[go: up one dir, main page]

JPH0422867A - Immune analysis system - Google Patents

Immune analysis system

Info

Publication number
JPH0422867A
JPH0422867A JP12791290A JP12791290A JPH0422867A JP H0422867 A JPH0422867 A JP H0422867A JP 12791290 A JP12791290 A JP 12791290A JP 12791290 A JP12791290 A JP 12791290A JP H0422867 A JPH0422867 A JP H0422867A
Authority
JP
Japan
Prior art keywords
reaction
vessels
magnet
magnets
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12791290A
Other languages
Japanese (ja)
Other versions
JP2878785B2 (en
Inventor
Koji Matsumoto
浩二 松本
Kyuji Mutsukawa
六川 玖治
Morihito Inoue
井上 守人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12791290A priority Critical patent/JP2878785B2/en
Publication of JPH0422867A publication Critical patent/JPH0422867A/en
Application granted granted Critical
Publication of JP2878785B2 publication Critical patent/JP2878785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel
    • G01N2035/0455Coaxial carousels

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To measure the reaction process on the midway to reaction liquids by moving the magnets disposed in the prescribed positions on a circumference in synchronization with the movement of reaction vessels. CONSTITUTION:A driving source 16 moves the respective reaction vessels by one turn plus one pitch per cycle. A driving source 16 moves the respective magnets 13 one turn per cycle in synchronization with the movement of the vessels 12 disposed opposite thereto. The respective magnets 13 eventually return to the home positions and the respective vessels 12 advance to the forward positions by one pitch each in this way. All the vessels 12 pass a photometric section 14 at the time of this on turn plus one pitch movement, by which the measurement of all the vessels 12 is executed in one cycle. The reaction liquids during the course of the reaction en route including the reaction liquids in the final state of the reaction are eventually measured in this way. The respective magnets 13 rotate integrally with the respective vessels 12 and, therefore, the antibody-immobilized magnetic material liquids (MP) are subjected to the stable reaction without receiving influence in dispersion and aggregation during the rotation.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、磁性微粒子を利用してサンプル内の抗原量を
測定する免疫分析システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an immunoassay system that measures the amount of antigen in a sample using magnetic microparticles.

(従来の技術) サンプル(検体)中の特定の抗原量の定量分析には従来
放射性元素を用いるRIA(ラジオイムノアッセイ)法
が行われている。しかしこのRIA法は放射性元素を用
いるために、専用の機器を設置し、資格を有するオペレ
ータが操作を行わなければならず、しがも廃棄物の処理
に注意を要する等の煩わしさかある。
(Prior Art) RIA (radioimmunoassay) method using a radioactive element has conventionally been used for quantitative analysis of the amount of a specific antigen in a sample (specimen). However, since this RIA method uses radioactive elements, special equipment must be installed and the operation must be performed by a qualified operator, and there are complications such as the need for careful disposal of waste.

このためこのRIA法に代わり酵素反応を利用して分析
を行うようにしたETA(エンザイムイムノアッセイ)
法が行われてきている。そして最近になってこのEIA
法の中でも磁性材料のような抗体固体化微粒子を利用し
た分析法が普及してきている。
For this reason, instead of this RIA method, ETA (enzyme immunoassay) is used to perform analysis using an enzyme reaction.
The law is being implemented. And recently this EIA
Among these methods, analytical methods that utilize antibody solidified fine particles such as magnetic materials are becoming popular.

第5図はこのようなEIA法の原理を説明するもので、
先ず第一試薬2が固定された磁性微粒子(Magnet
ic Particle;以下MPと称する)1の溶液
が用意され、これに測定すべき抗原3を含ん六検体4を
分注することにより第一の抗原・抗体尽応が生じて抗原
3の一部は第一抗体2に結合される。結合しない抗原3
′はフリー状態で存在している。従って磁石を用いMP
Iを吸着することにより集合させた状態でフリーの抗原
3′を除去しいわゆるB/F分離を行う。次に酵素5で
標識された第二抗体(第二試薬)6を分注することによ
り第二の抗原・抗体反応が生じて、測定したい抗原3は
MPIと酵素標識抗体6の一部と結合してサンドイッチ
状にされる。結合しない酵素標識抗体6′はフリー状態
で存在している。従って前記同様に磁石を用いることに
よりB/F分離を行って、フリーの酵素標識抗体6′を
除去する。
Figure 5 explains the principle of such EIA method.
First, magnetic fine particles (Magnet) on which the first reagent 2 is immobilized are
A solution of ic particle (hereinafter referred to as MP) 1 is prepared, and by dispensing six samples 4 containing the antigen 3 to be measured into this solution, the first antigen/antibody exhaustion occurs and a part of the antigen 3 is is bound to the first antibody 2. Antigen 3 that does not bind
′ exists in a free state. Therefore, using a magnet, MP
Free antigen 3' is removed in the aggregated state by adsorption of I, and so-called B/F separation is performed. Next, a second antigen-antibody reaction occurs by dispensing the second antibody (second reagent) 6 labeled with the enzyme 5, and the antigen 3 to be measured binds to MPI and a part of the enzyme-labeled antibody 6. It is then made into a sandwich. The unbound enzyme-labeled antibody 6' exists in a free state. Therefore, similar to the above, B/F separation is performed using a magnet to remove free enzyme-labeled antibody 6'.

次にこれに基質(第三試薬)7を分注することにより第
三の反応いわゆる酵素反応が生じて反応生成物8が生成
される。この抗原3には酵素5が結合されているので、
第三の反応状態を吸光法によって測光することにより、
酵素5の量に比例した抗量3の量か測定できることにな
る。
Next, by dispensing the substrate (third reagent) 7 into this, a third reaction, so-called enzyme reaction, occurs and a reaction product 8 is produced. Since enzyme 5 is bound to this antigen 3,
By photometrically measuring the third reaction state by spectrophotometry,
This means that it is possible to measure the amount of antidote 3 that is proportional to the amount of enzyme 5.

第4図はこのような原理に基いてEIA法により免疫分
析を行う場合の構成図を示すもので、1.1は円形状の
反応槽でこの反応槽11内には分析したいサンプルを収
容すべき多数の反応容器12が図示しない駆動源によっ
て1サイクルにっき1ピツチす′つ矢印方向に間欠的に
移動可能に配置されている。−例として反応容器12は
75個が配置された場合を示しており、各反応容器12
の内側に示されている番号は位置Nα(ポジションNα
)を意味している。反応槽11の周縁の所望位置には後
述のようにB/F分離を行うための磁石13が配置され
、また反応容器12内の反応液を測光してサンプル内の
抗原量を測定する測光部14が配置されている。
Figure 4 shows a configuration diagram when performing immunoassay using the EIA method based on this principle. 1.1 is a circular reaction tank, and the reaction tank 11 contains the sample to be analyzed. A large number of reaction vessels 12 are arranged so as to be intermittently movable in the direction of the arrow by one pitch per cycle by a drive source (not shown). - As an example, a case is shown in which 75 reaction vessels 12 are arranged, and each reaction vessel 12
The number shown inside is the position Nα (position Nα
) means. A magnet 13 for performing B/F separation as will be described later is arranged at a desired position on the periphery of the reaction vessel 11, and a photometry section is arranged to photometer the reaction liquid in the reaction vessel 12 to measure the amount of antigen in the sample. 14 are arranged.

位ff1Nα1において反応容器1−2に測定すべき抗
原3を含んだサンプルを分注し、Nα2においてこれに
抗体固定化磁性体液(MP)1を分注する。
At position ff1Nα1, a sample containing antigen 3 to be measured is dispensed into reaction vessel 1-2, and at Nα2, antibody-immobilized magnetic fluid (MP) 1 is dispensed therein.

これによって第一の免疫反応(抗原・抗体反応)が行わ
れる。次にNα13,14.15及び17゜18.19
で磁石13を用いることによってMPlを吸引して集合
させて第一のB 、/ F分離を行い、フリーの抗原を
吸引して除去する。番号を○印で囲んだNαがMPlを
吸着する位置を示している。
This causes the first immune reaction (antigen/antibody reaction) to occur. Next, Nα13, 14.15 and 17°18.19
By using the magnet 13, MPl is attracted and collected to perform the first B,/F separation, and free antigen is removed by suction. Nα with the number circled indicates the position where MPl is adsorbed.

なおこの間Nα16で洗浄を行う。During this time, cleaning is performed with Nα16.

続いてNα20で酵素標識抗体6を分注し、Nα21で
撹拌を行って第二の免疫分析(抗原・抗体反応)か行わ
れる。このとき後程測光部14により測光を行う場合、
測光法に応じて分注すべき標識酵素を変えておく。例え
ば吸光法で測光する場合は標識酵素としてはPODを用
い、発光法で測光する場合はALPを用いるようにする
。また抗体は各々測定項目に対応した特異性のある抗体
を用いるようにする。
Subsequently, the enzyme-labeled antibody 6 is dispensed with Nα20, stirred with Nα21, and a second immunoassay (antigen-antibody reaction) is performed. At this time, when photometry is performed later by the photometry section 14,
Change the labeled enzyme to be dispensed depending on the photometric method. For example, when measuring light using an absorption method, POD is used as the labeling enzyme, and when measuring light using a luminescent method, ALP is used as the labeling enzyme. Also, use antibodies that have specificity corresponding to each measurement item.

N(135,36,37及び40,41.42及び45
.46.47で磁石13を用いることによって再びMP
Iを吸引して集合させて第二のB 、/ F分離を行い
、フリーの酵素標識抗体を吸引して除去する。なおこの
間Nα38,43.48で洗浄を行い、Nα39,44
.49で撹拌を行う。すなわち3回B、/F分離を行う
N (135, 36, 37 and 40, 41.42 and 45
.. MP again by using magnet 13 in 46.47
Aspirate and collect I to perform a second B,/F separation, and aspirate and remove free enzyme-labeled antibody. During this time, washing was performed with Nα38,43.48, and Nα39,44
.. Stirring is carried out at 49. That is, B and /F separations are performed three times.

次にNα53で基質液7を分注することにより、酵素反
応(第三の反応)が行われる。この場合基質液としては
各々吸光法1発光法に応じた種類のものを選ぶようにす
る。なおこの間Nα54で撹拌を行う。
Next, the enzyme reaction (third reaction) is performed by dispensing the substrate liquid 7 using Nα53. In this case, the substrate solution should be selected according to the absorption method or luminescence method, respectively. During this time, stirring is performed using Nα54.

続いてNα68において移動してきた反応容器12を光
源の光路を通過させることにより測光部14によって例
えば吸光法によりその反応液の測定を行う。この場合M
PIの影響による測定誤差を避けるため、NO,66か
ら磁石でMPを吸着しておき)Jn68で光路からMP
を外した状態で、反応液を測定することにより抗原量が
測定される。反応が終了した反応容器12はNα69乃
至75において洗浄処理されて再使用に備えられる。
Subsequently, the reaction container 12 that has been moved at Nα 68 is caused to pass through the optical path of the light source, and the reaction liquid is measured by the photometry section 14, for example, by an absorption method. In this case M
To avoid measurement errors due to the influence of PI, attract MP with a magnet from NO.66).
The amount of antigen is measured by measuring the reaction solution with the cap removed. After the reaction, the reaction vessel 12 is cleaned at Nα69 to Nα75 and prepared for reuse.

(発明が解決しようとする課題) ところで従来の免疫分析システムでは、反応容器内の反
応液の測定が行われるのは毎サイクル反応ラインの最終
位置近くに移動してきた反応液に対してのみであり、こ
のため途中の反応過程は測定できないという問題がある
(Problem to be Solved by the Invention) In the conventional immunoassay system, the reaction liquid in the reaction container is measured only for the reaction liquid that has moved near the final position of the reaction line in each cycle. Therefore, there is a problem that the reaction process during the process cannot be measured.

すなわち第4図の構成において測定が行われるのはNα
68に毎サイクル一定のピッチで間欠的に移動してきた
反応容器内の反応液に対してのみであり、これ以前の位
置においての途中の反応過程は測定不可能になっている
。一般に免疫分析においては酵素反応の途中過程や基質
液の試薬ブランク値1反応容器の水ブランク値等を測定
して、高濃度の場合の酵素反応の直線性チエツクや安定
したデータを得るための自動補正が必要となるが前記理
由によりこれが不可能になる。特にNα53で酵素反応
を生じさせて吸光測定を行うために分注される基質液は
経時的に劣化し易いので、この劣化状態を知ることは色
調補正をかける上で重要であり、これができないと色調
のドリフトが加わった不正確な測定値しか得られなくな
る。
In other words, in the configuration shown in Fig. 4, the measurement is performed at Nα.
This is only for the reaction liquid in the reaction vessel that has been moved intermittently at a constant pitch every cycle at 68, and it is impossible to measure the reaction process at the previous position. Generally, in immunoassays, measurements are taken during the enzymatic reaction process, the reagent blank value of the substrate solution, the water blank value of one reaction container, etc., to check the linearity of the enzyme reaction in the case of high concentrations, and to automatically obtain stable data. Correction would be necessary, but this is not possible for the reasons mentioned above. In particular, the substrate solution that is dispensed to cause an enzymatic reaction with Nα53 and perform absorbance measurement is likely to deteriorate over time, so knowing the state of this deterioration is important when applying color correction, and if this is not possible. This results in inaccurate measurements with tonal drift.

このように途中の反応過程を測定するには、毎サイクル
全反応容器を1回転プラス1ピッチずつ移動させればよ
いが、磁性微粒子を用いたEIA法においてはB/F分
離用の磁石の配置されていることにより、毎回転中にM
Pの集合1分散が望ましくない形で行われてしまうので
、安定した反応が阻害されるようになる。
In order to measure the reaction process in progress in this way, it is sufficient to move the entire reaction vessel by one rotation plus one pitch each cycle, but in the EIA method using magnetic particles, the arrangement of the magnet for B/F separation is Due to the fact that M
Since the set 1 dispersion of P occurs in an undesirable manner, a stable reaction is inhibited.

本発明は以上のような問題に対処してなされたもので、
反応液の途中の反応過程を測定可能にした免疫分析シス
テムを提供することを目的とするものである。
The present invention has been made in response to the above-mentioned problems.
The object of the present invention is to provide an immunoassay system that can measure the reaction process of a reaction solution.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために本発明は、サンプル及びこれ
と反応させる少なくとも抗体固定化磁性微粒子液を分注
する多数の反応容器を円形状に間欠的に移動可能に配置
し、円周上の所定位置に配置した磁石によって前記サン
プル内の抗原と反応した抗体固定化磁性微粒子を吸着し
た状態で反応しない抗原を含む不要液を除去する免疫分
析システムにおいて、前記磁石を反応容器の移動に同期
して移動可能に構成したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a circular configuration in which a large number of reaction vessels for dispensing a sample and at least an antibody-immobilized magnetic particle liquid to be reacted with the sample are arranged in a circular shape. An immunoassay in which unnecessary fluid containing unreacted antigens is removed while adsorbing antibody-immobilized magnetic particles that have reacted with the antigen in the sample using magnets that are movable intermittently and placed at predetermined positions on the circumference. The system is characterized in that the magnet is configured to be movable in synchronization with the movement of the reaction container.

(作 用) B/F分離を行うための磁石を反応容器の移動に同期し
て移動可能に構成し、毎サイクル例えば1回転ずつ移動
させかつ反応容器のみプラス1ピッチ移動させる。これ
によって毎サイクル全反応容器を測光部を通過させるこ
とができるので、全反応容器の反応液の途中の反応過程
の測定が可能となり、しかも磁石も毎サイクル反応容器
の移動に同期して回転するので回転中MPの分散、集合
に影響を与えることはない。また反応容器は1サイクル
毎に1ピツチ先のNoに進められるので順次測定が繰返
される。
(Function) The magnet for performing B/F separation is configured to be movable in synchronization with the movement of the reaction vessel, and is moved, for example, by one rotation every cycle, and only the reaction vessel is moved by one pitch. This allows all reaction vessels to pass through the photometry section every cycle, making it possible to measure the reaction process in the middle of the reaction liquid in all reaction vessels, and the magnet also rotates in synchronization with the movement of the reaction vessels every cycle. Therefore, it does not affect the distribution and aggregation of MP during rotation. Furthermore, since the reaction vessel is advanced one pitch ahead in each cycle, the measurements are repeated in sequence.

(実施例) 以下図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の免疫分析シスチン・の実施例を示す構
成図で、11は円形状の反応槽、12はこの反応槽11
の周縁に沿って配置された分析したいサンプルを収容す
べき多数の反応容器、13は反応槽11の周縁の所望位
置にB/F分離を行うために配置された磁石である。1
6は各反応容器12を毎サイクル1回転プラス1ピッチ
移動させる第1の駆動源、17は対向配置されている反
応容器12の移動と同期して各磁石1−3を毎サイクル
1回転移動させる第2の駆動源である。
FIG. 1 is a block diagram showing an embodiment of the immunoassay cystine of the present invention, in which 11 is a circular reaction tank, and 12 is this reaction tank 11.
A large number of reaction vessels to accommodate samples to be analyzed are arranged along the periphery of the reaction vessel 11. Magnets 13 are arranged at desired positions on the periphery of the reaction vessel 11 to perform B/F separation. 1
Reference numeral 6 denotes a first drive source that moves each reaction container 12 by one rotation plus one pitch in each cycle, and 17 moves each magnet 1-3 by one rotation in each cycle in synchronization with the movement of the reaction containers 12 arranged opposite to each other. This is the second driving source.

測定開始前にあたって例えば]乃至75の位置Nαに各
々75個の反応容器12が配置されているものとすると
これら反応容器12のうち、○印で囲んだNoの反応容
器12に対向して前記磁石13が配置されている。これ
ら各磁石]3のうち、Nα13乃至15の磁石13はフ
リーの抗原3′をB/F分離するためのもの、Nα17
乃至19の磁石13は残っているフリーの抗原と洗浄液
を排出するためのもの、Nα35乃至37の磁石13は
フリーの第二試薬(酵素標識抗体)6′をB/F分雛す
るためのもの、Nα40乃至42.Nα45乃至47及
びNα50乃至52の磁石は残っているフリーの第二試
薬と洗浄液のみを排出するためのもの、NCL66乃至
68の磁石]3は測定に際して光源の光路力\らMPI
を外すためのものである。各磁石13は反応槽11と同
心状に配置された円形状の保持容器18内に保持され、
前記第2の駆動源17によっ反応容器12の移動に同期
して毎すづクル1回転移動するように駆動される。
Before starting the measurement, for example, 75 reaction vessels 12 are placed at positions Nα from ] to 75. Among these reaction vessels 12, the magnet is placed opposite the No. reaction vessel 12 circled with 13 are arranged. Among these magnets] 3, the magnets 13 of Nα13 to 15 are for B/F separation of free antigen 3′, and the magnets 13 of Nα17
The magnets 13 from 19 to 19 are for discharging the remaining free antigen and washing solution, and the magnets 13 from Nα35 to 37 are for B/F separation of the free second reagent (enzyme-labeled antibody) 6'. , Nα40 to 42. The magnets Nα45 to 47 and Nα50 to 52 are for discharging only the remaining free second reagent and cleaning solution, and the magnets NCL66 to 68] 3 is for the optical path power of the light source \ MPI during measurement.
It is for removing. Each magnet 13 is held in a circular holding container 18 arranged concentrically with the reaction tank 11,
It is driven by the second drive source 17 so as to move one rotation every quarter in synchronization with the movement of the reaction container 12.

14は各反応容器12内の反応液のサンプル醪の抗原量
を測定するための測光部で例えば吸光dによる測光部に
よって構成されている。本発明実施例の場合毎サイクル
75個の反応容器12がこの測光部を通過することによ
り、75回の測定か行われることになる。
Reference numeral 14 denotes a photometric unit for measuring the amount of antigen in the sample mash of the reaction solution in each reaction container 12, and is constituted by a photometric unit based on, for example, light absorption d. In the case of the embodiment of the present invention, 75 reaction vessels 12 pass through this photometric section every cycle, resulting in 75 measurements being performed.

第2図は1サイクル経過後の各反応容器12及び各磁石
13の配置状況を示している。第1図及び第2図におい
て△印は1サイクル前後の特定の反応容器12の位置を
示し、印は1サイクル前後の特定の磁石13の位置を示
している。各磁石13は毎サイクル1回転するのでその
位置は常に変化せず、また各反応容器12は毎サイクル
1回転プラス1ピッチ移動するので、1サイクル毎にそ
の位置は1ピツチずつ先のNαに進むことになる磁石1
3の配置は第3図(a)乃至(d)に示すような各態様
か考えられる。(a)は第1図及び第2図に示すように
、反応容器12の内側に配置した例、(b)は反応容器
12の外側に配置した例、(C)は反応容器12の内周
及び外周に配置した例、(d)は反応容器12の底部に
配置した例を示している。なお19は磁石ホルダ、20
は軸受けを示している。
FIG. 2 shows the arrangement of each reaction vessel 12 and each magnet 13 after one cycle. In FIGS. 1 and 2, the △ mark indicates the position of a specific reaction vessel 12 before and after one cycle, and the mark indicates the position of a specific magnet 13 before and after one cycle. Since each magnet 13 rotates once every cycle, its position does not always change, and each reaction vessel 12 moves one rotation plus one pitch every cycle, so its position advances by one pitch to the next Nα every cycle. Magnet 1
3 may be arranged in various ways as shown in FIGS. 3(a) to 3(d). As shown in FIGS. 1 and 2, (a) is an example of the arrangement inside the reaction vessel 12, (b) is an example of the arrangement outside the reaction vessel 12, and (C) is an example of the arrangement on the inner periphery of the reaction vessel 12. (d) shows an example in which it is placed at the bottom of the reaction vessel 12. In addition, 19 is a magnet holder, 20
indicates a bearing.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

測定開始前第1図に示すような各位置に反応容器12及
び磁石13を配置した状態で、測定を開始して反応容器
12を1回転プラス1ピッチ移動すると共に、磁石13
を反応容器12の移動に同期して1回転移動させる。こ
れによって1サイクク後の各反応容器12及び各磁石1
3の各位置は第2図のようになる。第1図の矢印△で示
したNα13の反応容器12に注目してみると、この反
応容器12は1回転プラス1ピッチ移動することにより
、1サイクル後はNα14の△位置に移動することにな
る。この1回転プラス1ピッチ移動するとき、75個の
全反応容器12が測光部14を通過することにより、1
−サイクルで75個の測定が行われることになる。これ
によって反応の最終状態の反応液を含めて途中の反応過
程の反応液も測定されることになる。
Before starting the measurement With the reaction container 12 and the magnet 13 arranged at each position as shown in FIG.
is moved one rotation in synchronization with the movement of the reaction container 12. As a result, each reaction vessel 12 and each magnet 1 after one cycle
Each position of 3 is as shown in Fig. 2. If we pay attention to the reaction vessel 12 at Nα13 indicated by the arrow △ in Figure 1, this reaction vessel 12 will move by one rotation plus one pitch, and after one cycle will move to the △ position at Nα14. . When moving by one rotation plus one pitch, all 75 reaction vessels 12 pass through the photometry section 14, resulting in 1
- 75 measurements will be taken in a cycle. As a result, the reaction solution in the middle of the reaction process, including the reaction solution in the final state of the reaction, is measured.

また第1図の矢印で示したNα13の磁石13に注目し
てみると、この磁石13は反応容器12の移動に同期し
て1回転移動するが、]一回転だけなので1サイクル後
もNα13の位置は変化しない。
Also, if we pay attention to the magnet 13 of Nα13 indicated by the arrow in FIG. The position does not change.

これは他の位置に配置されている磁石13についても同
様である。
This also applies to the magnets 13 placed at other positions.

同様にして以後サイクルが繰返されると反応容器12の
位置は1ピツチずつ移動するが、磁石]3の位置は常に
変化しない。
Similarly, when the cycle is repeated from now on, the position of the reaction vessel 12 moves one pitch at a time, but the position of the magnet [3] always remains unchanged.

このように本実施例のように磁石13を毎サイクル反応
容器12に同期して1回転移動させることにより、前記
したように磁石13が配置されているNα13乃至15
.Nα17乃至19.Nα35乃至37.Nα40乃至
42.Nα45乃至47.Nα50乃至52.Nα66
乃至68の位置に対向した反応容器1−2は各々磁石]
3と一体に回転するので、回転中MPIは分散、集合に
影響を受けることなく安定し5た反応か行われる。
As described above, by moving the magnet 13 one rotation in synchronization with the reaction vessel 12 every cycle as in this embodiment, the magnets 13 are arranged in the Nα 13 to 15 as described above.
.. Nα17 to 19. Nα35 to 37. Nα40 to 42. Nα45 to 47. Nα50 to 52. Nα66
Reaction vessels 1-2 facing positions 68 to 68 are each magnets]
Since it rotates together with 3, during rotation MPI is not affected by dispersion or aggregation and a stable reaction is performed.

これによって、酵素反応の途中過程や基質液の試薬ブラ
ンク値2反応容器の水ブランク値等を測定することがで
きるので、高濃度の場合の酵素反応の直線性チエツクや
安定したデータを得るための自動補正が可能となる。ま
た特に基質液の経時的な劣化状態を知ることができるの
で、色調補正をかけることにより正確な測定値が知られ
る。
With this, it is possible to measure the intermediate process of the enzyme reaction, the reagent blank value of the substrate solution, the water blank value of the two reaction vessels, etc., so it can be used to check the linearity of the enzyme reaction at high concentrations and to obtain stable data. Automatic correction becomes possible. In addition, since it is possible to know the deterioration state of the substrate liquid over time, accurate measurement values can be obtained by applying color correction.

本文実施例では反応容器12及び磁石13を1回転させ
反応容器12のみを1ピツチ移動させる例で説明したが
、これに限らず複数ピッチ同期回転プラス反応容器のみ
任意ピッチ移動させることも任意である。また磁石の数
やB/F分離回数も任意に変更することが可能である。
In this example, the reaction container 12 and the magnet 13 are rotated once and only the reaction container 12 is moved by 1 pitch. However, the present invention is not limited to this, and it is also possible to synchronously rotate multiple pitches and move only the reaction container by an arbitrary pitch. . Further, the number of magnets and the number of B/F separations can be arbitrarily changed.

[発明の効果コ 以上述べたように本発明によれば、磁石を反応容器の移
動に同期して移動させ反応容器のみ任意ピッチ移動させ
るようにしたので、磁石の影響を受けることなく反応液
の途中過程を測定することができる。
[Effects of the Invention] As described above, according to the present invention, the magnet is moved in synchronization with the movement of the reaction container, and only the reaction container can be moved by an arbitrary pitch, so that the reaction liquid can be moved without being affected by the magnet. It is possible to measure the intermediate process.

【図面の簡単な説明】 第1図は本発明の免疫分析システムの実施例を示す構成
図、第2図は第1図の構成の1サイクル後の変化を示す
構成図、第3図(a)乃至(d)は本実施例に用いられ
る磁石の配置例を示す断面図、第4図は従来例を示す構
成図、第5図はEIA法の原理の説明図である。 12・・・反応容器、13・・・磁石、14・・・測光
部、16・・・第1の駆動部、17・・・第2の駆動部
、18・・・磁石保持容器、19・・・磁石ホルダ。 代理人 弁理士 三  澤  正  義(C) 第 図
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a block diagram showing an embodiment of the immunoassay system of the present invention, Fig. 2 is a block diagram showing changes in the structure of Fig. 1 after one cycle, and Fig. 3 (a ) to (d) are cross-sectional views showing an example of the arrangement of magnets used in this embodiment, FIG. 4 is a configuration diagram showing a conventional example, and FIG. 5 is an explanatory diagram of the principle of the EIA method. DESCRIPTION OF SYMBOLS 12... Reaction container, 13... Magnet, 14... Photometry part, 16... First drive part, 17... Second drive part, 18... Magnet holding container, 19... ...Magnet holder. Agent Patent Attorney Masayoshi Misawa (C) Figure

Claims (3)

【特許請求の範囲】[Claims] (1)サンプル及びこれと反応させる少なくとも抗体固
定化磁性微粒子液を分注する多数の反応容器を円形状に
間欠的に移動可能に配置し、円周上の所定位置に配置し
た磁石によって前記サンプル内の抗原と反応した抗体固
定化磁性微粒子を吸着した状態で反応しない抗原を含む
不要液を除去する免疫分析システムにおいて、前記磁石
を反応容器の移動に同期して移動可能に構成したことを
特徴とする免疫分析システム。
(1) A large number of reaction vessels for dispensing a sample and at least an antibody-immobilized magnetic particle liquid to be reacted with the sample are arranged so as to be movable intermittently in a circular shape, and magnets placed at predetermined positions on the circumference are used to An immunoassay system for removing an unnecessary liquid containing an unreacted antigen while adsorbing antibody-immobilized magnetic particles that have reacted with an antigen in the immunoassay system, characterized in that the magnet is configured to be movable in synchronization with the movement of the reaction container. immunoassay analysis system.
(2)サンプルにさらに酵素標識抗体液が分注される請
求項1記載の免疫分析システム。
(2) The immunoassay system according to claim 1, wherein an enzyme-labeled antibody solution is further dispensed into the sample.
(3)磁石と反応容器とを同期して所定ピッチ移動させ
た後、さらに反応容器のみを所定ピッチ移動させる請求
項1又は2記載の免疫分析システム。
(3) The immunoassay system according to claim 1 or 2, wherein after the magnet and the reaction container are synchronously moved by a predetermined pitch, only the reaction container is further moved by a predetermined pitch.
JP12791290A 1990-05-17 1990-05-17 Immunoassay system Expired - Fee Related JP2878785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12791290A JP2878785B2 (en) 1990-05-17 1990-05-17 Immunoassay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12791290A JP2878785B2 (en) 1990-05-17 1990-05-17 Immunoassay system

Publications (2)

Publication Number Publication Date
JPH0422867A true JPH0422867A (en) 1992-01-27
JP2878785B2 JP2878785B2 (en) 1999-04-05

Family

ID=14971722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12791290A Expired - Fee Related JP2878785B2 (en) 1990-05-17 1990-05-17 Immunoassay system

Country Status (1)

Country Link
JP (1) JP2878785B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644425A1 (en) * 1993-09-17 1995-03-22 F. Hoffmann-La Roche Ag Analyser having a device for separating magnetic microparticles
EP0712000A3 (en) * 1994-11-10 1996-06-26 Ciba Corning Diagnostics Corp
WO1997041445A1 (en) * 1996-04-26 1997-11-06 Dade International Inc. Method and apparatus for pre-treating samples in an automatic chemical analyzer
JP2012127756A (en) * 2010-12-14 2012-07-05 Sysmex Corp Analyzer and analysis method
CN105940305A (en) * 2014-06-17 2016-09-14 深圳迈瑞生物医疗电子股份有限公司 Extract isolation apparatus and method of operation thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644425A1 (en) * 1993-09-17 1995-03-22 F. Hoffmann-La Roche Ag Analyser having a device for separating magnetic microparticles
US5705062A (en) * 1993-09-17 1998-01-06 Hoffmann-La Roche Inc. Analytical device for separating magnetic microparticles from suspensions
EP0712000A3 (en) * 1994-11-10 1996-06-26 Ciba Corning Diagnostics Corp
US5599501A (en) * 1994-11-10 1997-02-04 Ciba Corning Diagnostics Corp. Incubation chamber
US5827478A (en) * 1994-11-10 1998-10-27 Chiron Diagnostics Corporation Incubation chamber
WO1997041445A1 (en) * 1996-04-26 1997-11-06 Dade International Inc. Method and apparatus for pre-treating samples in an automatic chemical analyzer
JP2012127756A (en) * 2010-12-14 2012-07-05 Sysmex Corp Analyzer and analysis method
CN102608309A (en) * 2010-12-14 2012-07-25 希森美康株式会社 Analysis device and analysis method
US10107829B2 (en) 2010-12-14 2018-10-23 Sysmex Corporation Analyzer and analyzing method
CN105940305A (en) * 2014-06-17 2016-09-14 深圳迈瑞生物医疗电子股份有限公司 Extract isolation apparatus and method of operation thereof
CN110488029A (en) * 2014-06-17 2019-11-22 深圳迈瑞生物医疗电子股份有限公司 Extract separator and its working method
CN110488029B (en) * 2014-06-17 2024-01-16 深圳迈瑞生物医疗电子股份有限公司 Extract separating device and working method thereof

Also Published As

Publication number Publication date
JP2878785B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
JP2656564B2 (en) Immunoassay method
RU2102758C1 (en) Devices, method and reagent for performing automated immune analysis in several sequential stages of at least one biological substance from a set of biological samples
US4837159A (en) Method and apparatus for effecting immunological analysis
JP3003118B2 (en) Method for providing a homogeneous reagent
JPH07505476A (en) Automatic continuous random access analysis system and its components
JP2008203279A (en) Automatic measurement cartridge
JPH07506184A (en) Automatic continuous random access analysis system
GB2040441A (en) Apparatus and method for qualitative and quantitative determination of immunological reactions
EP0814909B1 (en) Apparatus and method for reagent separation in a chemical analyzer
JP2970114B2 (en) Automatic analyzer
JPH0118383B2 (en)
JP2010032215A (en) Autoanalyzer
JPH0422867A (en) Immune analysis system
JPH09325148A (en) Chemical analyzer
JPH01136068A (en) Automatic analyzer
JPH0447268A (en) Immunity analyzer
JPH04194752A (en) B/f separating system of immunity measuring apparatus
JPH046464A (en) Immunological examination method
JP3001994B2 (en) Automatic analyzer
JP3150554B2 (en) Automatic immunoassay method and device
JPH06167503A (en) Automatic immunity analyzer
JP2935965B2 (en) Coagulation test method
JPH03110468A (en) Centrifugal type automatic deciding device for immune agglutination
JPH0422868A (en) Immune analysis system
JP2709296B2 (en) Immunological analysis method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees