[go: up one dir, main page]

JPH0422681B2 - - Google Patents

Info

Publication number
JPH0422681B2
JPH0422681B2 JP55065783A JP6578380A JPH0422681B2 JP H0422681 B2 JPH0422681 B2 JP H0422681B2 JP 55065783 A JP55065783 A JP 55065783A JP 6578380 A JP6578380 A JP 6578380A JP H0422681 B2 JPH0422681 B2 JP H0422681B2
Authority
JP
Japan
Prior art keywords
water
amount
value
primary
fine aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55065783A
Other languages
Japanese (ja)
Other versions
JPS56161111A (en
Inventor
Omio Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP6578380A priority Critical patent/JPS56161111A/en
Publication of JPS56161111A publication Critical patent/JPS56161111A/en
Publication of JPH0422681B2 publication Critical patent/JPH0422681B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、コンクリート類の製造を行うに際
し、その添加する一定量の水(以下添加水と称す
る)を配合水の全量から演算すると共に演算され
た添加水の全量を合理的割合の分量に夫々分けて
ミキサへ供給することを可能とした新規な水計量
手段に関する提案である。 従来から知られていたことは、所要の練り置き
時間を採つて混練する時間差混練を行うために添
加水の全量を1次混練に必要な1次水と、2次混
練に必要な2次水とに分けて用いる技術思想であ
つた(例えば特開昭54−60321号公報)。しかし、
1次水と2次水とを合理的割合の分量に分けるに
際し、いかなる手段を用いて分けると好ましい1
次水の量が得られるかまでは知られていなかつた
のである。 本発明の目的は、係る添加水の全量を合理的割
合の分量の1次水と2次水とに分けるために用い
る水計量手段、特に骨材の表面水をも考慮した好
ましい1次水量の決定ができる水計量手段を得る
にある。 ところで高強度のコンクリートを得るために
は、基本となるセメントペーストが重要な役割を
なすものである。そこで、単にセメントと水とか
らなるセメントペーストを無造作に造るのでな
く、セメントと水の混合割合を慎重に考慮するこ
とが重要なポイントである。 従つて、使用セメントの量に対する的確な1次
水の量を計量することが優れたセメントペースト
を得るために必須となるのである。そこで、添加
水の全量中から必要な分量の好ましい1次水の量
を計量し、この好ましい量の1次水をミキサへ供
給し、その後に残余の2次水を供給する手順で各
骨材との混合及び混練を確実に行うことが必要で
ある。 本発明は、設備のレイアウトを変えることな
く、わずかな改造により前述の高強度コンクリー
トが確実に得られるものであり、同様にモルタル
などのコンクリート類も得られるものである。そ
してその特徴とするところは、コンクリート類を
製造する際の水計量手段が、水計量槽4と、細骨
材貯蔵槽に備える水分計15と、1次水・セメン
ト比の設定器2と、コンピユータ1とから形成さ
れると共に該コンピユータ1へ前記水分計15及
び前記1次水・セメント比の設定器2を関連させ
て具備せしめる構成となし、水分計15が測定す
る細骨材の表面水率Aを入力信号にして前記コン
ピユータの演算で添加水の計量値W0を求めるこ
と及びこの計量値W0から好ましい1次水の量W1
の値を求めその余を2次水の量W2の値として求
めることを特徴とするコンクリート類製造装置の
水計量手段にある。 従つて、コンピユータへ入力されている配合水
の値は、水分計が測定する細骨材の表面水率の
大・小によつて決定される添加水の値を演算する
ための基礎数値である。即ち細骨材の表面水率を
入力信号にしてコンピユータが添加水の値(計量
値W0)を演算すると共にこの計量値W0から必要
な分量の1次水の値が算出され残余の値が2次水
の値として算出されるのである。 次に、第1図に基づいて具体的な実施例を説明
する。1はコンピユータであり、このコンピユー
タには1次水の量とセメントの量との割合を設定
する1次水・セメント比の設定器2が具備されて
いる。 ここで、1次水の量及び2次水の量は、次の計
算式にて算出を行う。 添加水の配合値をWKg、細骨材の配合値をS
Kg、セメントの配合値をCKg、全水の計量値を
W0Kg、1次水量の値をW1Kg、2次水量の値を
W2Kg、細骨材の計量値をS0Kg、細骨材の表面水
率をA%、1次水の量とセメントの量との比率を
B%とすると、 S0=S〔1+(A/100)〕 ……式 W0=W1+W2=W−(S×A/10) ……式 C×B/100>S×A/100 ……式 となる。但し、式は条件式である。 式が満たされる場合は、次の式、式によ
り1次水の量及び2次水の量を求める。 W1=[(C×B)−(S×A)〓/100 ……式 W2=W−[(C×B)/100] ……式 式が満たされない場合は、次の式、式に
より1次水量及び2次水量を求める。 W1=0 ……式 W2=W0=W−[(S×A)/100] ……式 さらに、3は水計量器を示し、図示のものは仕
切板5により1次水室6と2次水室7とに完全に
仕切られた1槽2室式の計量槽4を備えている。
該水計量器3は、計量槽4の上流部位に配設した
1次水室6に連通する1次水の計量弁8及び2次
水室7に連通する2次水の計量弁9と、計量槽4
の下流部位に配設した1次水室6に連通する1次
水の排出弁10及び2次水室7に連通する2次水
の排出弁11ならびに1次水・2次水の受けホツ
パ12とから構成されている。さらにまた、前述
の水計量器は、コンピユータ1の信号指令によつ
て作動する構造になされている。 そして、コンピユータ1には入力装置としての
カードリーダ20からの信号と細骨材の貯蔵槽1
4に備える水分計15からの信号とが入力される
ようなされている。 以下、本実施例の作用をコンクリート製造の手
順に従い説明する。まず、オペレータは、各種骨
材の配合値が事前に穿孔されているカード(図示
せず)をカードリーダ20にセツトする。さらに
1次水・セメント比の設定器2にて必要とする比
率を設定してこれ(設定値B)をセツトし、図示
しない操作盤を操作する。さらに水分計15は、
細骨材貯蔵槽14内の細骨材の表面水率Aを敏速
に測定しコンピユータ1に該測定値を入力する。
コンピユータ1は、該表面水率Aと1次水・セメ
ント比の設定器2の設定値B及びカードリーダ2
0からの細骨材、水、セメントの各配合値である
S,W,Cをもとに前記計算式で演算を行い、細
骨材の計量値S0と全水の計量値W0と1次水の量
W1の値と2次水の量W2の値とを求める。そして
夫々の値S0,W0,W1,W2を各計量器に信号と
なして指令する。水計量器3は、1次水の計量弁
8の作動により貯水槽13からの水を1次水室に
W1だけ供給する計量を行い、この計量完了後に
または同時に2次水の計量弁9の作動により2次
水室にW2だけの水を供給する計量を行い、必要
とする水の全量W0を貯水槽13から各水室6,
7の夫々へ供給して計量を終了する。さらに細骨
材も、細骨材の計量弁16の作動により細骨材の
計量槽17へS0だけ細骨材の貯蔵槽14から細骨
材を供給して計量を終了する。図示しないセメン
ト、粗骨材、添加剤も各々計量器にて計量を行
う。添加剤は、計量完了後に水計量器へ排出し、
水と共にミキサへ投入する従来手順に代えて、本
実施例では2次水室に排出し2次水と共に次工程
のミキサ19へ排出する手順で供給する。なぜな
らば添加剤の種類によつては、骨材の外皮造殻層
を形成させるのに悪影響をおよぼすものがあり、
これをさけるためである。 以上の手順で全材料の計量が完了した後は、ま
ず細骨材の排出弁18と1次水の排出弁10とを
開放し、細骨材及び1次水をミキサ19へ投入
し、ミキサ19にて必要時間の混練を行い均一な
表面水をもつ細骨材を造り、次に図示しないセメ
ントの計量器からセメントをミキサ19へ供給し
て必要時間の混練を行い、細骨材にセメントペー
ストによる外皮造殻層を形成する。その後に図示
しない粗骨材の計量器から粗骨材をミキサ19に
供給しながら、または供給した後に2次水の排出
弁11を開放し、2次水をミキサ19へ供給す
る。そして、さらに必要時間の混練を行い所定配
合の高強度コンクリートを製造するのである。 次に具体的な試験例を用いて説明する。 配合名;210−18−20 諸元 呼び強度 210Kg/cm2 スランプ 18cm 最大粗骨材 20mm W/C 59.0% s/a 45.9% 配合割合 W 185Kg 表面水率3.2% ―――――――――→ W0=159Kg C 314Kg S 812Kg 表面水率3.2% ―――――――――→ S0=838Kg G 974Kg AD 0.785Kg
When manufacturing concrete, the present invention calculates a certain amount of water to be added (hereinafter referred to as added water) from the total amount of mixed water, and divides the calculated total amount of added water into reasonable proportions. This is a proposal regarding a new water measuring means that makes it possible to separately supply water to a mixer. What has been conventionally known is that in order to perform staggered kneading in which the required mixing time is taken and kneaded, the total amount of added water is divided into primary water required for primary kneading and secondary water required for secondary kneading. It was a technical idea that was used separately (for example, Japanese Patent Application Laid-Open No. 1983-60321). but,
When dividing primary water and secondary water into quantities of reasonable proportions, it is preferable to use any means to divide them.
It was not known how much water could be obtained. The object of the present invention is to provide water measuring means to be used to divide the total amount of added water into reasonable proportions of primary water and secondary water, and in particular to determine the preferred amount of primary water, taking into account the surface water of the aggregate. The purpose is to obtain a water metering means that can make decisions. Incidentally, in order to obtain high-strength concrete, the basic cement paste plays an important role. Therefore, it is important not to simply create a cement paste consisting of cement and water, but to carefully consider the mixing ratio of cement and water. Therefore, it is essential to accurately measure the amount of primary water relative to the amount of cement used in order to obtain an excellent cement paste. Therefore, we measure the desired amount of primary water out of the total amount of added water, supply this preferred amount of primary water to the mixer, and then supply the remaining secondary water to each aggregate. It is necessary to reliably mix and knead the ingredients. According to the present invention, the above-mentioned high-strength concrete can be reliably obtained with a slight modification without changing the layout of the equipment, and similarly concrete such as mortar can also be obtained. The characteristics of the water measuring means used when manufacturing concrete include a water measuring tank 4, a moisture meter 15 provided in a fine aggregate storage tank, and a setting device 2 for the primary water/cement ratio. The computer 1 is configured to include the moisture meter 15 and the primary water/cement ratio setting device 2 in association with the computer 1, and the moisture meter 15 measures the surface water of fine aggregate. Using the rate A as an input signal, the computer calculates the measured value W 0 of the added water, and from this measured value W 0 the desired amount W 1 of the primary water.
A water measuring means for a concrete manufacturing apparatus is characterized in that the value of W 2 is determined and the remainder is determined as the value of the amount W 2 of secondary water. Therefore, the value of blended water input into the computer is the basic value for calculating the value of added water, which is determined by the surface water percentage of fine aggregate measured by the moisture meter. . That is, using the surface water percentage of fine aggregate as an input signal, the computer calculates the value of added water (measured value W 0 ), and from this measured value W 0 the value of the required amount of primary water is calculated and the remaining value is calculated. is calculated as the value of secondary water. Next, a specific example will be described based on FIG. 1 is a computer, and this computer is equipped with a primary water/cement ratio setting device 2 for setting the ratio between the amount of primary water and the amount of cement. Here, the amount of primary water and the amount of secondary water are calculated using the following formula. The blending value of added water is WKg, and the blending value of fine aggregate is S.
Kg, the cement mixture value is CKg, the measured value of total water is
W 0 Kg, the value of the primary water volume is W 1 Kg, the value of the secondary water volume is
Assuming that W 2 Kg, the measured value of fine aggregate is S 0 Kg, the surface water percentage of fine aggregate is A%, and the ratio between the amount of primary water and the amount of cement is B%, S 0 = S[1+ (A/100)] ... Formula W 0 = W 1 + W 2 = W - (S×A/10) ... Formula C×B/100>S×A/100 ... Formula. However, the expression is a conditional expression. If the formula is satisfied, the amount of primary water and the amount of secondary water are determined using the following formulas. W 1 = [(C×B)-(S×A)〓/100... Formula W 2 = W-[(C×B)/100]... Formula If the formula is not satisfied, use the following formula, formula Find the primary water amount and secondary water amount. W 1 =0...Formula W2 = W0 =W-[(S×A)/100]...Formula 3 indicates a water meter, and the one shown has a primary water chamber 6 separated by a partition plate 5. It is equipped with a one-tank, two-chamber type measuring tank 4 that is completely partitioned into a secondary water chamber and a secondary water chamber 7.
The water meter 3 includes a primary water metering valve 8 that communicates with a primary water chamber 6 and a secondary water metering valve 9 that communicates with a secondary water chamber 7, which are disposed upstream of the metering tank 4. Measuring tank 4
A primary water discharge valve 10 that communicates with the primary water chamber 6, a secondary water discharge valve 11 that communicates with the secondary water chamber 7, and a primary water/secondary water receiving hopper 12, which are disposed downstream of the It is composed of. Furthermore, the water measuring device described above is constructed to operate in response to a signal command from the computer 1. The computer 1 receives a signal from a card reader 20 as an input device and a storage tank 1 for fine aggregate.
A signal from a moisture meter 15 provided for 4 is inputted. Hereinafter, the operation of this embodiment will be explained according to the concrete manufacturing procedure. First, the operator sets in the card reader 20 a card (not shown) on which the mixing values of various aggregates have been punched in advance. Furthermore, the user sets the required ratio using the primary water/cement ratio setting device 2 (setting value B), and then operates the operation panel (not shown). Furthermore, the moisture meter 15
The surface water content A of the fine aggregate in the fine aggregate storage tank 14 is quickly measured and the measured value is input into the computer 1.
The computer 1 reads the surface water rate A, the setting value B of the primary water/cement ratio setting device 2, and the card reader 2.
Calculate using the above formula based on the mixing values S, W, and C of fine aggregate, water, and cement starting from 0, and calculate the measured value of fine aggregate S 0 and the measured value of total water W 0. Volume of primary water
The value of W 1 and the value of the amount of secondary water W 2 are determined. Then, the respective values S 0 , W 0 , W 1 , and W 2 are commanded as signals to each measuring instrument. The water meter 3 supplies water from the water tank 13 to the primary water chamber by actuating the primary water metering valve 8.
Measurement is carried out to supply only W 1 , and after completion of this measurement, or at the same time, measurement is carried out to supply only W 2 of water to the secondary water chamber by operating the secondary water metering valve 9, and the total amount of water required is W 0. from the water tank 13 to each water chamber 6,
7, and the measurement is completed. Furthermore, the fine aggregate is supplied from the fine aggregate storage tank 14 by S 0 to the fine aggregate measuring tank 17 by the operation of the fine aggregate measuring valve 16, and the measuring is completed. Cement, coarse aggregate, and additives (not shown) are also weighed using measuring instruments. After completing the measurement, the additive is discharged into the water meter,
Instead of the conventional procedure of charging water into a mixer together with water, in this embodiment, the water is discharged into a secondary water chamber and then supplied together with the secondary water to the mixer 19 in the next step. This is because some types of additives may have a negative effect on the formation of the outer shell layer of the aggregate.
This is to avoid this. After the measurement of all materials is completed in the above procedure, first open the fine aggregate discharge valve 18 and the primary water discharge valve 10, and then input the fine aggregate and primary water into the mixer 19. 19, the mixture is kneaded for the required time to produce fine aggregate with uniform surface water. Next, cement is supplied from a cement measuring device (not shown) to the mixer 19 and kneaded for the required time, and the fine aggregate is mixed with cement. Form an outer shell layer using paste. Thereafter, the secondary water discharge valve 11 is opened while or after coarse aggregate is supplied to the mixer 19 from a coarse aggregate measuring device (not shown), and the secondary water is supplied to the mixer 19. Then, the mixture is kneaded for an additional period of time to produce high-strength concrete with a predetermined mix. Next, a description will be given using a specific test example. Mixing name: 210-18-20 Specifications Nominal strength 210Kg/cm 2 Slump 18cm Maximum coarse aggregate 20mm W/C 59.0% S/A 45.9% Mixing ratio W 185Kg Surface water rate 3.2% ------------------------ ―→ W 0 =159Kg C 314Kg S 812Kg Surface water rate 3.2% ――――――――――→ S 0 =838Kg G 974Kg AD 0.785Kg

【表】 * 使用ミキサは横二軸強制型である。
試験番号第1番は、計量水W0の全量を一度に
供給した例であり、その他の二度に分けて供給し
た例よりもその強度が低いものとなつている。 試験番号第3番は、1次水・セメント比が20%
であり、その他の10%及び30%と比較したときそ
の強度が高いものとなつている。 以上の試験例からも明らかなように、最良の1
次水・セメント比を用いることが最強のコンクリ
ートを得るために必須である。 水計量槽の他の実施例として、第2図のものは
仕切板5を持たないものであり、前記式に示す
全水の計量値W0をひとつの水の計量弁21の作
動により貯水槽13から計量槽14へ累積計量し
て供給するものである。そして前記第1図実施例
で説明した1次水の量W1及び2次水の量W2の排
出時においては、水の排出弁22を次のように作
動させて的確にミキサ19へ供給する。まず、水
の排出弁22を開放し計量水をミキサ19へ供給
する。一定時間の経過後に水計量槽4内の残水量
がW2に達したとき、水の排出弁22を閉塞する。
このようにして1次水の量W1をミキサ19へ供
給する。次に2次水の量W2の供給は、水の排出
弁22を再び開放し、残りの2次水の量W2の全
てをミキサ19へ供給するように行う。 第3図は1次水の量W1と2次水の量W2の計量
槽を別々に設けた例であり、その作用は第1図実
施例と同じであるから説明を省略する。第2図及
び第3図はともに水の計量槽部分のみ図示した
が、コンピユータ1との関連は第1図実施例と同
じである。 本発明の効果としては、バツチ毎に異なるコン
クリート類の各種材料の配合割合変化に敏速な対
応ができるのみならず、正確な1次水・セメント
比のセメントペーストを得るための好ましい1次
水の量が非常に高精度に計量されるものであるこ
と。さらに、1次水・セメント比の設定器を備え
たコンピユータによる制御であることから、あら
ゆる強度範囲のモルタル及びまたはコンクリート
にも活用できる優れたものであること。さらにま
た、水分計を備えていることから細骨材の表面水
に相当のバラツキがあつても常に正しい全水の計
量値W0が得られ且つ最良の1次水量W1が得られ
る著効を奏するものであつて、本実施例にだけ限
定されるものではなく、本発明の精神を逸脱しな
い範囲内で種々の設計変更が可能な水計量手段で
ある。
[Table] * The mixer used is a horizontal biaxial forced type.
Test No. 1 is an example in which the entire amount of measuring water W 0 was supplied at once, and its strength was lower than in the other examples in which it was supplied in two parts. Test number 3 has a primary water/cement ratio of 20%.
, and its strength is high when compared to the other 10% and 30%. As is clear from the above test examples, the best 1
Using the next water-to-cement ratio is essential to obtain the strongest concrete. As another example of the water measuring tank, the one shown in FIG. 2 does not have the partition plate 5, and the measured value W 0 of the total water shown in the above formula is measured by the operation of one water measuring valve 21. 13 to the measuring tank 14 in an accumulated manner. When discharging the primary water amount W 1 and the secondary water amount W 2 explained in the embodiment of FIG. 1, the water discharge valve 22 is operated as follows to accurately supply the water to the mixer 19 do. First, the water discharge valve 22 is opened and metered water is supplied to the mixer 19. When the amount of remaining water in the water measuring tank 4 reaches W2 after a certain period of time has elapsed, the water discharge valve 22 is closed.
In this way, the amount W 1 of primary water is supplied to the mixer 19. Next, the amount W 2 of secondary water is supplied by opening the water discharge valve 22 again and supplying all of the remaining amount W 2 of secondary water to the mixer 19 . FIG. 3 shows an example in which measuring tanks for the amount W 1 of primary water and the amount W 2 of secondary water are provided separately, and the operation thereof is the same as that of the embodiment shown in FIG. 1, so a description thereof will be omitted. Although both FIGS. 2 and 3 show only the water measuring tank, the relationship with the computer 1 is the same as in the embodiment shown in FIG. The effects of the present invention include not only being able to quickly respond to changes in the mixing ratio of various concrete materials that vary from batch to batch, but also the ability to quickly respond to changes in the mixing ratio of various materials for concrete, which differ from batch to batch, as well as the ability to use a suitable amount of primary water to obtain a cement paste with an accurate primary water/cement ratio. Quantities must be measured with very high precision. Furthermore, since it is controlled by a computer equipped with a primary water/cement ratio setting device, it is an excellent product that can be used for mortar and/or concrete of any strength range. Furthermore, since it is equipped with a moisture meter, even if there is considerable variation in the surface water of fine aggregate, it is highly effective in always obtaining the correct measured value of total water W 0 and the best primary water amount W 1 . The water measuring means is not limited to this embodiment, and can be modified in various ways without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す説明図、第
2図及び第3図は水の計量槽に関する他の実施例
を示す。 1……コンピユータ、2……1次水・セメント
比の設定器、3……水計量器、4……水計量槽、
15……水分計、A……細骨材の表面水率、B…
…1次水の量とセメントの量との比率、C……セ
メントの配合値、S……細骨材の配合値、S0……
細骨材の計量値、W……添加水の配合値、W0
…全水の計量値、W1……1次水の量、W2……2
次水の量。
FIG. 1 is an explanatory diagram showing a first embodiment of the present invention, and FIGS. 2 and 3 show other embodiments relating to a water measuring tank. 1... Computer, 2... Primary water/cement ratio setting device, 3... Water measuring device, 4... Water measuring tank,
15...Moisture meter, A...Surface water content of fine aggregate, B...
...Ratio between the amount of primary water and the amount of cement, C...Cement blending value, S...Fine aggregate blending value, S 0 ...
Weighing value of fine aggregate, W...Combination value of added water, W 0 ...
...Measured value of total water, W 1 ...Amount of primary water, W 2 ...2
Next amount of water.

Claims (1)

【特許請求の範囲】 1 コンクリート類を製造する際の水計量手段
が、水計量槽4と、細骨材貯蔵槽に備える水分計
15と、1次水・セメント比の設定器2と、コン
ピユータ1とから形成されると共に該コンピユー
タ1へ前記水分計15及び前記1次水・セメント
比の設定器2を関連させて具備せしめる構成とな
し、水分計15が測定する細骨材の表面水率Aを
入力信号にして前記コンピユータの演算で添加水
の計量値W0を求めること及びこの計量値W0から
好ましい1次水の量W1の値を求めその余を2次
水の量W2の値として求めることを特徴とするコ
ンクリート類製造装置の水計量手段。 2 前記1次水の量W1の値が計算式;W1=〔(C
×B)−(S×A)〕÷100で、前記2次水の量W2
値が計算式;W2=W−〔(C×B)÷100〕で算出
されることを特徴とする特許請求の範囲第1項記
載のコンクリート類製造装置の水計量手段。 3 前記1次水の量W1の値が計算式;W1=0
で、前記2次水の量W2の値が計算式;W2=W−
〔(S×A)÷100〕で算出されることを特徴とする
特許請求の範囲第1項記載のコンクリート類製造
装置の水計量手段。
[Claims] 1. Water measuring means when producing concrete includes a water measuring tank 4, a moisture meter 15 provided in a fine aggregate storage tank, a primary water/cement ratio setting device 2, and a computer. 1, and the computer 1 is provided with the moisture meter 15 and the primary water/cement ratio setting device 2 in association with each other, and the surface water content of the fine aggregate measured by the moisture meter 15. Using A as an input signal, the computer calculates the measured value W 0 of the added water, and from this measured value W 0 the preferred amount W 1 of primary water is determined, and the remainder is used as the amount W 2 of secondary water. Water measuring means for concrete manufacturing equipment, characterized in that water is determined as a value of . 2 The value of the amount of primary water W 1 is calculated using the formula; W 1 = [(C
xB) - (S x A)] ÷ 100, and the value of the amount of secondary water W 2 is calculated using the formula; W 2 = W - [(C x B) ÷ 100]. A water measuring means for a concrete manufacturing apparatus according to claim 1. 3 The value of the amount of primary water W 1 is calculated by the formula; W 1 = 0
The value of the amount of secondary water W 2 is calculated using the formula; W 2 = W-
The water measuring means for a concrete manufacturing apparatus according to claim 1, wherein the water measuring means is calculated by [(S×A)÷100].
JP6578380A 1980-05-16 1980-05-16 Device for manufacturing concrete Granted JPS56161111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6578380A JPS56161111A (en) 1980-05-16 1980-05-16 Device for manufacturing concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6578380A JPS56161111A (en) 1980-05-16 1980-05-16 Device for manufacturing concrete

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11931687A Division JPS6352017A (en) 1987-05-15 1987-05-15 Water meter structure in concrete manufacturing device

Publications (2)

Publication Number Publication Date
JPS56161111A JPS56161111A (en) 1981-12-11
JPH0422681B2 true JPH0422681B2 (en) 1992-04-20

Family

ID=13296972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6578380A Granted JPS56161111A (en) 1980-05-16 1980-05-16 Device for manufacturing concrete

Country Status (1)

Country Link
JP (1) JPS56161111A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275707A (en) * 1987-05-15 1987-11-30 株式会社 北川鉄工所 Water weigher structure in concrete production unit
JP2849626B2 (en) * 1988-10-14 1999-01-20 株式会社ジオトップ Ready-mixed concrete production equipment
CN201552669U (en) * 2009-12-18 2010-08-18 三一重工股份有限公司 Mortar vehicle-used liquid stock charging pipeline and motor vehicle employing same
JP7273389B2 (en) * 2018-11-26 2023-05-15 株式会社西田 Method for determining amount of water to be added, formulation method for producing interlocking block, method for producing interlocking block and interlocking block

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460321A (en) * 1977-10-20 1979-05-15 Ito Yasuro Method and apparatus for making concrete

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460321A (en) * 1977-10-20 1979-05-15 Ito Yasuro Method and apparatus for making concrete

Also Published As

Publication number Publication date
JPS56161111A (en) 1981-12-11

Similar Documents

Publication Publication Date Title
JP5663683B1 (en) Batch mixing method and batch mixing device
JPH0422681B2 (en)
JPS62275707A (en) Water weigher structure in concrete production unit
HU182932B (en) Method and apparatus for controlling the calibration of mixture components at concrete production
JP4469547B2 (en) Ready-mixed concrete manufacturing method and manufacturing apparatus
JPS6189808A (en) Manufacture of cured-body kneading
JPS60132707A (en) Car loading type ready-mixed concrete plant
JPH03102217A (en) Water meter for manufacture of concrete
JPS6352017A (en) Water meter structure in concrete manufacturing device
KR100966051B1 (en) Precise weighing method for bulk materials and precise control method of concrete component of concrete batching plant
JP3408346B2 (en) Mixing correction device for ready-mixed concrete material
JP6304641B1 (en) Batch mixing method and batch mixing device
JPS59187Y2 (en) Concrete aggregate surface water management device in batchya plant
JPH11170244A (en) Method and equipment for selecting blending design of high fluidity concrete
SU936980A1 (en) Apparatus for automatic monitoring and controlling concrete mix preparation
JP2849626B2 (en) Ready-mixed concrete production equipment
JP2002205304A (en) Method and apparatus for correcting composition of ready-mixed concrete
JP4582388B2 (en) Concrete consistency management method
JPH04105907A (en) Mixing of ready-mixed concrete
JPH1024410A (en) Production of highly flowable concrete and production equipment therefor
JP4844781B2 (en) Unit water measurement method for fresh concrete
JPH11268030A (en) Method and device for introducing kneading water for ready mixed concrete manufacturing plant
JPH08332625A (en) Manufacture of ready mixed concrete
SU1249459A1 (en) Method of automatic correcting of proportions of concrete mix
JPH043287B2 (en)