JPH04224872A - Preparation of titanylphthalocyanine crystal - Google Patents
Preparation of titanylphthalocyanine crystalInfo
- Publication number
- JPH04224872A JPH04224872A JP40683190A JP40683190A JPH04224872A JP H04224872 A JPH04224872 A JP H04224872A JP 40683190 A JP40683190 A JP 40683190A JP 40683190 A JP40683190 A JP 40683190A JP H04224872 A JPH04224872 A JP H04224872A
- Authority
- JP
- Japan
- Prior art keywords
- titanyl phthalocyanine
- crystals
- water
- ray diffraction
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は電子写真などの光電変換
素子に使われるチタニルフタロシアニン結晶の工業的製
造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial method for producing titanyl phthalocyanine crystals used in photoelectric conversion devices such as electrophotography.
【0002】0002
【従来の技術】電子写真感光体としては、古くからセレ
ン、酸化亜鉛、硫化カドミウムなどの無機光導電性物質
が知られていたが、近赤外領域にその発信波長のある半
導体レーザに感応する感光体として近年、フタロシアニ
ン類を用いたものが注目を集めている。なかでもチタニ
ルフタロシアニンは幾つかの結晶型をもち、特開昭61
−239248号、同62−67094号、特開平63
−218768号などに記載されている。これらのうち
特に感度のよいものはX線回折スペクトルのブラッグ角
2θ;9.5±0.2°、27.2±0.2°に主要な
ピークをもつチタニルフタロシアニン結晶で、すでにJ
apan Hardcopy’89”( 論文集 10
3ページ)で発表されている。[Prior Art] Inorganic photoconductive materials such as selenium, zinc oxide, and cadmium sulfide have long been known as electrophotographic photoreceptors, but they are sensitive to semiconductor lasers whose emission wavelength is in the near-infrared region. In recent years, photoreceptors using phthalocyanines have attracted attention. Among them, titanyl phthalocyanine has several crystal forms.
No. -239248, No. 62-67094, JP-A-63
-218768 etc. Among these, the one with particularly high sensitivity is titanyl phthalocyanine crystal, which has main peaks at Bragg angles 2θ; 9.5 ± 0.2° and 27.2 ± 0.2° in the X-ray diffraction spectrum, and has already been
apan Hardcopy'89” (Collection of papers 10
(page 3).
【0003】0003
【発明が解決しようとする問題点】しかしながら、この
電子写真性能の優れたチタニルフタロシアニン結晶は特
願平1−161177号、同1−170358号、同1
−170355号に記載されているとおり、実験室レベ
ルの製造スケールでは充分な性能をもったものが得られ
ているものの工業的な製造方法としては多くの改良すべ
き問題を含んでいる。[Problems to be Solved by the Invention] However, this titanyl phthalocyanine crystal with excellent electrophotographic performance has been disclosed in Japanese Patent Application No. 1-161177, No. 1-170358, No. 1
As described in No. 170355, although a product with sufficient performance has been obtained on a laboratory-level manufacturing scale, there are many problems that need to be improved as an industrial manufacturing method.
【0004】その一つはアシッドペースト処理(濃硫酸
に溶かし、水に注いでアモルファス化する工程)で得た
本来微粒子のアモルファスチタニルフタロシアニンを乾
燥し、再び粉砕してから結晶変換すると言った効率の問
題である。One of the methods is to dry the amorphous titanyl phthalocyanine, which is originally a fine particle obtained through acid paste treatment (a process of dissolving it in concentrated sulfuric acid and pouring it into water to make it amorphous), and to convert it into crystals after pulverizing it again. That's a problem.
【0005】ウェットペーストのものをそのまま使用す
ることによってその問題は解決するが溶媒の臭気、毒性
、生産安定性など工業的にはいくつかの問題を含んでい
る。即ち、特開昭63−20365号に記載の芳香族系
溶媒(例えばオルトジクロルベンゼン)では換気の悪い
場所で大量使用すると神経毒を蒙る危険性がある。[0005] Although this problem can be solved by using the wet paste as it is, there are several industrial problems such as the odor of the solvent, toxicity, and production stability. That is, the aromatic solvents (for example, orthodichlorobenzene) described in JP-A No. 63-20365 may cause neurotoxicity if used in large quantities in a poorly ventilated place.
【0006】また特開平2−28265号に記載の方法
はウェットペーストをそのまま水に混和する溶媒である
THF(テトラヒドロフラン)で処理するもので、ウェ
ットペースト中の水量のばらつきが生産安定性への変動
要因となる可能性を持っている。さらに特願昭64−1
70355号の実施例にはハロゲン化アルキルが結晶変
換溶媒として使用できることが示されているが、微生物
分解性の低いハロゲン化アルキルの性質から環境上好ま
しくない。Furthermore, in the method described in JP-A-2-28265, the wet paste is treated with THF (tetrahydrofuran), which is a solvent that is miscible with water as it is, and variations in the amount of water in the wet paste cause fluctuations in production stability. It has the potential to be a factor. Furthermore, the special application 1986-1
Although the example of No. 70355 shows that alkyl halides can be used as a crystal conversion solvent, this is not environmentally preferable due to the nature of alkyl halides that are poorly degradable by microorganisms.
【0007】[0007]
【発明の目的】本発明の目的はブラッグ角2θ;9.5
°と27.2°に二つの主要ピークがある電子写真性能
の優れたチタニルフタロシアニン結晶を安定にかつ安全
に生産する手段を提供するものである。OBJECT OF THE INVENTION The object of the present invention is to obtain a Bragg angle of 2θ; 9.5.
The present invention provides a means for stably and safely producing titanyl phthalocyanine crystals having excellent electrophotographic performance and having two main peaks at 27.2° and 27.2°.
【0008】[0008]
【発明の構成および作用効果】本発明の製造方法はチタ
ニルフタロシアニンを硫酸に溶かしてアモルファス状態
にし、これを水の存在下、水に非混和性のケトン系溶媒
、アルコール系溶媒、エステル系溶媒、エーテル系溶媒
で処理して、Cu−Kα線に対するX線回折スペクトル
のブラッグ角2θ;9.5±0.2°、27.2±0.
2°に主要なピークをもつチタニルフタロシアニン結晶
の製造方法を与えるものである。DESCRIPTION OF THE INVENTION The production method of the present invention involves dissolving titanyl phthalocyanine in sulfuric acid to make it amorphous, and then dissolving the titanyl phthalocyanine in a water-immiscible ketone solvent, alcohol solvent, ester solvent, etc. in the presence of water. After treatment with an ether solvent, the Bragg angle 2θ of the X-ray diffraction spectrum for the Cu-Kα line was 9.5±0.2°, 27.2±0.
This invention provides a method for producing titanyl phthalocyanine crystals having a main peak at 2°.
【0009】尚本発明の態様においては、アシッドペー
スト処理するチタニルフタロシアニン塩素含有量は0.
2%以下が好ましく、また中間体として1,3−ジイミ
ノイソインドリンを経てえられるものが好ましい。In the embodiment of the present invention, the titanyl phthalocyanine chlorine content in the acid paste treatment is 0.
It is preferably 2% or less, and it is preferably obtained via 1,3-diiminoisoindoline as an intermediate.
【0010】チタニルフタロシアニンはつぎの一般式(
1)で現される。Titanyl phthalocyanine has the following general formula (
1).
【0011】[0011]
【化1】[Chemical formula 1]
【0012】式中R1〜R16は水素原子もしくは置換
基を表し、置換基としてはハロゲン原子、アルキル基、
アルコキシル基などを挙げることができる。In the formula, R1 to R16 represent a hydrogen atom or a substituent, and examples of the substituent include a halogen atom, an alkyl group,
Examples include alkoxyl groups.
【0013】X線回折スペクトルは『JDX−8200
』(日本電子社製)を用い以下の条件で測定した。[0013] The X-ray diffraction spectrum is determined by "JDX-8200
” (manufactured by JEOL Ltd.) under the following conditions.
【0014】
X線管球 Cu電圧
40.0
KV電流
100 mAスタート角度
6.0 d
eg.ストップ角度 35.0
deg.ステップ角度
0.02 deg.測定時間
0.50
sec.本発明に係るチタニルフタロシアニンは
ブラッグ角2θの9.5±0.2°と27.2±0.2
°に明瞭な二つのピークを示す。明瞭な二つのピークと
は、2θが6.0°から33.0°の領域において27
.2°と9.5°の中央付近でかつピークのない箇所で
ある17°のX線回折強度をベースラインにとり、27
.2°のピーク強度を基準にして9.5±0.2°のピ
ーク強度がその40〜150%の領域にあり、かつ他の
ピークの強度が9.5°のそれ以下であることを意味す
る。X-ray tube Cu voltage
40.0
KV current
100 mA starting angle 6.0 d
eg. Stop angle 35.0
deg. step angle
0.02 deg. Measurement time 0.50
sec. The titanyl phthalocyanine according to the present invention has a Bragg angle 2θ of 9.5±0.2° and 27.2±0.2°.
Two clear peaks are shown at °. The two clear peaks are 27 in the region of 2θ from 6.0° to 33.0°.
.. The X-ray diffraction intensity at 17°, which is near the center of 2° and 9.5° and has no peak, is taken as the baseline, and 27
.. It means that the peak intensity at 9.5 ± 0.2° is in the 40 to 150% region based on the peak intensity at 2°, and the intensity of other peaks is less than that at 9.5°. do.
【0015】本発明でいうアシッドペースト処理とはフ
タロシアニンをアモルファス化する手段の一つであり、
顔料を硫酸に溶かして水中に注ぐことによって無定型な
顔料にする手段である。[0015] The acid paste treatment referred to in the present invention is one of the means for making phthalocyanine amorphous.
This is a method of making amorphous pigments by dissolving them in sulfuric acid and pouring them into water.
【0016】アシッドペースト処理をする前のフタロシ
アニン(以後便宜上、これを粗チタニルフタロシアニン
と呼んでおく)を合成するには既知の様々な方法を使用
することができる。例えば四塩化チタンとフタロニトリ
ルを200℃近い高温で反応させて中間体のジクロロチ
タニウムフタロシアニンを得て、ついで、これを加水分
解して得る。あるいはジイミノイソインドリンとアルコ
キシチタニウムなどのチタンカップリング剤から直接得
ることもできる。これらの合成方法のうち、ジイミノイ
ソインドリンを経る方法は穏やかな条件で反応するため
か不純物が少ない。そのため、この方法で得られた粗チ
タニルフタロシアニンを原料にして、本発明の結晶変換
方法に従って得たチタニルフタロシアニン結晶は電子写
真感光体に使用した場合、優れた性能を発揮する。Various known methods can be used to synthesize the phthalocyanine (hereinafter referred to as crude titanyl phthalocyanine for convenience) prior to acid paste treatment. For example, titanium tetrachloride and phthalonitrile are reacted at a high temperature of around 200° C. to obtain an intermediate dichlorotitanium phthalocyanine, which is then hydrolyzed. Alternatively, it can also be obtained directly from a titanium coupling agent such as diiminoisoindoline and alkoxytitanium. Among these synthesis methods, the method using diiminoisoindoline has fewer impurities, probably because the reaction is conducted under mild conditions. Therefore, when the titanyl phthalocyanine crystal obtained according to the crystal conversion method of the present invention using the crude titanyl phthalocyanine obtained by this method as a raw material is used in an electrophotographic photoreceptor, it exhibits excellent performance.
【0017】本発明では、この粗チタニルフタロシアニ
ンを硫酸に溶かし水に空けてアモルファス化したのち、
これを水の存在下、有機溶媒と混合することによって特
定の結晶のチタニルフタロシアニンを得る。In the present invention, the crude titanyl phthalocyanine is dissolved in sulfuric acid and poured into water to make it amorphous.
By mixing this with an organic solvent in the presence of water, a specific crystalline titanyl phthalocyanine is obtained.
【0018】これらの有機溶媒のうちケトン系溶媒とし
てはその炭素数4〜15の範囲であり、例えば メチ
ルエチルケトン(炭素数4)、3−ペンタノン(炭素数
5)、シクロペンタノン(炭素数5)、シクロヘキサノ
ン(炭素数6)、メチルイソブチルケトン(炭素数6)
、ジイソブチルケトン(炭素数9)などを挙げることが
できる。Among these organic solvents, ketone solvents have carbon atoms in the range of 4 to 15, such as methyl ethyl ketone (4 carbon atoms), 3-pentanone (5 carbon atoms), and cyclopentanone (5 carbon atoms). , cyclohexanone (6 carbon atoms), methyl isobutyl ketone (6 carbon atoms)
, diisobutyl ketone (9 carbon atoms), and the like.
【0019】アルコール系溶媒としては炭素数4〜15
のもので、中でも直鎖状のものがより好ましい。例えば
ブタノール(炭素数4)、アミルアルコール(炭素数5
)、ヘキサノール(炭素数6)、ペンタノール(炭素数
7)、ノニルアルコール(炭素数9)などを挙げること
ができる。[0019] The alcohol solvent has 4 to 15 carbon atoms.
Among them, linear ones are more preferable. For example, butanol (4 carbon atoms), amyl alcohol (5 carbon atoms)
), hexanol (6 carbon atoms), pentanol (7 carbon atoms), nonyl alcohol (9 carbon atoms), and the like.
【0020】エステル系溶媒としては炭素数3〜15の
ものであり、例えば酢酸エチル(炭素数4)、酢酸ブチ
ル(炭素数6)、酢酸イソブチル(炭素数6)、酢酸シ
クロヘキシル(炭素数8)、酢酸ヘキシル(炭素数8)
、プロピオン酸メチル(炭素数4)、アクリル酸ブチル
(炭素数7)などを挙げることができる。Ester solvents include those having 3 to 15 carbon atoms, such as ethyl acetate (4 carbon atoms), butyl acetate (6 carbon atoms), isobutyl acetate (6 carbon atoms), and cyclohexyl acetate (8 carbon atoms). , hexyl acetate (8 carbons)
, methyl propionate (4 carbon atoms), butyl acrylate (7 carbon atoms), and the like.
【0021】エーテル系溶媒としてはブチルエーテル(
炭素数8)、テトラヒドロピラン(炭素数5)、エチレ
ングリコールジブチルエーテル(炭素数10)などを挙
げることができる。As the ether solvent, butyl ether (
carbon number 8), tetrahydropyran (carbon number 5), ethylene glycol dibutyl ether (carbon number 10), and the like.
【0022】以上挙げた溶媒はいずれも水に対してはあ
る限度の溶解度をもち、任意の割合で混じるわけではな
い。従って、過剰の水は系外に弾きだされるため、アシ
ッドペースト処理をして得たアモルファス状態のペース
トの含水量の製造ばらつきによらず一定の割合の水/有
機溶媒/チタニルフタロシアニンからなる結晶変換の場
を提供することができる。[0022] All of the above-mentioned solvents have a certain limit of solubility in water, and cannot be mixed in arbitrary proportions. Therefore, since excess water is expelled from the system, the amorphous paste obtained by acid paste treatment becomes crystals consisting of water/organic solvent/titanyl phthalocyanine at a constant ratio regardless of manufacturing variations in water content. It can provide a platform for transformation.
【0023】溶媒の量はチタニルフタロシアニン固形分
に対して5倍容量以上、好ましくは5〜100倍容量が
望ましい。少ない場合は攪拌が十分にいかず均一な結晶
を得ることが難しい。また溶媒量が多い場合にはできた
結晶の性能は問題ないが製造コストが高くつく。The amount of the solvent is desirably 5 times or more, preferably 5 to 100 times the volume of the solid content of titanyl phthalocyanine. If the amount is too small, stirring will not be sufficient and it will be difficult to obtain uniform crystals. Furthermore, when the amount of solvent is large, the performance of the crystals produced is satisfactory, but the production cost is high.
【0024】また溶媒と水、アモルファスチタニルフタ
ロシアニンの添加はどのような順で混合しても良い。小
スケールで攪拌が充分行われるときはアモルファスチタ
ニルフタロシアニンのウェットペースト(水を多量に含
む場合はそのままでもよく、さらに水を加えてもよい)
に溶媒を加えると言った順で加えてもよい。また攪拌が
問題になる大量スケールの場合は溶媒を反応釜に入れて
おき、後からアモルファスチタニルフタロシアニンのウ
ェットペーストを少しづつ加えていく方法がある。The solvent, water, and amorphous titanyl phthalocyanine may be added in any order. When stirring is sufficient on a small scale, use a wet paste of amorphous titanyl phthalocyanine (if it contains a large amount of water, you can leave it as is or add more water)
The solvent may be added in the order in which the solvent is added. In addition, in the case of large-scale production where stirring is a problem, there is a method in which the solvent is placed in the reaction vessel and the wet paste of amorphous titanyl phthalocyanine is added little by little afterwards.
【0025】またポイントである水の存在をより確実に
するため、反応容器のなかに溶媒とともに水を加え、初
期の段階から水に飽和した有機溶媒にアモルファスチタ
ニルフタロシアニンを加えていくやりかたもある。In order to further ensure the presence of water, which is a key point, there is also a method in which water is added together with the solvent into the reaction vessel, and amorphous titanyl phthalocyanine is added to the organic solvent saturated with water from an early stage.
【0026】結晶変換を行う温度としては水が液体とし
て存在する範囲ならよく、0〜100℃好ましくは15
〜80℃を用いることができる。The temperature for crystal conversion may be within a range where water exists as a liquid, preferably 0 to 100°C, preferably 15°C.
~80°C can be used.
【0027】時間についてはとくに制限はないが充分に
均一状態で攪拌できることが好ましい。短時間では粒子
間の結晶成長の度合いがまちまちであり、電子写真性能
上好ましくない。[0027] There is no particular restriction on the time, but it is preferable that stirring can be done in a sufficiently uniform state. In a short time, the degree of crystal growth between particles varies, which is unfavorable in terms of electrophotographic performance.
【0028】本発明の合成法によって得られたチタニル
フタロシアニン結晶(X線回折スペクトルのブラッグ角
2θ;9.5±0.2°、27.2±0.2°に主要な
ピークをもつ)の用途としては染顔料の分野で種種のも
のが考えられる。特に、電子写真感光体、太陽電池など
の光電変換素子として使用するときに本発明に基いて合
成したチタニルフタロシアニンは他の合成方法では得ら
れなかった優れた特性を発揮する。[0028] The titanyl phthalocyanine crystal (X-ray diffraction spectrum has main peaks at Bragg angles 2θ; 9.5±0.2° and 27.2±0.2°) obtained by the synthesis method of the present invention. Various applications can be considered in the field of dyes and pigments. In particular, when used as photoelectric conversion elements such as electrophotographic photoreceptors and solar cells, the titanyl phthalocyanine synthesized according to the present invention exhibits excellent properties that cannot be obtained by other synthesis methods.
【0029】[0029]
【実施例】以下、実施例、応用例を記載するが、もとよ
り本発明はこれらに限定されるものでは無い。[Examples] Examples and application examples will be described below, but the present invention is not limited to these.
【0030】実施例1
(1) チタニルフタロシアニン−ウェットペースト品
の合成
1,3−ジイミノイソインドリン;29.2g をオル
トジクロルベンゼン200mlに分散し、チタニウムテ
トラブトキシド;20.4gを加えて窒素雰囲気下に1
50〜160℃で5時間加熱した。放冷後、析出した結
晶を濾過し、クロロホルムで洗浄、2%塩酸水溶液で洗
浄、水洗、メタノール洗浄して、乾燥の後26.2g(
91.0%)の粗チタニルフタロシアニンを得た。この
ものの結晶型を図1に示す。次いで、この粗チタニルフ
タロシアニン20.0gを5℃以下で濃硫酸200ml
中で1時間攪拌して溶し、これを20℃の水4lに注ぎ
込む。析出した結晶を濾過し、水で充分に洗ってウエッ
トペースト品180gを得た。このものの結晶型は図2
に示すごとく、ほぼアモルファス状態である。Example 1 (1) Synthesis of titanyl phthalocyanine wet paste product 29.2 g of 1,3-diiminoisoindoline was dispersed in 200 ml of orthodichlorobenzene, 20.4 g of titanium tetrabutoxide was added, and nitrogen was added. Under the atmosphere 1
It was heated at 50-160°C for 5 hours. After cooling, the precipitated crystals were filtered, washed with chloroform, washed with 2% aqueous hydrochloric acid, washed with water, washed with methanol, and dried to yield 26.2 g (
91.0%) of crude titanyl phthalocyanine was obtained. The crystal form of this product is shown in FIG. Next, 20.0 g of this crude titanyl phthalocyanine was added to 200 ml of concentrated sulfuric acid at 5°C or below.
Stir for 1 hour to dissolve, and pour into 4 liters of water at 20°C. The precipitated crystals were filtered and thoroughly washed with water to obtain 180 g of a wet paste product. The crystal form of this substance is shown in Figure 2.
As shown, it is in an almost amorphous state.
【0031】(2) 本発明のチタニルフタロシアニン
結晶の作成
ビーカにメチルエチルケトン60mlと水20ml、前
述のチタニルフタロシアニン−ウエットペースト品40
g(固形分11%)を加え、室温にて8時間攪拌、一夜
放置した。この粘稠な混合物にメタノールを500ml
加えて結晶を析出させる。濾過し、メタノールで洗浄
し、乾燥して目的とするチタニルフタロシアニン結晶
4.2gを得た。このものの結晶型を図3に示す。ブラ
ッグ角2θ;9.5°と27.2°に著しく発達したピ
ークがあるのが特徴である。(2) Creation of titanyl phthalocyanine crystals of the present invention In a beaker, 60 ml of methyl ethyl ketone and 20 ml of water were added, and the above-mentioned titanyl phthalocyanine wet paste product 40 was placed in a beaker.
g (solid content: 11%), stirred at room temperature for 8 hours, and left overnight. Add 500ml of methanol to this viscous mixture.
In addition, crystals are precipitated. Filter, wash with methanol, and dry to obtain the desired titanyl phthalocyanine crystals.
4.2g was obtained. The crystal form of this product is shown in FIG. It is characterized by significantly developed peaks at Bragg angles 2θ; 9.5° and 27.2°.
【0032】実施例2
ビーカに3−ペンタノン60mlと水20ml、前述の
チタニルフタロシアニン−ウエットペースト品40g(
固形分11%)を加え、室温にて8時間攪拌、一夜放置
した。この粘稠な混合物にイソプロパノールを300m
l加えて結晶を析出させる。濾過し、メタノールで洗浄
し、乾燥して目的とするチタニルフタロシアニン結晶4
.0gを得た。このものの結晶型を図4に示す。ブラッ
グ角2θ;9.5°と27.2°に著しく発達したピー
クがあるのが特徴である。Example 2 In a beaker, 60 ml of 3-pentanone, 20 ml of water, and 40 g of the aforementioned titanyl phthalocyanine wet paste product (
Solid content: 11%) was added, stirred at room temperature for 8 hours, and left overnight. Add 300ml of isopropanol to this viscous mixture.
1 to precipitate crystals. Filter, wash with methanol, and dry to obtain the desired titanyl phthalocyanine crystal 4.
.. Obtained 0g. The crystal form of this product is shown in FIG. It is characterized by significantly developed peaks at Bragg angles 2θ; 9.5° and 27.2°.
【0033】実施例3〜25
以下同様に結晶変換の溶媒(実施例2の3−ペンタノン
にあたる)を次々に変えてブラッグ角2θ;9.5°と
27.2°に著しく発達したピークがある結晶型のチタ
ニルフタロシアニンを合成した。Examples 3 to 25 In the same manner, the solvent for crystal transformation (corresponding to 3-pentanone in Example 2) was changed one after another, and there were significantly developed peaks at Bragg angle 2θ; 9.5° and 27.2°. Crystalline titanyl phthalocyanine was synthesized.
【0034】
実施例 溶媒名
X線回折
図 3 メチルイソブチルケトン
図5 4
シクロペンタノン
図6 5
シクロヘキサノン
図7 6
ジイソブチルケトン
図8 7 ジイ
ソプロピルケトン
図9 8 ブタノール
図10 9 アミルアルコ
ール
図11 10 ヘキサノール
図12 11 ヘプタノール
図13 12 ノニルアル
コール
図14 13 酢酸エチル
図15 14 酢酸プロ
ピル
図16 15 酢酸ブ
チル
図17 16 ア
クリル酸ブチル
図18 17 プロ
ピオン酸メチル
図19 18 酢酸シク
ロヘキシル
図20 19 酢酸ヘキシル
図21 20 酢酸イソブ
チル
図22 21 ブチルエー
テル
図23 22 テトラヒド
ロピラン
図24 23 エチレングリコ
ールジブチルエーテル 図25
応用例1〜5
実施例1において得られた図3のX線回折パターンを有
するチタニルフタロシアニン結晶;1部、バインダ樹脂
としてシリコーン変成樹脂『KR−5240 』(信越
化学社);1部、分散媒として酢酸t−ブチル;100
部をサンドミルを用いて分散した。これをアルミニウム
を蒸着したポリエステルベース上にワイヤバーを用いて
塗布し、膜厚0.2μmのキャリヤ発生層とした。つい
で下記構造式(1)で示すスチリル−トリフェニルアミ
ン系化合物;1部とポリカーボネート樹脂『ユーピロン
Z200』(三菱瓦斯化学社製);1.5部、および微
量のシリコーンオイル『KF54』(信越化学社製)を
1,2−ジクロルエタン;10部に溶し、この溶液を上
記のキャリヤ発生層の上にブレード塗布機を用いて塗布
して、乾燥後の膜厚20μmのキャリヤ輸送層とした。
こうして得た感光体をサンプル1とする。Example Solvent name
X-ray diffraction diagram 3 Methyl isobutyl ketone Figure 5 4
cyclopentanone
Figure 6 5
cyclohexanone
Figure 7 6
diisobutyl ketone
Figure 8 7 Diisopropyl ketone
Figure 9 8 Butanol
Figure 10 9 Amyl alcohol
Figure 11 10 Hexanol
Figure 12 11 Heptanol
Figure 13 12 Nonyl alcohol
Figure 14 13 Ethyl acetate
Figure 15 14 Propyl acetate
Figure 16 15 Butyl acetate
Figure 17 16 Butyl acrylate
Figure 18 17 Methyl propionate
Figure 19 18 Cyclohexyl acetate
Figure 20 19 Hexyl acetate
Figure 21 20 Isobutyl acetate
Figure 22 21 Butyl ether
Figure 23 22 Tetrahydropyran
Figure 24 23 Ethylene glycol dibutyl ether Figure 25 Application examples 1 to 5 Titanyl phthalocyanine crystals having the X-ray diffraction pattern shown in Figure 3 obtained in Example 1; 1 part, silicone modified resin "KR-5240" (Shin-Etsu) as binder resin; Kagakusha); 1 part, t-butyl acetate as dispersion medium; 100
The mixture was dispersed using a sand mill. This was applied onto a polyester base coated with aluminum using a wire bar to form a carrier generation layer having a thickness of 0.2 μm. Next, 1 part of a styryl-triphenylamine compound represented by the following structural formula (1), 1.5 parts of polycarbonate resin "Iupilon Z200" (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and a trace amount of silicone oil "KF54" (manufactured by Shin-Etsu Chemical Co., Ltd.) 1,2-dichloroethane) was dissolved in 10 parts of 1,2-dichloroethane, and this solution was applied onto the carrier generation layer using a blade coater to form a carrier transport layer having a thickness of 20 μm after drying. The photoreceptor thus obtained is referred to as sample 1.
【0035】[0035]
【化2】[Case 2]
【0036】同様にして実施例2〜5に記した図4〜7
のX線回折パターンを有するチタニルフタロシアニン結
晶をもちいてサンプル2〜5を作った。4 to 7 similarly described in Examples 2 to 5
Samples 2 to 5 were made using titanyl phthalocyanine crystals having an X-ray diffraction pattern of .
【0037】以上のようにして得られたサンプルは、ペ
ーパアナライザEPA−8100(川口電気社製)を用
いて、以下のような評価を行った。The samples obtained as described above were evaluated as follows using a paper analyzer EPA-8100 (manufactured by Kawaguchi Electric Co., Ltd.).
【0038】まず、−80μAの条件で5秒間のコロナ
帯電を行い、帯電直後の表面電位Vaおよび5秒間放置
後の表面電位Viをもとめ、続いて表面照度が2(lu
x)となるような露光を行い、表面電位を1/2Viと
するのに必要な露光量E1/2 を求めた。First, corona charging was performed for 5 seconds under the condition of -80 μA, and the surface potential Va immediately after charging and the surface potential Vi after being left for 5 seconds were determined.
x), and the exposure amount E1/2 required to set the surface potential to 1/2Vi was determined.
【0039】またD=100(Va−Vi)/Va(%
)の式より暗減衰率Dを求めた。結果を表1に示す。暗
減衰率が低く、かつ感度も良いことが判る。[0039] Also, D=100(Va-Vi)/Va(%
) The dark decay rate D was determined from the equation. The results are shown in Table 1. It can be seen that the dark decay rate is low and the sensitivity is also good.
【0040】[0040]
【表1】[Table 1]
【0041】応用例8〜10
実施例8において得られた図10のX線回折パターンを
有するチタニルフタロシアニン結晶;1部、バインダ樹
脂としてブチラール樹脂『エスレックBL−1』(積水
化学)1部、分散媒として酢酸t−ブチル;100部を
サンドミルを用いて分散した。これを下引き層としてポ
リアミド樹脂『CM−8000』(東レ)を施した、ア
ルミニウムを蒸着したポリエステルベース上にワイヤバ
ーを用いて塗布し、膜厚0.2μmのキャリヤ発生層と
した。ついで下記構造式(1)で示すスチリル−トリフ
ェニルアミン系化合物;1部とポリカーボネート樹脂『
ユーピロンZ200』(三菱瓦斯化学社製);1.5部
、および微量のシリコーンオイル『KF54』(信越化
学社製)を1,2−ジクロルエタン;10部に溶し、こ
の溶液を上記のキャリヤ発生層の上にブレード塗布機を
用いて塗布して、乾燥後の膜厚20μmのキャリヤ輸送
層とした。こうして得た感光体をサンプル8とする。Application Examples 8 to 10 Titanyl phthalocyanine crystal having the X-ray diffraction pattern shown in FIG. 10 obtained in Example 8: 1 part, butyral resin "S-LEC BL-1" (Sekisui Chemical) 1 part as a binder resin, dispersion As a medium, 100 parts of t-butyl acetate was dispersed using a sand mill. This was applied as an undercoat layer onto a polyester base coated with polyamide resin "CM-8000" (Toray) and deposited with aluminum using a wire bar to form a carrier generation layer with a thickness of 0.2 μm. Next, 1 part of a styryl-triphenylamine compound represented by the following structural formula (1) and a polycarbonate resin ``
1.5 parts of ``Iupilon Z200'' (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and a trace amount of silicone oil ``KF54'' (manufactured by Shin-Etsu Chemical Co., Ltd.) were dissolved in 10 parts of 1,2-dichloroethane, and this solution was used to generate the above carrier. The layer was coated using a blade coater to obtain a carrier transport layer having a thickness of 20 μm after drying. The photoreceptor thus obtained is designated as sample 8.
【0042】同様にして実施例9、10に記した図11
〜12のX線回折パターンを有するチタニルフタロシア
ニン結晶をもちいてサンプル9、10を作った。FIG. 11 similarly described in Examples 9 and 10
Samples 9 and 10 were made using titanyl phthalocyanine crystals having X-ray diffraction patterns of ~12.
【0043】以上のようにして得られたサンプルは、ペ
ーパアナライザーEPA−8100(川口電気社製)を
用いて、以下のような評価を行った。The samples obtained as described above were evaluated as follows using Paper Analyzer EPA-8100 (manufactured by Kawaguchi Electric Co., Ltd.).
【0044】まず、−80μAの条件で5秒間のコロナ
帯電を行い、帯電直後の表面電位Vaおよび5秒間放置
後の表面電位Viをもとめ、続いて表面照度が2(lu
x)となるような露光を行い、表面電位を1/2Viと
するのに必要な露光量E1/2を求めた。First, corona charging was carried out for 5 seconds under the condition of -80 μA, and the surface potential Va immediately after charging and the surface potential Vi after being left for 5 seconds were determined.
x), and the exposure amount E1/2 required to set the surface potential to 1/2Vi was determined.
【0045】またD=100(Va−Vi)/Va(%
)の式より暗減衰率Dを求めた。結果を表2に示す。暗
減衰率が低く、かつ感度も良いことが判る。[0045] Also, D=100(Va-Vi)/Va(%
) The dark decay rate D was determined from the equation. The results are shown in Table 2. It can be seen that the dark decay rate is low and the sensitivity is also good.
【0046】[0046]
【表2】[Table 2]
【0047】応用例13〜17
実施例13において得られた図15のX線回折パターン
を有するチタニルフタロシアニン結晶;2部、バインダ
樹脂としてブチラール樹脂『エスレックBL−1』(積
水化学)1部、分散媒として酢酸t−ブチル;100部
をサンドミルを用いて分散した。これを下引き層として
ポリアミド樹脂『CM−8000(東レ)を施した、ア
ルミニウムを蒸着したポリエステルベース上にワイヤバ
ーを用いて塗布し、膜厚0.2μmのキャリヤ発生層と
した。ついで下記構造式(2)で示すスチリル−トリフ
ェニルアミン系化合物;1部とポリカーボネート樹脂『
ユーピロンZ200』(三菱瓦斯化学社製);1.5部
、および微量のシリコーンオイル『KF54』(信越化
学社製)を1,2−ジクロルエタン;10部に溶し、こ
の溶液を上記のキャリヤ発生層の上にブレード塗布機を
用いて塗布して、乾燥後の膜厚20μmのキャリヤ輸送
層とした。こうして得た感光体をサンプル13とする。Application Examples 13 to 17 Titanyl phthalocyanine crystal having the X-ray diffraction pattern shown in FIG. 15 obtained in Example 13; 2 parts, butyral resin "S-LEC BL-1" (Sekisui Chemical) 1 part as a binder resin, dispersion As a medium, 100 parts of t-butyl acetate was dispersed using a sand mill. This was applied as an undercoat layer onto a polyester base coated with polyamide resin CM-8000 (Toray) and deposited with aluminum using a wire bar to form a carrier generation layer with a thickness of 0.2 μm. Next, 1 part of a styryl-triphenylamine compound represented by the following structural formula (2) and a polycarbonate resin ``
1.5 parts of ``Iupilon Z200'' (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and a trace amount of silicone oil ``KF54'' (manufactured by Shin-Etsu Chemical Co., Ltd.) were dissolved in 10 parts of 1,2-dichloroethane, and this solution was used to generate the above carrier. The layer was coated using a blade coater to obtain a carrier transport layer having a thickness of 20 μm after drying. The photoreceptor thus obtained is referred to as sample 13.
【0048】[0048]
【化3】[Chemical formula 3]
【0049】同様にして実施例14〜17に記した図1
6〜19図のX線回折パターンを有するチタニルフタロ
シアニン結晶をもちいてサンプル14〜17を作った。FIG. 1 similarly described in Examples 14 to 17
Samples 14 to 17 were made using titanyl phthalocyanine crystals having the X-ray diffraction patterns shown in Figures 6 to 19.
【0050】以上のようにして得られたサンプルは、ペ
ーパアナライザEPA−8100(川口電気社製)を用
いて、以下のような評価を行った。The samples obtained as described above were evaluated as follows using a paper analyzer EPA-8100 (manufactured by Kawaguchi Electric Co., Ltd.).
【0051】まず、−80μAの条件で5秒間のコロナ
帯電を行い、帯電直後の表面電位Vaおよび5秒間放置
後の表面電位Viを求め、続いて表面照度が2(lux
)となるような露光を行い、表面電位を−600Vから
−100Vに落とすに必要な露光量E600/100を
求めた。またD=100(Va−Vi)/Va(%)の
式より暗減衰率Dを求めた。結果を表3に示す。暗減衰
率が低く、かつ感度も良いことが判る。First, corona charging was performed for 5 seconds under the condition of -80 μA, and the surface potential Va immediately after charging and the surface potential Vi after being left for 5 seconds were determined.
), and the exposure amount E600/100 required to lower the surface potential from -600V to -100V was determined. Further, the dark decay rate D was determined from the formula D=100(Va-Vi)/Va(%). The results are shown in Table 3. It can be seen that the dark decay rate is low and the sensitivity is also good.
【0052】[0052]
【表3】[Table 3]
【0053】応用例21〜22
実施例21において得られた図23のX線回折パターン
を有するチタニルフタロシアニン結晶;1部、バインダ
樹脂としてシリコーン変成樹脂『KR−5240』(信
越化学社);2部、分散媒として酢酸t−ブチル;10
0部をサンドミルを用いて分散した。これをアルミニウ
ムを蒸着したポリエステルベース上にワイヤバーを用い
て塗布し、膜厚0.2μmのキャリヤ発生層とした。つ
いで前記構造式(2)で示すスチリル−トリフェニルア
ミン系化合物;1部とポリカーボネート樹脂『ユーピロ
ンZ200』(三菱瓦斯化学社製);1.5部、および
微量のシリコーンオイル『KF54』(信越化学社製)
を1,2−ジクロルエタン;10部に溶かし、この溶液
を上記のキャリヤ発生層の上にブレード塗布機を用いて
塗布して、乾燥後の膜厚20μmのキャリヤ輸送層とし
た。こうして得た感光体をサンプル21とする。同様に
して実施例22で得た図24のX線回折パターンを有す
るチタニルフタロシアニン結晶をもちいてサンプル22
を作った。Application Examples 21 to 22 Titanyl phthalocyanine crystal having the X-ray diffraction pattern shown in FIG. 23 obtained in Example 21; 1 part; silicone modified resin "KR-5240" (Shin-Etsu Chemical Co., Ltd.) as a binder resin; 2 parts , t-butyl acetate as dispersion medium; 10
0 parts were dispersed using a sand mill. This was applied onto a polyester base coated with aluminum using a wire bar to form a carrier generation layer having a thickness of 0.2 μm. Next, 1 part of the styryl-triphenylamine compound represented by the structural formula (2), 1.5 parts of polycarbonate resin "Iupilon Z200" (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and a trace amount of silicone oil "KF54" (manufactured by Shin-Etsu Chemical Co., Ltd.) company)
was dissolved in 10 parts of 1,2-dichloroethane, and this solution was applied onto the carrier generation layer using a blade coater to obtain a carrier transport layer having a thickness of 20 μm after drying. The photoreceptor thus obtained is designated as sample 21. Similarly, sample 22 was prepared using the titanyl phthalocyanine crystal having the X-ray diffraction pattern shown in FIG. 24 obtained in Example 22.
made.
【0054】以上のようにして得られたサンプルは、ペ
ーパアナライザEPA−8100(川口電気社製)を用
いて、以下のような評価を行った。The samples obtained as described above were evaluated as follows using a paper analyzer EPA-8100 (manufactured by Kawaguchi Electric Co., Ltd.).
【0055】まず、−80μAの条件で5秒間のコロナ
帯電を行い、帯電直後の表面電位Vaおよび5秒間放置
後の表面電位Viをもとめ、続いて表面照度が2(lu
x)となるような露光を行い、表面電位を−600Vか
ら−100Vに落とすに必要な露光量E600/100
を求めた。またD=100(Va−Vi)/Va(%)
の式より暗減衰率Dを求めた。First, corona charging was performed for 5 seconds under the condition of -80 μA, and the surface potential Va immediately after charging and the surface potential Vi after being left for 5 seconds were determined.
x) Exposure amount required to reduce the surface potential from -600V to -100V E600/100
I asked for Also, D=100(Va-Vi)/Va(%)
The dark decay rate D was determined from the equation.
【0056】結果を表4に示す。暗減衰率が低く、かつ
感度も良いことが判る。The results are shown in Table 4. It can be seen that the dark decay rate is low and the sensitivity is also good.
【0057】[0057]
【表4】[Table 4]
【0058】[0058]
【発明の効果】電子写真性能の良好な特定結晶構造、即
ちブラッグ角2θ;9.5°及び27.2°に主要ピー
クを有するチタニルフタロシアニン結晶を工業的に安定
かつ再現性よく生産することができる。Effects of the Invention: It is possible to industrially produce titanyl phthalocyanine crystals having a specific crystal structure with good electrophotographic performance, that is, main peaks at Bragg angles 2θ of 9.5° and 27.2°, in a stable manner and with good reproducibility. can.
以下に説明する図面は本発明に係る実施例並びに比較例
で合成されたチタニルフタロシアニン結晶のCu−Kα
線に対するX線回折スペクトルである。
図1;実施例1における粗チタニルフタロシアニン図2
;実施例1におけるウェットペーストチタニルフタロシ
アニン
図3;実施例1における最終仕上げチタニルフタロシア
ニン結晶(以下同様)
(図番) (実施例番号)
図4 2
図5 3
図6 4
図7 5
図8 6
図9 7
図10 8
図11 9
図12 10
図13 11
図14 12
図15 13
図16 14
図17 15
図18 16
図19 17
図20 18
図21 19
図22 20
図23 21
図24 22
図25 23The drawings explained below show Cu-Kα of titanyl phthalocyanine crystals synthesized in Examples and Comparative Examples according to the present invention.
It is an X-ray diffraction spectrum for rays. Figure 1; Crude titanyl phthalocyanine in Example 1 Figure 2
Wet paste titanyl phthalocyanine in Example 1 Figure 3; Final finished titanyl phthalocyanine crystal in Example 1 (same below) (Figure number) (Example number) Figure 4 2 Figure 5 3 Figure 6 4 Figure 7 5 Figure 8 6 Figure 9 7 Figure 10 8 Figure 11 9 Figure 12 10 Figure 13 11 Figure 14 12 Figure 15 13 Figure 16 14 Figure 17 15 Figure 18 16 Figure 19 17 Figure 20 18 Figure 21 19 Figure 22 20 Figure 23 21 Figure 24 22 Figure 25 23
Claims (6)
ルファスのチタニルフタロシアニンを乾燥させることな
く水の存在下、炭素数4〜15のケトン系溶媒で処理し
て結晶変換させる事を特徴とする、Cu−Kα線に対す
るX線回折スペクトルのブラッグ角2θ;9.5±0.
2°、27.2±0.2°に主要なピークをもつチタニ
ルフタロシアニン結晶の製造方法。Claim 1: A method for converting amorphous titanyl phthalocyanine obtained by acid paste treatment into crystals by treating it with a ketone solvent having 4 to 15 carbon atoms in the presence of water without drying it. - Bragg angle 2θ of X-ray diffraction spectrum for Kα ray; 9.5±0.
A method for producing titanyl phthalocyanine crystals having main peaks at 2° and 27.2±0.2°.
ルファスのチタニルフタロシアニンを乾燥させることな
く水の存在下、炭素数4〜15のアルコール系溶媒で処
理して結晶変換させる事を特徴とする、Cu−Kα線に
対するX線回折スペクトルのブラッグ角2θ;9.5±
0.2°、27.2±0.2°に主要なピークをもつチ
タニルフタロシアニン結晶の製造方法。2. Cu, characterized in that amorphous titanyl phthalocyanine obtained by acid paste treatment is treated with an alcoholic solvent having 4 to 15 carbon atoms in the presence of water to convert it into crystals without drying it. - Bragg angle 2θ of X-ray diffraction spectrum for Kα ray; 9.5±
A method for producing titanyl phthalocyanine crystals having main peaks at 0.2° and 27.2±0.2°.
ルファスのチタニルフタロシアニンを乾燥させることな
く水の存在下、炭素数3〜15のエステル系溶媒で処理
して結晶変換させる事を特徴とする、Cu−Kα線に対
するX線回折スペクトルのブラッグ角2θ;9.5±0
.2°、27.2±0.2°に主要なピークをもつチタ
ニルフタロシアニン結晶の製造方法。3. Cu, characterized in that amorphous titanyl phthalocyanine obtained by acid paste treatment is treated with an ester solvent having 3 to 15 carbon atoms in the presence of water without drying to convert it into crystals. -Bragg angle 2θ of X-ray diffraction spectrum for Kα ray; 9.5±0
.. A method for producing titanyl phthalocyanine crystals having main peaks at 2° and 27.2±0.2°.
ルファスのチタニルフタロシアニンを乾燥させることな
く水の存在下、炭素数4〜15のエーテル系溶媒で処理
して結晶変換させる事を特徴とする、Cu−Kα線に対
するX線回折スペクトルのブラッグ角2θ;9.5±0
.2°、27.2±0.2°に主要なピークをもつチタ
ニルフタロシアニン結晶の製造方法。4. Cu, characterized in that amorphous titanyl phthalocyanine obtained by acid paste treatment is treated with an ether solvent having 4 to 15 carbon atoms in the presence of water without drying to convert it into crystals. -Bragg angle 2θ of X-ray diffraction spectrum for Kα ray; 9.5±0
.. A method for producing titanyl phthalocyanine crystals having main peaks at 2° and 27.2±0.2°.
フタロシアニンが塩素含有量0.2%以下のものである
事を特徴とする請求項1〜4のいづれかに記載のチタニ
ルフタロシアニン結晶の製造方法。5. The method for producing titanyl phthalocyanine crystals according to claim 1, wherein the titanyl phthalocyanine subjected to acid paste treatment has a chlorine content of 0.2% or less.
て1,3−ジイミノイソインドリンを経て得られる事を
特徴とする請求項1〜5のいづれかに記載のCu−Kα
線に対するX線回折スペクトルのブラッグ角2θ;9.
5±0.2°、27.2±0.2°に主要なピークをも
つチタニルフタロシアニン結晶の製造方法。6. The Cu-Kα according to claim 1, wherein the titanyl phthalocyanine is obtained via 1,3-diiminoisoindoline as an intermediate.
Bragg angle 2θ of the X-ray diffraction spectrum with respect to the line; 9.
A method for producing titanyl phthalocyanine crystals having main peaks at 5±0.2° and 27.2±0.2°.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40683190A JP2873627B2 (en) | 1990-12-26 | 1990-12-26 | Method for producing titanyl phthalocyanine crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40683190A JP2873627B2 (en) | 1990-12-26 | 1990-12-26 | Method for producing titanyl phthalocyanine crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04224872A true JPH04224872A (en) | 1992-08-14 |
JP2873627B2 JP2873627B2 (en) | 1999-03-24 |
Family
ID=18516453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP40683190A Expired - Lifetime JP2873627B2 (en) | 1990-12-26 | 1990-12-26 | Method for producing titanyl phthalocyanine crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2873627B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0810267A3 (en) * | 1996-05-29 | 1998-12-30 | Nec Corporation | Oxytitanium phthalocyanine crystal |
KR100513952B1 (en) * | 1996-10-09 | 2005-12-21 | 후지 덴키 홀딩스 가부시키가이샤 | Charge generation agent, electrophotographic photoconductor and method of manufacturing the electrophotographic photoconductor |
JP2007212510A (en) * | 2006-02-07 | 2007-08-23 | Mitsubishi Chemicals Corp | Electrophotographic photosensitive member, image forming method and image forming device |
JP2008297560A (en) * | 2000-10-05 | 2008-12-11 | Ricoh Co Ltd | Process for production of toner for development of electrostatic charge image, toner, image forming device and container |
JP2009108199A (en) * | 2007-10-30 | 2009-05-21 | Fujifilm Corp | Aqueous dispersion, recording liquid using it, image-forming method and image-forming apparatus, as well as manufacturing method of aqueous dispersion, and ink obtained thereby for use in inkjet |
US8846282B2 (en) | 2006-03-20 | 2014-09-30 | Mitsubishi Chemical Corporation | Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same |
-
1990
- 1990-12-26 JP JP40683190A patent/JP2873627B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0810267A3 (en) * | 1996-05-29 | 1998-12-30 | Nec Corporation | Oxytitanium phthalocyanine crystal |
KR100513952B1 (en) * | 1996-10-09 | 2005-12-21 | 후지 덴키 홀딩스 가부시키가이샤 | Charge generation agent, electrophotographic photoconductor and method of manufacturing the electrophotographic photoconductor |
JP2008297560A (en) * | 2000-10-05 | 2008-12-11 | Ricoh Co Ltd | Process for production of toner for development of electrostatic charge image, toner, image forming device and container |
JP2007212510A (en) * | 2006-02-07 | 2007-08-23 | Mitsubishi Chemicals Corp | Electrophotographic photosensitive member, image forming method and image forming device |
US8846282B2 (en) | 2006-03-20 | 2014-09-30 | Mitsubishi Chemical Corporation | Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same |
US9296899B2 (en) | 2006-03-20 | 2016-03-29 | Mitsubishi Chemical Corporation | Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same |
US9835961B2 (en) | 2006-03-20 | 2017-12-05 | Mitsubishi Chemical Corporation | Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same |
US10095135B2 (en) | 2006-03-20 | 2018-10-09 | Mitsubishi Chemical Corporation | Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same |
JP2009108199A (en) * | 2007-10-30 | 2009-05-21 | Fujifilm Corp | Aqueous dispersion, recording liquid using it, image-forming method and image-forming apparatus, as well as manufacturing method of aqueous dispersion, and ink obtained thereby for use in inkjet |
US8299130B2 (en) | 2007-10-30 | 2012-10-30 | Fujifilm Corporation | Aqueous dispersion; recording liquid, image-forming method, and image-forming apparatus, using the same; and production method of the aqueous dispersion, and inkjet ink obtained from the method |
Also Published As
Publication number | Publication date |
---|---|
JP2873627B2 (en) | 1999-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69128497T2 (en) | Titanium phthalocyanines and process variants for their production | |
US5834149A (en) | Hydroxygallium phthalocyanine crystals and electrophotographic photoreceptors using same | |
JP2657836B2 (en) | Electrophotographic photoreceptor | |
JPH0629976B2 (en) | Single layer type electrophotographic photoreceptor | |
JP2006144016A (en) | Method for preparing type v titanyl phthalocyanine and photographic image-forming member | |
US5290928A (en) | Process for preparing oxytitanium phthalocyanine hydrate crystal | |
JP3060199B2 (en) | Method for producing hydroxygallium phthalocyanine crystal | |
US5164493A (en) | Processes for the preparation of titanyl phthalocyanines type I with phthalonitrile | |
JP2814872B2 (en) | Hydroxygallium phthalocyanine crystal, method for producing the same, and electrophotographic photoreceptor using the same | |
JP3227094B2 (en) | Μ-oxo-gallium phthalocyanine dimer having novel crystal modification and electrophotographic photoreceptor using the same | |
JP2765397B2 (en) | Method for producing hydroxygallium phthalocyanine | |
JPH04224872A (en) | Preparation of titanylphthalocyanine crystal | |
US5463044A (en) | Process for preparing chlorogallium phthalocyanine crystal | |
DE69526465T2 (en) | Metal-free phthalocyanine, its manufacturing process and electrophotographic photoconductor containing it | |
JP2907121B2 (en) | Oxytitanium phthalocyanine crystal, method for producing the same, and electrophotographic photoreceptor using the same | |
JP4159125B2 (en) | Method for producing x-type metal-free phthalocyanine | |
JP2847827B2 (en) | Electrophotographic photoreceptor | |
JP3141157B2 (en) | Method for producing titanyl phthalocyanine by crystal transformation | |
JP3560076B2 (en) | Phthalocyanine composition and electrophotographic photoreceptor | |
JP2932932B2 (en) | Method for producing gallium phthalocyanine compound | |
JP2973055B2 (en) | Titanyl phthalocyanine crystal dispersion | |
JP3072778B2 (en) | Method for producing oxytitanium phthalocyanine crystal | |
DE10058212B4 (en) | Electrophotographic photoconductor and process for its preparation | |
JP3036352B2 (en) | Electrophotographic photoreceptor | |
JPH0335064A (en) | Production of titanyl phthalocyanine by crystallization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 12 |