JPH04228441A - Production of optical fiber preform - Google Patents
Production of optical fiber preformInfo
- Publication number
- JPH04228441A JPH04228441A JP10745391A JP10745391A JPH04228441A JP H04228441 A JPH04228441 A JP H04228441A JP 10745391 A JP10745391 A JP 10745391A JP 10745391 A JP10745391 A JP 10745391A JP H04228441 A JPH04228441 A JP H04228441A
- Authority
- JP
- Japan
- Prior art keywords
- flame
- raw material
- glass
- nozzles
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000013307 optical fiber Substances 0.000 title claims description 14
- 239000011521 glass Substances 0.000 claims abstract description 84
- 239000002994 raw material Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims description 42
- 239000002245 particle Substances 0.000 claims description 38
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 abstract description 25
- 230000008021 deposition Effects 0.000 abstract description 11
- 239000011261 inert gas Substances 0.000 abstract description 9
- 229910003910 SiCl4 Inorganic materials 0.000 abstract description 5
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 2
- 239000010419 fine particle Substances 0.000 description 13
- 238000000151 deposition Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 6
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000005049 silicon tetrachloride Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Landscapes
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Gas Burners (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、大形の光ファイバ母材
を効率良く安定に高速度で製造する光ファイバ母材の製
造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform in an efficient, stable manner and at a high speed.
【0002】0002
【従来の技術】従来、光ファイバ母材を製造する方法と
しては、MCVD法(Modified Chemi
cal Vapor Deposition),O
VD法(Outside Vapor Depos
ition),VAD法(Vapor−phase
Axial Deposition)等がある。現在
、産業界における関心事はこれらの方法で得られる特性
の優れた光ファイバをいかに経済的に、すなわち短時間
のうちに大量に製造して光ファイバの価格を低減化する
かにある。特に、大形の母材を高速度で製造することは
、光ファイバの経済化に対して効果が大きいので期待さ
れている。[Prior Art] Conventionally, as a method for manufacturing optical fiber preforms, the MCVD method (Modified Chemistry
cal Vapor Deposition), O
VD method (Outside Vapor Depos
tion), VAD method (Vapor-phase
Axial Deposition), etc. Currently, the industry is concerned with how to economically produce optical fibers with excellent properties obtained by these methods, that is, how to manufacture them in large quantities in a short period of time to reduce the cost of the optical fibers. In particular, manufacturing large-sized base materials at high speed is expected to have a large effect on economicalization of optical fibers.
【0003】従来VAD法における高速合成法として、
バーナを多段にすることあるいは単一バーナで改良を加
えることが検討されてきた。多段バーナでは、多孔質母
材成長端周囲にバーナを複数個設置するのでバーナ本数
を増すに従い合成速度は向上する。しかし、各バーナ火
炎の干渉により、特性、安定性および再現性の点で単一
バーナの場合に比較して劣っている。単一バーナの場合
には、多孔質母材を高速に合成するためにガラス原料を
より多く供給しなければならず、ガラス原料供給量を増
加するに従い未反応ガラス原料の増大、火炎流の乱れを
生じ、合成収率が低下するという問題があった。[0003] As a high-speed synthesis method in the conventional VAD method,
Consideration has been given to using multiple stages of burners or improving the use of a single burner. In a multi-stage burner, a plurality of burners are installed around the growing end of the porous base material, so as the number of burners increases, the synthesis speed increases. However, due to the interference of each burner flame, the characteristics, stability and reproducibility are inferior compared to the case of a single burner. In the case of a single burner, it is necessary to supply a larger amount of glass raw material in order to synthesize the porous base material at high speed, and as the amount of glass raw material supplied increases, the amount of unreacted glass raw material increases and the flame flow becomes turbulent. There was a problem in that this resulted in a decrease in the synthesis yield.
【0004】さらに、高速で太い多孔質母材を製造する
ために流速に着目してその最適化を図る試みがなされた
が(H.Sudaらによる“Fine Glass
Particle−Deposition Mec
hanism in the VAD Pro
cess”,Fiber and Integra
tedOptics,Vol.4,No.4,pp.4
27−437)、その場合には、収率が悪い状態でしか
実現できず、多孔質母材の製造方法としては適していな
かった。[0004] Further, attempts have been made to optimize the flow rate by focusing on the flow rate in order to produce a thick porous base material at high speed ("Fine Glass" by H. Suda et al.
Particle-Deposition Mec
hanism in the VAD Pro
cess”, Fiber and Integra
tedOptics, Vol. 4, No. 4, pp. 4
27-437), in that case, it could only be achieved with a poor yield and was not suitable as a method for producing a porous base material.
【0005】VAD法において、大形の母材を高速に合
成するためには、供給するガラス原料の量を増大させる
必要があった。そこで、ガラス原料の反応効率等を改善
させるために、火炎を多重化することが考えられている
。すなわち、火炎を多重にし、その内側火炎を退行させ
ることにより実効火炎長を増加させてガラス微粒子粒径
を制御するバーナが特願昭58−219380号の「ガ
ラス微粒子合成用バーナ」において提案されている。In the VAD method, in order to synthesize large-sized base materials at high speed, it is necessary to increase the amount of glass raw materials supplied. Therefore, in order to improve the reaction efficiency of glass raw materials, it has been considered to use multiple flames. Specifically, a burner that controls the particle size of glass particles by increasing the effective flame length by multiplexing flames and regressing the inner flame was proposed in Japanese Patent Application No. 58-219380 entitled "Burner for Synthesizing Glass Fine Particles." There is.
【0006】このような多重火炎バーナのひとつとして
の二重火炎バーナの構造を図1に示す。図1において、
1は内側火炎用ガラス原料供給口、2は内側火炎用ガラ
ス原料供給口1の周囲に配置した内側火炎用燃焼ガス供
給口、3は内側火炎用燃焼ガス供給口2の周囲に配置し
た外側火炎用ガラス原料供給口、4は外側火炎用ガラス
原料供給口3の周囲に配置した外側火炎用燃焼ガス供給
口である。5は内側火炎用ノズル、6は外側火炎用ノズ
ルであり、内側火炎用ノズル5と外側火炎用ノズル6と
は独立している。7は内側火炎8内で反応しているガラ
ス原料層、9は外側火炎、10は生成されたガラス微粒
子、11は成長しつつある多孔質母材を示している。a
は内側火炎の火炎長、bは内側および外側火炎から成る
二重火炎の火炎長を示す。ここで、内側火炎用ノズル5
を外側火炎用ノズル6より引込めて配置可能とすること
により、内側火炎8が外側火炎9より距離lだけ退行可
能なように構成し、退行距離lをガラス原料の供給量に
応じて調節できるようにしてある。FIG. 1 shows the structure of a double flame burner, which is one of such multiple flame burners. In Figure 1,
1 is an inner flame frit supply port, 2 is an inner flame combustion gas supply port arranged around the inner flame frit supply port 1, and 3 is an outer flame arranged around the inner flame combustion gas supply port 2. The frit supply port 4 is an outer flame combustion gas supply port arranged around the outer flame frit supply port 3. 5 is an inner flame nozzle, 6 is an outer flame nozzle, and the inner flame nozzle 5 and the outer flame nozzle 6 are independent. Reference numeral 7 indicates a frit layer reacting within the inner flame 8, 9 indicates the outer flame, 10 indicates the generated glass fine particles, and 11 indicates the growing porous base material. a
is the flame length of the inner flame, and b is the flame length of the double flame consisting of the inner and outer flames. Here, the inner flame nozzle 5
By making it retractable from the outer flame nozzle 6, the inner flame 8 is configured to be able to retreat by a distance l from the outer flame 9, and the regression distance l can be adjusted according to the supply amount of the glass raw material. It's like this.
【0007】火炎を2重化した場合には、外側火炎によ
る火炎長の増加によってガラス微粒子堆積量が増加する
。換言すると、火炎の2重化により、ガラス微粒子堆積
速度が増加する。特に、ガラス原料の供給量が多いほど
二重火炎の効果は大きい。[0007] When the flames are doubled, the amount of glass particles deposited increases due to the increase in flame length due to the outer flame. In other words, the duplication of flames increases the glass particle deposition rate. In particular, the greater the amount of glass raw material supplied, the greater the effect of the double flame.
【0008】これは、火炎が長くなるのでガラス原料の
分解が促進され、これがため、ガラス微粒子の火炎中で
の滞留時間が長くなって、生成されるガラス微粒子の粒
径が大きくなるためと考えられている。[0008] This is thought to be because the longer flame accelerates the decomposition of the glass raw material, which lengthens the residence time of the glass particles in the flame and increases the particle size of the produced glass particles. It is being
【0009】次に、図2は、2重火炎バーナによる火炎
内滞留時間とガラス微粒子比表面積およびガラス微粒子
粒径との関係を示すグラフである。図2から明らかなよ
うに、ガラス微粒子の火炎内滞留時間が長くなるに従っ
て、ガラス微粒子比表面積は小さくなり、逆にガラス微
粒子粒径は大きくなる。そこで火炎長を長くとることに
より、ガラス微粒子火炎内滞留時間を長くすることがで
き、その結果、ガラス微粒子粒径を大きくすることがで
きることが見出された。Next, FIG. 2 is a graph showing the relationship between the residence time in the flame of a double flame burner, the specific surface area of glass particles, and the particle size of glass particles. As is clear from FIG. 2, as the residence time of the glass particles in the flame becomes longer, the specific surface area of the glass particles decreases, and conversely, the particle size of the glass particles increases. Therefore, it has been found that by increasing the flame length, the residence time of the glass fine particles in the flame can be increased, and as a result, the particle size of the glass fine particles can be increased.
【0010】すなわち、2重火炎バーナを用いて内側ノ
ズルを退行させることにより、ガラス微粒子粒径を増大
させ、それによって微粒子の大径化と堆積速度の向上を
図り、光ファイバ母材合成速度の高速化を達成すること
ができると考えられていた。That is, by regressing the inner nozzle using a double flame burner, the particle size of the glass particles is increased, thereby increasing the diameter of the particles and increasing the deposition rate, thereby increasing the synthesis rate of the optical fiber base material. It was believed that high speed could be achieved.
【0011】[0011]
【発明が解決しようとする課題】このように、多重火炎
バーナにおいてはガラス微粒子粒径制御の効果は確認さ
れているが、ガラス原料反応効率の増大に関しては、十
分な結果が得られていない。さらに、実際の母材作製に
あたっては、火炎温度不均一による成長不安定性(多孔
質母材の割れ、多孔質母材成長面形状の乱れ)や屈折率
分布の非制御性等の欠点があり、多孔質母材を作製する
際の各種ガスの供給条件によっては、多孔質母材の成長
が極めて遅くなったり不安定になることがあり、再現性
よく母材を製造するための条件を把握して基本的な製造
方法を確立することが重要な課題となっている。As described above, although the effect of controlling the particle size of glass fine particles in multiple flame burners has been confirmed, sufficient results have not been obtained in terms of increasing glass raw material reaction efficiency. Furthermore, in actual preparation of the base material, there are drawbacks such as growth instability due to non-uniform flame temperature (cracking of the porous base material, disturbance of the shape of the growth surface of the porous base material) and uncontrollability of the refractive index distribution. Depending on the supply conditions of various gases when manufacturing the porous base material, the growth of the porous base material may become extremely slow or unstable, so it is important to understand the conditions for manufacturing the base material with good reproducibility. Establishing a basic manufacturing method is an important issue.
【0012】本発明の目的は、以上の諸点に鑑みて、大
形の多孔質母材を高速度で、しかも安定にかつ再現性よ
く製造する光ファイバ母材の製造方法を提供することに
ある。SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to provide a method for manufacturing an optical fiber preform in which a large porous preform can be manufactured at high speed, stably, and with good reproducibility. .
【0013】[0013]
【課題を解決するための手段】かかる目的を達成するた
めに、本発明では、ガラス原料を多重化した火炎に供給
して多孔質母材を製造する際にその多重化した火炎流の
各々における流速を所定の関係に定め、しかもガラス原
料流の流速をかかる火炎流の流速以下で供給する。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for producing a porous base material by supplying a glass raw material to multiplexed flame flows in each of the multiplexed flame flows. The flow rates are set in a predetermined relationship, and the flow rate of the frit stream is supplied at a rate lower than the flame stream rate.
【0014】すなわち、本発明製造方法は、火炎内でガ
ラス原料を分解してガラス微粒子を形成し、該ガラス微
粒子を種棒に堆積させて多孔質母材を形成し、該多孔質
母材を透明ガラス化して光ファイバ用母材を形成する光
ファイバ母材の製造方法において、前記ガラス原料を供
給する原料供給用ノズルと、該原料供給用ノズルのまわ
りに順次に配置され、それぞれ個別の火炎流を順次に形
成する複数の火炎形成用ノズルとを有するバーナを用い
、第k番目の火炎流を該第k番目の火炎の外側の第(k
+1)番目の火炎流より退行させ、その際に前記第k番
目の火炎流の下流端と前記第(k+1)番目の火炎流の
上流端とが実質的に連続するように前記退行の距離を定
め、得られる多重火炎中に前記ガラス原料を供給してガ
ラス微粒子を生成することを特徴とする。That is, in the manufacturing method of the present invention, a glass raw material is decomposed in a flame to form glass fine particles, the glass fine particles are deposited on a seed rod to form a porous base material, and the porous base material is In a method for manufacturing an optical fiber preform in which a preform for optical fiber is formed by transparent vitrification, a raw material supply nozzle for supplying the glass raw material, and separate flames arranged sequentially around the raw material supply nozzle are provided. Using a burner having a plurality of flame forming nozzles that sequentially form flame streams, the k-th flame stream is transferred to the (k-th
+1)th flame flow, and at that time, the distance of the regression is set such that the downstream end of the kth flame flow and the upstream end of the (k+1)th flame flow are substantially continuous. The method is characterized in that glass particles are produced by supplying the glass raw material into the resulting multiple flames.
【0015】[0015]
【作用】本発明によれば、火炎を多重化し、その内側火
炎を外側火炎よりも退行させることにより、大形母材を
高速にかつ安定に製造することができる。According to the present invention, by multiplexing the flames and causing the inner flame to regress more than the outer flame, a large base material can be manufactured at high speed and stably.
【0016】[0016]
【実施例】以下に図面を参照して本発明を詳細に説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to the drawings.
【0017】まず、燃焼ガスの流速と多孔質母材の成長
安定性について堆積実験を行った。この実験では、図1
に示したような同心円状の多重火炎ノズルにより構成さ
れた二重火炎構造のバーナを使用し、図3に示すように
退行距離lを60mmとし、外側火炎流の流速Vo、内
側火炎流の流速Viおよび原料流の流速Vmの関係を調
べた。First, a deposition experiment was conducted regarding the flow rate of combustion gas and the growth stability of the porous base material. In this experiment, Figure 1
A burner with a double flame structure composed of concentric multiple flame nozzles as shown in Fig. 3 was used, the regression distance l was set to 60 mm as shown in Fig. 3, and the flow velocity Vo of the outer flame flow and the flow velocity of the inner flame flow were The relationship between Vi and the flow rate Vm of the raw material flow was investigated.
【0018】外側火炎の火炎流速は火炎流レイノルズ数
等を考慮に入れて、安定した火炎が得られる2m/se
cとした。ここで、火炎流速とは、支配的に火炎を構成
する水素ガスおよび酸素ガスの各流量を各ガスの吹き出
すノズルの断面積で除したものである。バーナ位置は通
常の母材作製における位置に設定した。ガラス微粒子堆
積量は擬似母材を用いているため擬似母材依存性がある
ので、任意目盛とした。The flame flow velocity of the outer flame is set to 2 m/sec, which allows a stable flame to be obtained, taking into consideration the flame flow Reynolds number, etc.
c. Here, the flame flow velocity is obtained by dividing the respective flow rates of hydrogen gas and oxygen gas, which predominantly constitute the flame, by the cross-sectional area of the nozzle from which each gas is blown out. The burner position was set to the position used in normal base material production. Since the amount of glass fine particles deposited is dependent on the pseudo base material because a pseudo base material is used, it was set on an arbitrary scale.
【0019】ガラス原料としての四塩化ケイ素(SiC
l4 )をアルゴンガスをキャリアとして流速0.7m
/secで内側火炎中心層に2200cc/minで供
給し、内側火炎の火炎流流速Viを変化させてガラス微
粒子堆積量を測定した。火炎流速は酸素ガスおよび水素
ガスの流速を同じ割合で変化させることにより調節した
。Silicon tetrachloride (SiC) as a glass raw material
l4) at a flow rate of 0.7 m using argon gas as a carrier.
/sec to the inner flame center layer at 2200 cc/min, and the amount of glass particles deposited was measured by changing the flame flow velocity Vi of the inner flame. The flame flow rate was adjusted by changing the oxygen and hydrogen gas flow rates in equal proportions.
【0020】その結果を図4に示す。内側火炎流流速V
iを増加するにつれ、2重火炎としての効果が生じ、ガ
ラス微粒子堆積量は増加し、The results are shown in FIG. Inside flame flow velocity V
As i increases, a double flame effect occurs, and the amount of glass particles deposited increases.
【0021】[0021]
【数1】[Math 1]
【0022】のときに最大値をとり、最も好適であった
。内側火炎流流速Viをさらに増加すると、内側火炎が
外側火炎を乱しはじめ、安定な火炎が得られなくなり母
材表面温度が不均一になると共にガラス微粒子堆積速度
は減少する。特に内側火炎流流速Viが5m/sec(
2.5Vo相当)付近を越えると安定した成長面は得ら
れなくなった。The maximum value was obtained when ##EQU1## was the most suitable. When the inner flame flow velocity Vi is further increased, the inner flame begins to disturb the outer flame, a stable flame is no longer obtained, the base material surface temperature becomes non-uniform, and the glass particle deposition rate decreases. In particular, the inner flame flow velocity Vi is 5 m/sec (
2.5Vo equivalent), a stable growth surface could no longer be obtained.
【0023】他方、内側火炎流流速Viを低下させてい
くと、Viが0.2m/sec(0.1Vo相当)近傍
以下では、バーナとして機能しなくなり、やはり安定し
た成長面が得られなくなった。On the other hand, as the inner flame flow velocity Vi was decreased, when Vi was around 0.2 m/sec (equivalent to 0.1 Vo) or less, it no longer functioned as a burner, and a stable growth surface could no longer be obtained. .
【0024】次に、キャリアガスの流量を調節すること
によって内側火炎に供給するガラス原料層の流速Vmを
変化させて、堆積したガラス微粒子の重量を測定するこ
とにより、ガラス原料の流量に対するガラス原料収率を
求めた結果を図5に示す。Next, by adjusting the flow rate of the carrier gas, the flow velocity Vm of the frit layer supplied to the inner flame is changed, and the weight of the deposited glass fine particles is measured. The results of determining the yield are shown in FIG.
【0025】図5からわかるように、ガラス原料層流速
Vmが0.5Vo=1m/sec近傍を越えるあたりか
ら収率は急激に低下し、VmがVo=2m/sec近傍
を越えると、ガラス原料は火炎とほとんど反応せず、安
定した成長は見られず、多孔質母材を安定に成長させる
には、バーナにおけるVmとVoに関してはVm≦Vo
とすることが必要であることがわかった。As can be seen from FIG. 5, the yield sharply decreases when the glass raw material bed flow velocity Vm exceeds around 0.5 Vo = 1 m/sec, and when Vm exceeds around Vo = 2 m/sec, the glass raw material hardly reacts with the flame, and stable growth is not observed.In order to grow the porous base material stably, Vm and Vo in the burner must be Vm≦Vo.
It was found that it was necessary to
【0026】以上から、高速で安定した母材の成長を得
るためには、内側火炎流の流速Voとしては、0.1V
o≦Vi≦2.5Voの範囲にあり、かつVm≦Voで
あることが好ましく、特にVo=Vi≧Vmが最も好ま
しいことがわかる。From the above, in order to obtain stable growth of the base metal at high speed, the flow velocity Vo of the inner flame flow should be set to 0.1V.
It can be seen that it is preferable that o≦Vi≦2.5Vo and Vm≦Vo, and most preferably Vo=Vi≧Vm.
【0027】なお、上述の実験ではVo=2m/sec
として、ViおよびVmとVoとの関係を調べたが、V
oの設定は多孔質母材の成長部付近で乱流が生じない範
囲で変化させることができる。Voは作製しようとする
多孔質母材の径および母材形状によって異なり、通常は
0.5〜5m/secの範囲に定める。この範囲で上述
と同様の傾向が得られた。[0027] In the above experiment, Vo=2m/sec
The relationship between Vi and Vm and Vo was investigated as follows, but V
The setting of o can be changed within a range that does not cause turbulence near the growth area of the porous base material. Vo varies depending on the diameter and shape of the porous base material to be produced, and is usually set in the range of 0.5 to 5 m/sec. In this range, the same tendency as described above was obtained.
【0028】さらに、外側にもう1組の火炎を構成した
3重火炎について、同様な検討を行った。最も内側の1
重目火炎の流速Viと最も外側の3重目火炎の流速Vo
(2)との関係を図6に示す。ここで、2重目火炎の流
速をVo(1)として、Vo(1)=Vo(2),Vo
(1)=0.2Vo(2)の場合を図示した。3重火炎
においても、同様の関係があることがわかった。特にV
o(1)=0.2Vo(2)の場合が示すように流速の
異なる火炎が形成されている場合、安定成長する範囲が
狭くなると共に、ガラス微粒子堆積量も全体に低下する
傾向がみられた。[0028] Furthermore, a similar study was conducted regarding a triple flame with another set of flames on the outside. innermost one
Flow velocity Vi of the heavy flame and flow velocity Vo of the outermost third flame
The relationship with (2) is shown in FIG. Here, assuming that the flow velocity of the second flame is Vo(1), Vo(1)=Vo(2), Vo
The case where (1)=0.2Vo(2) is illustrated. A similar relationship was found for triple flames. Especially V
As shown in the case of o(1) = 0.2Vo(2), when flames with different flow velocities are formed, the range of stable growth becomes narrower and the amount of glass particles deposited tends to decrease overall. Ta.
【0029】このように、本発明は2重火炎や3重火炎
のみならず一般的に多重火炎にも適用され、その各々の
流速について、第k番目の火炎の流速Vk と第(k+
1)番目の火炎の流速Vk+1 とに着目したときに両
流速間に
なる条件を満足させることによって、多孔質母材を高速
で、しかも安定かつ再現性よく成長させることができる
。As described above, the present invention is applicable not only to double flames and triple flames, but also to multiple flames in general, and for each of the flow velocities, the flow velocity Vk of the kth flame and the (k+
1) By satisfying the condition that the flow velocity of the second flame is between the two flow velocity Vk+1, it is possible to grow the porous base material at high speed, stably, and with good reproducibility.
【0030】内側火炎あるいは外側火炎部における流速
の調整は、バーナ寸法およびノズル間隙を調整すると共
に、酸素ガスおよび水素ガスの双方あるいは一方の流量
を調整することにより実現できる。Adjustment of the flow velocity in the inner flame or outer flame section can be achieved by adjusting the burner dimensions and nozzle gap as well as the flow rates of both or one of the oxygen gas and the hydrogen gas.
【0031】次に、上述した火炎流の好適な流速の状態
における内側火炎の退行距離lの決定について図7を参
照して説明する。図7はバーナの軸方向における火炎温
度分布を内側および外側火炎と対比して示す。ここで、
Tcはガラス原料の反応下限を示す温度であり、この温
度Tc以下ではガラス原料が反応しないでそのままの状
態にある。Next, the determination of the regression distance l of the inner flame under the condition of the above-described preferred flame flow velocity will be explained with reference to FIG. FIG. 7 shows the flame temperature distribution in the axial direction of the burner in contrast to the inner and outer flames. here,
Tc is a temperature indicating the lower limit of reaction of the glass raw material, and below this temperature Tc, the glass raw material does not react and remains as it is.
【0032】図7に示す退行距離l1の状態(A)では
内側火炎8の下流端と外側火炎9の上流端とが実質的に
連続しており、火炎温度は下限温度Tcより高い温度で
連続している。ここで、連続とは、火炎温度が常に下限
温度Tcより高い状態にあることを意味する。退行距離
lを大きくしてl2にした状態(B)では、内側火炎8
と外側火炎9とが分離してしまう。そこで、退行距離l
は、上述したように定めた好適なVo, ViおよびV
mの条件の下で、内側火炎8と外側火炎9とが実質的に
連続するように定める。しかも、退行距離lは、このよ
うに定められる範囲内でなるべく長くすることによって
火炎長が長くなるので、ガラス微粒子の堆積効率を高め
ることができる。In state (A) of regression distance l1 shown in FIG. 7, the downstream end of the inner flame 8 and the upstream end of the outer flame 9 are substantially continuous, and the flame temperature is continuous at a temperature higher than the lower limit temperature Tc. are doing. Here, continuous means that the flame temperature is always higher than the lower limit temperature Tc. In the state (B) where the regression distance l is increased to l2, the inner flame 8
and the outer flame 9 will separate. Therefore, regression distance l
are the preferred Vo, Vi and V defined as described above.
Under the condition m, the inner flame 8 and the outer flame 9 are set to be substantially continuous. Moreover, by making the regression distance l as long as possible within the range determined in this way, the flame length becomes longer, so that the deposition efficiency of glass particles can be increased.
【0033】このような流速条件下における2重火炎の
効果を図8に示す。図8は2重火炎化した場合としない
場合のガラス原料としてのSiCl4 供給量とガラス
微粒子体積量との関係を、直径150mmの擬似母材に
SiO2 を堆積させたときの堆積速度をガラス原料で
あるSiCl4 の供給量に対して示している。ここで
、実線が2重火炎化した場合、破線が内側火炎単独の場
合である。FIG. 8 shows the effect of double flame under such flow velocity conditions. Figure 8 shows the relationship between the supply amount of SiCl4 as a glass raw material and the volume of glass fine particles with and without double flame formation, and the deposition rate when depositing SiO2 on a pseudo base material with a diameter of 150 mm using a glass raw material. The figure is shown for a certain amount of SiCl4 supplied. Here, the solid line represents the case where there is a double flame, and the broken line represents the case where there is only an inner flame.
【0034】ここで、SiCl4 の供給量を5000
cc/minとすると、2重火炎バーナでは5g/mi
nの堆積速度が得られ、収率は60〜70%であった。[0034] Here, the supply amount of SiCl4 is 5000
cc/min, 5g/min for double flame burner
Deposition rates of n were obtained with yields of 60-70%.
【0035】次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.
【0036】図9に本発明で用いるガラス微粒子合成用
バーナの一実施例を示す。ここで、21はガラス原料供
給用ノズル、22はH2 やプロパン,ブタンなどの炭
化水素系燃料などの可燃性ガス供給用ノズル、23はA
r,He,N2 などの不活性ガス供給用ノズル、24
はO2 などの支燃性ガス供給用ノズル、25は不活性
ガス供給用ノズルである。これらノズル22〜25をノ
ズル21のまわりにこの順序で同心円状に配置して内側
多重ノズルとなし、可燃性ガスおよび支燃性ガスにより
内側火炎を形成する。さらに、26は外側ガラス原料(
または不活性ガス)供給用ノズル、27は可燃性ガス供
給用ノズル、28は不活性ガス供給用ノズル、29は支
燃性ガス供給用ノズルであり、これらノズル26〜29
をノズル25のまわりにこの順序で同心円状に配置して
外側多重ノズルとなし、可燃性ガスおよび支燃性ガスに
より外側火炎を形成する。ここで、内側多重ノズルを外
側多重ノズルよりも距離lだけ退行させる。30は外側
多重ノズルのまわりに配置したフードである。FIG. 9 shows an embodiment of a burner for synthesizing glass particles used in the present invention. Here, 21 is a nozzle for supplying glass raw materials, 22 is a nozzle for supplying combustible gas such as H2, hydrocarbon fuel such as propane, butane, etc., and 23 is a nozzle for supplying a glass raw material.
Nozzle for supplying inert gas such as r, He, N2, etc., 24
25 is a nozzle for supplying a combustion-supporting gas such as O2, and 25 is a nozzle for supplying an inert gas. These nozzles 22 to 25 are arranged concentrically in this order around the nozzle 21 to form an inner multiple nozzle, and an inner flame is formed by the combustible gas and the combustion-supporting gas. Furthermore, 26 is the outer glass raw material (
or inert gas) supply nozzle, 27 is a flammable gas supply nozzle, 28 is an inert gas supply nozzle, 29 is a combustion-supporting gas supply nozzle, and these nozzles 26 to 29
are arranged concentrically in this order around the nozzle 25 to form an outer multiple nozzle, and an outer flame is formed by the combustible gas and the combustion-supporting gas. Here, the inner multiple nozzle is moved back by a distance l from the outer multiple nozzle. 30 is a hood arranged around the outer multiple nozzle.
【0037】ここで、ガラス原料供給用ノズル21と、
外側ガラス原料供給用ノズル26はそれぞれ、その外側
にある各組の可燃性ガス供給用ノズルおよび支燃性ガス
供給用ノズルに対してガス流の上流側に開口部を有する
ように配置する。これは塩化物等の形で供給されるガラ
ス原料が火炎中で分解されてガラス微粒子となったとき
に、そのガラス微粒子が原料供給用ノズルの先端に付着
することを防止するためである。すなわち、ガラス微粒
子がノズル先端に付着すると合成条件が経時的に変化し
てしまうからである。Here, the glass raw material supply nozzle 21 and
Each of the outer frit supply nozzles 26 is arranged so as to have an opening on the upstream side of the gas flow with respect to each set of combustible gas supply nozzles and combustion-supporting gas supply nozzles located outside thereof. This is to prevent the glass particles from adhering to the tip of the raw material supply nozzle when the glass raw material supplied in the form of chloride or the like is decomposed in the flame and becomes glass particles. That is, if glass particles adhere to the nozzle tip, the synthesis conditions will change over time.
【0038】また、各ノズルの先端は図9に示したよう
に片刃状に加工されていることが望ましい。厚みのある
部材で作られ、直角に切断された端部を有するノズルを
用いた場合には、その端部でガス流の乱れを生じ、ガラ
ス微粒子のノズル先端への付着等の問題を生ずるからで
ある。なお、各組のノズルにおいて可燃性ガスと支燃性
ガスの供給場所を入れ換えてもバーナの特性に大きな変
化はない。Furthermore, it is desirable that the tip of each nozzle is machined into a single-edged shape as shown in FIG. When using a nozzle that is made of a thick material and has an end cut at a right angle, the gas flow will be disturbed at the end, causing problems such as adhesion of glass particles to the nozzle tip. It is. Note that even if the supply locations of the combustible gas and the combustion-supporting gas are switched in each set of nozzles, there is no significant change in the characteristics of the burner.
【0039】次に図9に示す2重火炎バーナにおいてバ
ーナ外径53mm, 退行距離l=60mmとし、この
バーナに対し、本発明の製造方法を適用して多孔質母材
の作製を行った実施例を示す。Next, in a double flame burner shown in FIG. 9, the burner outer diameter was 53 mm and the regression distance l was 60 mm, and the manufacturing method of the present invention was applied to this burner to produce a porous base material. Give an example.
【0040】実施例1
実施例1はSiO2 のみから成る多孔質母材の製造に
関するものであり、多重火炎バーナとして、上述の流速
モデル実験で使用した同心円状多重ノズル構造の2重火
炎バーナを使用した。Example 1 Example 1 relates to the production of a porous base material consisting only of SiO2, and the double flame burner with the concentric multiple nozzle structure used in the above-mentioned flow velocity model experiment was used as the multiple flame burner. did.
【0041】図9に示す2重火炎バーナにおいて、外側
火炎流流速、内側火炎流流速および原料層流速を、それ
ぞれ、2.1m/sec,2.1m/secおよび0.
7m/secとした。原料供給用ノズルにはアルゴンガ
スをキャリアとして四塩化ケイ素2200cc/min
を供給した。母材合成速度は3.5g/min、ガラス
原料収率は65%であった。母材成長は非常に安定であ
り、10時間で直径120mmで有効長800mmの大
形多孔質母材が得られた。10時間という長時間の母材
作製においても成長面の形状などは変化せず、安定な成
長がなされた。In the double flame burner shown in FIG. 9, the outer flame flow velocity, inner flame flow velocity, and raw material layer flow velocity are set to 2.1 m/sec, 2.1 m/sec, and 0.1 m/sec, respectively.
The speed was set at 7 m/sec. Silicon tetrachloride 2200cc/min is supplied to the raw material supply nozzle using argon gas as a carrier.
was supplied. The base material synthesis rate was 3.5 g/min, and the glass raw material yield was 65%. The matrix growth was very stable, and a large porous matrix with a diameter of 120 mm and an effective length of 800 mm was obtained in 10 hours. Even during the preparation of the base material for a long time of 10 hours, the shape of the growth surface did not change, and stable growth was achieved.
【0042】実施例2
実施例2はGeO2 を添加した屈折率分布を有する母
材用の多孔質母材の製造方法の実施例である。ここで固
溶した二酸化ゲルマニウムを形成させるためにGeO2
を添加しない場合に比較して、火炎温度を下げる必要
があった。また、合成速度を増加させると共に屈折率分
布を調整するために下記に示すように外側火炎にもガラ
ス原料を供給した。Example 2 Example 2 is an example of a method for producing a porous base material having a refractive index distribution doped with GeO2. Here, in order to form germanium dioxide in solid solution, GeO2
It was necessary to lower the flame temperature compared to the case without adding. Further, in order to increase the synthesis rate and adjust the refractive index distribution, a glass raw material was also supplied to the outer flame as shown below.
【0043】バーナとしては実施例1と同じ図9に示す
2重火炎バーナを用い、外側火炎流流速、内側火炎流流
速および原料流流速を、それぞれ、2.0m/sec、
2.0m/secおよび0.8m/secとなし、ガラ
ス原料として、実施例1と同条件の四塩化ケイ素に加え
て四塩化ゲルマニウムを200cc/minやはりアル
ゴンガスをキャリアとして供給した。母材合成速度は4
.5g/minであり、比屈折率差1.1%が得られた
。A double flame burner shown in FIG. 9, which is the same as in Example 1, was used as the burner, and the outer flame flow velocity, inner flame flow velocity, and raw material flow velocity were set to 2.0 m/sec, respectively.
2.0 m/sec and 0.8 m/sec, and as a glass raw material, in addition to silicon tetrachloride under the same conditions as in Example 1, germanium tetrachloride was supplied at 200 cc/min with argon gas as a carrier. Base material synthesis rate is 4
.. 5 g/min, and a relative refractive index difference of 1.1% was obtained.
【0044】この実施例によれば、本発明の製造方法は
、屈折率制御用のドーパントを含有したガラス母材の合
成にも有効であることが明らかになった。According to this example, it was revealed that the manufacturing method of the present invention is also effective for synthesizing a glass base material containing a dopant for controlling the refractive index.
【0045】なお、外側火炎にもガラス原料と供給すれ
ば更に堆積速度は向上するが、外側火炎内では、合成さ
れたガラス微粒子の火炎内での滞在時間の延長の効果は
ないので、全ガラス原料供給量に対するガラス原料収率
は多少低下することが確認された。本例では原料収率は
、55%であった。ここで、ガラス原料収率が低下した
のは、四塩化ゲルマニウムの収率が四塩化ケイ素に比較
して低いことと、外側火炎に供給したガラス原料収率が
内側火炎に供給したガラス原料収率より低いことに起因
している。[0045] Although the deposition rate can be further improved by supplying the glass raw material to the outer flame, there is no effect of extending the residence time of the synthesized glass fine particles in the flame in the outer flame. It was confirmed that the glass raw material yield with respect to the raw material supply amount decreased somewhat. In this example, the raw material yield was 55%. Here, the reason for the decrease in the yield of frit is that the yield of germanium tetrachloride is lower than that of silicon tetrachloride, and the yield of frit supplied to the outer flame is lower than the yield of frit supplied to the inner flame. This is due to the fact that it is lower.
【0046】[0046]
【発明の効果】以上説明したように、本発明によれば、
火炎を多重化し、その内側火炎を外側火炎よりも退行さ
せることにより、大形母材を高速にかつ安定に製造する
ことができる。その結果、母材製造効率が改善され、光
ファイバ価格を低下させることができる効果がある。[Effects of the Invention] As explained above, according to the present invention,
By multiplexing the flames and causing the inner flame to regress more than the outer flame, large-sized base materials can be manufactured at high speed and stably. As a result, the base material manufacturing efficiency is improved and the cost of optical fibers can be reduced.
【図1】図1は火炎の多重化構成の概略を示す線図であ
る。FIG. 1 is a diagram schematically showing a flame multiplexing configuration.
【図2】図2はガラス微粒子の粒径と火炎内滞留時間と
の関係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between the particle size of glass particles and the residence time in a flame.
【図3】図3は本発明における2重火炎バーナでの各部
流速および退行距離の説明図である。FIG. 3 is an explanatory diagram of flow velocities and regression distances at various parts in the dual flame burner according to the present invention.
【図4】図4は本発明におけるガラス微粒子堆積量の内
側火炎の火炎流流速依存性を示す特性図である。FIG. 4 is a characteristic diagram showing the dependence of the amount of deposited glass particles on the flame flow velocity of the inner flame in the present invention.
【図5】図5はガラス微粒子収率のガラス原料層流速依
存性を示す特性図である。FIG. 5 is a characteristic diagram showing the dependence of glass fine particle yield on glass raw material layer flow rate.
【図6】図6は本発明におけるガラス微粒子堆積量の内
側火炎の火炎流流速依存性を示す特性図である。FIG. 6 is a characteristic diagram showing the dependence of the amount of deposited glass particles on the flame flow velocity of the inner flame in the present invention.
【図7】図7はバーナ軸方向における内側火炎の退行距
離と火炎温度との関係を示す火炎温度分布図である。FIG. 7 is a flame temperature distribution diagram showing the relationship between the regression distance of the inner flame and the flame temperature in the burner axial direction.
【図8】図8は単独の火炎および2重火炎におけるガラ
ス原料供給量とガラス微粒子堆積量との関係を示す特性
図である。FIG. 8 is a characteristic diagram showing the relationship between the glass raw material supply amount and the glass fine particle deposition amount in a single flame and a double flame.
【図9】図9は本発明で用いる2重火炎バーナの一実施
例を示す断面図である。FIG. 9 is a sectional view showing an embodiment of a double flame burner used in the present invention.
1 内側火炎用ガラス原料供給口
2 内側火炎用燃焼ガス供給口
3 外側火炎用ガラス原料供給口
4 外側火炎用燃焼ガス供給口
5 内側火炎用ノズル
6 外側火炎用ノズル
7 ガラス原料層
8 内側火炎
9 外側火炎
10 生成したガラス微粒子
11 多孔質母材
21 ガラス原料供給用ノズル
22 可燃性ガス供給用ノズル
23 不活性ガス供給用ノズル
24 支燃性ガス供給用ノズル
25 不活性ガス供給用ノズル
26 外側ガラス原料(または不活性ガス) 供給用
ノズル
27 可燃性ガス供給用ノズル
28 不活性ガス供給用ノズル
29 支燃性ガス供給用ノズル
30 フード1 Glass raw material supply port for inner flame 2 Combustion gas supply port for inner flame 3 Glass raw material supply port for outer flame 4 Combustion gas supply port for outer flame 5 Nozzle for inner flame 6 Nozzle for outer flame 7 Glass raw material layer 8 Inner flame 9 Outer flame 10 Generated glass particles 11 Porous base material 21 Glass raw material supply nozzle 22 Combustible gas supply nozzle 23 Inert gas supply nozzle 24 Combustion-supporting gas supply nozzle 25 Inert gas supply nozzle 26 Outer glass Raw material (or inert gas) supply nozzle 27 Flammable gas supply nozzle 28 Inert gas supply nozzle 29 Combustion-supporting gas supply nozzle 30 Hood
Claims (1)
微粒子を形成し、該ガラス微粒子を種棒に堆積させて多
孔質母材を形成し、該多孔質母材を透明ガラス化して光
ファイバ用母材を形成する光ファイバ母材の製造方法に
おいて、前記ガラス原料を供給する原料供給用ノズルと
、該原料供給用ノズルのまわりに順次に配置され、それ
ぞれ個別の火炎流を順次に形成する複数の火炎形成用ノ
ズルとを有するバーナを用い、第k番目の火炎流を該第
k番目の火炎の外側の第(k+1)番目の火炎流より退
行させ、その際に前記第k番目の火炎流の下流端と前記
第(k+1)番目の火炎流の上流端とが実質的に連続す
るように前記退行の距離を定め、得られる多重火炎中に
前記ガラス原料を供給してガラス微粒子を生成すること
を特徴とする光ファイバ母材の製造方法。Claim 1: A glass raw material is decomposed in a flame to form glass particles, the glass particles are deposited on a seed rod to form a porous base material, and the porous base material is made into transparent glass to form an optical fiber. In the method for manufacturing an optical fiber preform forming a base material for use, a raw material supply nozzle for supplying the glass raw material, and a raw material supply nozzle arranged sequentially around the raw material supply nozzle to sequentially form individual flame streams respectively. Using a burner having a plurality of flame forming nozzles, the k-th flame stream is regressed from the (k+1)-th flame stream outside the k-th flame, and at this time, the k-th flame The regression distance is determined so that the downstream end of the flow and the upstream end of the (k+1)th flame flow are substantially continuous, and the glass raw material is supplied into the resulting multiple flames to generate glass particles. A method for manufacturing an optical fiber preform, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10745391A JPH0672024B2 (en) | 1991-05-13 | 1991-05-13 | Method for manufacturing optical fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10745391A JPH0672024B2 (en) | 1991-05-13 | 1991-05-13 | Method for manufacturing optical fiber preform |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2348885A Division JPS61186239A (en) | 1979-06-12 | 1985-02-12 | Production of parent material for optical fiber and burner therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04228441A true JPH04228441A (en) | 1992-08-18 |
JPH0672024B2 JPH0672024B2 (en) | 1994-09-14 |
Family
ID=14459550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10745391A Expired - Lifetime JPH0672024B2 (en) | 1991-05-13 | 1991-05-13 | Method for manufacturing optical fiber preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0672024B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015227259A (en) * | 2014-05-30 | 2015-12-17 | 住友電気工業株式会社 | Production method of porous silica tube, and porous silica tube |
-
1991
- 1991-05-13 JP JP10745391A patent/JPH0672024B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015227259A (en) * | 2014-05-30 | 2015-12-17 | 住友電気工業株式会社 | Production method of porous silica tube, and porous silica tube |
Also Published As
Publication number | Publication date |
---|---|
JPH0672024B2 (en) | 1994-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4801322A (en) | Method, apparatus and burner for fabricating an optical fiber preform | |
US4224046A (en) | Method for manufacturing an optical fiber preform | |
GB2128982A (en) | Fabrication method of optical fiber preforms | |
JPS64332B2 (en) | ||
JPH04228443A (en) | Burner for producing optical fiber preform | |
JPH04228441A (en) | Production of optical fiber preform | |
JPH04228442A (en) | Production of optical preform | |
JPH0416418B2 (en) | ||
US5207813A (en) | Method for producing glass article | |
JPS61183140A (en) | Production of base material for optical fiber | |
JP2517052B2 (en) | Graded Index Optical Fiber-Manufacturing Method of Base Material | |
JP2800554B2 (en) | Manufacturing method of glass base material | |
WO2005005331A1 (en) | Method of manufacturing optical fiber base material | |
JP2003238166A (en) | Method for producing glass particle deposit | |
JPH05319849A (en) | Method for producing silica porous base material | |
JPH05345621A (en) | Production of glass article | |
JP2001354430A (en) | Method for manufacturing glass articles | |
JP2003212560A (en) | Method for manufacturing glass particle deposit | |
JPS6220139B2 (en) | ||
JPH0336772B2 (en) | ||
JP2001199730A (en) | Method for producing porous glass base material, and apparatus therefor | |
JPH01100034A (en) | Optical fiber base material manufacturing equipment | |
JPS62113731A (en) | Production of base material for optical fiber | |
JPS6228100B2 (en) | ||
JPS6418930A (en) | Production of optical fiber preform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |