acid microcapsules | |
RU2375047C2 (en) | Pharmaceutical medicinal form, resistant to gastric juice activity, which includes n-(2-(2-phthalimidoetoxy)acetyl)-l-alanyl-d-glutamic acid (lk 423) | |
JPS6163613A (en) | Granulated sustained release formulation | |
JPH04235926A (en) | Sustained release preparation | |
RU2462235C1 (en) | Drug form of disulfiram with prolonged action and method of its obtaining | |
Kundu et al. | Formulation and characterization of alginate microbeads of norfloxacin by ionotropic gelation | |
JP2638604B2 (en) | Sustained release formulation | |
JP5367570B2 (en) | Lorazepam stabilization | |
CN105997887A (en) | Tolterodine sustained release microsphere preparation containing small molecular additive and preparation method thereof | |
SK1795A3 (en) | Drug delivery device and method of this production | |
JPH0130A (en) | sustained release formulation | |
Chaudhari et al. | Pelletization techniques: Novel approach for drug delivery | |
Pandey et al. | Evaluation of the effect of hydrophilic polymer blend to extend the release of clarithromycin from prepared microcapsules | |
XIAOHUA | CONTROLLED RELEASE ALGINATE-BASED MICROPARTICULATE SYSTEMS FOR DRUG DELIVERY AND CHEMOEMBOLIZATION | |
JPS5933214A (en) | Carcinostatic agent formed to microsphere and its preparation | |
Obeidat | Viscosity of the polymer solution phase and other rational approaches to control matrix microsphere properties |