JPH04224629A - Manufacture of low core loss grain-oriented silicon steel sheet - Google Patents
Manufacture of low core loss grain-oriented silicon steel sheetInfo
- Publication number
- JPH04224629A JPH04224629A JP41800790A JP41800790A JPH04224629A JP H04224629 A JPH04224629 A JP H04224629A JP 41800790 A JP41800790 A JP 41800790A JP 41800790 A JP41800790 A JP 41800790A JP H04224629 A JPH04224629 A JP H04224629A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- silicon steel
- oriented silicon
- grain
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、特にEB照射法によ
る磁区細分化によって低鉄損を達成する一方向性けい素
鋼板の製造方法に関するものである。
【0002】
【従来の技術】一方向性けい素鋼板は、製品の2次再結
晶粒をゴス方位に高度に集積させると共に、その表面に
フォルステライト質被膜、さらにはその上に熱膨張係数
の小さい絶縁被膜を被成したもので、厳格な制御を必要
とする複雑、多岐にわたる工程を得て製造される。この
ような一方向性けい素鋼板は、主として変圧器、その他
の電気機器の鉄心として使用されていて、磁気特性とし
て製品の磁束密度(B8 値で代表される)が高く、鉄
損(W17/50 値で代表される)が低いこと、さら
には表面性状が良好な絶縁被膜をそなえることが要求さ
れている。とくにエネルギー危機を境にして電力損失の
低減を至上とする要請が殊のほか強まり、変圧器用鉄心
材料として鉄損のより低い一方向性けい素鋼板の必要性
はますます重要なものとなってきている。
【0003】さて一方向性けい素鋼板の鉄損改善の歴史
は、ゴス方位2次再結晶集合組織の改善の歴史であると
いっても過言ではなく、このような2次再結晶粒を制御
する方法として、AlN, MnSおよびMnSe等の
1次再結晶粒成長制御剤、いわゆるインヒビターを用い
てゴス方位2次再結晶粒を優先成長させる方法が実施さ
れていた。また最近に至ってはこのような2次再結晶集
合組織を制御することの他、鋼板表面にレーザー照射{
市山 正:鉄と鋼,69(1983), P.895
、特公昭57−2252号、同57−53419号、
同58−24605号及び同58−24606号各公報
参照}あるいはプラズマ照射{特開昭62−96617
号、同62−151511号、同62−152516号
及び同62−151517号各公報参照}により局部微
小ひずみを導入して磁区を細分化し、もって鉄損を低下
させる画期的な方法が提案されている。しかしながら、
これらの方法に従って製造した鋼板は、高温域まで加熱
すると微小ひずみが消失するため、高温でのひずみ取り
焼鈍を施す必要がある巻鉄心トランス用の材料としては
使用できないという欠点があった。
【0004】このような高温ひずみ取り焼鈍を施しても
鉄損が劣化しない方法としては、仕上げ焼鈍板の表面に
溝もしくはセレーションを形成する方法(特公昭50−
35679号、特開昭59−28525号及び同59−
197520号各公報参照)とか、仕上げ焼鈍板の表面
に微細結晶粒領域を形成する方法(特開昭56−130
454号公報参照)、フォルステライト質被膜に異厚あ
るいは欠損領域を形成する方法(特開昭60−9247
9号、同60−92480号、同60−92481号及
び同60−258479号各公報参照)、地鉄中、フォ
ルステライト質被膜中又は張力絶縁被膜中に異組成領域
を形成する方法(特開昭60−103124号及び同6
0−103182号各公報参照)等が知られている。し
かしながらこれらの方法は何れも工程が複雑になるわり
には鉄損の低減効果が小さく、また製造コストが高いこ
ともあって、工業的に採用されるまでには至っていない
のが現状である。
【0005】ところで発明者らは先に、上記の公知発明
とは異なり、一方向性けい素鋼板の絶縁被膜上に圧延方
向に直角方向にエレクトロンビーム(EB)を照射する
ことにより、積鉄心、巻鉄心の両方に使用可能な低鉄損
一方向性けい素鋼板が製造できることを開示した(例え
ば特開昭63−186826号公報参照)。しかし、巻
鉄心トランス用の材料としては、より一層の特性向上が
望まれていた。
【0006】
【発明が解決しようとする課題】この発明は、上記の要
請に有利に応えるもので、EB法により、積鉄心として
はもとより、巻鉄心としても有利に適合する鉄損特性の
優れた一方向性けい素鋼板の新規な製造方法を提案する
ことを目的とする。
【0007】
【課題を解決するための手段】この発明において、磁区
細分化を行なって低鉄損一方向性けい素鋼板を製造する
手段としてEB法を使用する理由は、EB法は高真空を
利用しなければならないという大きなハンディをそなえ
ているものの、一方で、■ビームを細く絞ることが可能
、■ビームの走査が容易、■ビームの侵入深さが深い、
■ビームのエネルギー効果が良いなど数々の利点をそな
えているからである。また最近のEB技術では、高電圧
・小電流のEBが開発され、絶縁被膜を有する一方向性
けい素鋼板についても高速度で連続的に極めて効率よい
照射が可能になってきたからである。
【0008】さて通常の一方向性けい素鋼板は、図1に
その断面を模式で示したとおり、ゴス方位2次再結晶粒
からなる地鉄1の上にフォルステライト被膜2、さらに
その上に絶縁被膜3がコーティングされている。この絶
縁被膜3は、コーティング、焼付処理の状態では通常ア
モルファスである。
【0009】次に図2に、EB照射による磁区細分化技
術を適用したときの鋼板断面を模式図で示す。同図に示
したとおり、絶縁被膜3上にEB照射(圧延方向に直角
方向)を施し、局部的に微小歪を導入することによって
磁区を細分化し、もって低鉄損化を達成することができ
る。
【0010】ところで巻鉄心用材料では、歪取り焼鈍を
施しても磁区細分化効果が消失しないことが不可欠であ
る。そのためにはEBを強く照射して、鋼板の圧入領域
を深くする必要がある。しかしながらEBのパワー密度
を上げて強く照射すると、図3に示すように、EB照射
位置において鋼板が曲がってしまい、たとえ磁区細分化
が行われたとしても鋼板の凹凸のため占積率が悪く、巻
鉄心用製品として使用できなくなる。
【0011】この点、発明者らは、絶縁被膜を結晶化さ
せたのちにEB照射を行うと、その照射効果が加速され
て絶縁被膜に照射キズが効果的に導入され(フォルステ
ライト被膜から地鉄にまで至る)、その結果磁区細分化
が有効に行われ、しかもこの場合図3に示したようなE
B照射による鋼板4の凹凸は全く見られないことを新た
に見出した。
【0012】さらにかかるEB照射後、EB照射位置を
酸洗または電解エッチングし、その後さらにコーティン
グ処理を施せば、その磁気特性の改善効果は一層増強さ
れる。
【0013】この発明は、上記の知見に立脚するもので
ある。すなわちこの発明は、仕上げ焼鈍を経て表面にフ
ォルステライト被膜をそなえる方向性けい素鋼板の該フ
ォルステライト被膜上に、りん酸塩とコロイダルシリカ
を主成分とする絶縁被膜を被成したのち、該絶縁被膜の
結晶化焼鈍処理を施し、しかるのち鋼板の圧延方向を横
切る向きにEB照射を行って磁区を細分化することから
なる低鉄損一方向性けい素鋼板の製造方法である。
【0014】
【作用】さて絶縁被膜の結晶化は、 800℃以上の温
度で10〜300minの焼鈍を行うことによって達成
される。この焼鈍方法は従来公知の方法をそのまま適用
すれば良い。
なおこの結晶化の度合はX線回折によりMg2P2O7
のピークが検出されるようになると充分EB照射効果
が現れる。
このときのEB照射は積鉄心用と同程度でよいが、照射
のドット間隔を1.2 〜3倍程度に狭め(100〜2
00 μm)、また照射間隔をより細かく2〜10mm
程度とした方が一層効果的である。
【0015】
【実施例】素材成分(a) C:0.078 %,Si
:3.36%,Mn:0.078 %,Al:0.02
6 %,Se:0.020 %およびMo:0.013
%、
素材成分(b) C:0.044 %、Si:3.42
%、Mn:0.072 %、Se:0.018 %、S
b:0.025 %、Mo:0.015 %を含有する
熱延板を、約1000℃の中間焼鈍を挟んで2回の冷間
圧延を施して0.23mm厚の最終製品板とした。つい
で 840℃の湿水素中で脱炭・1次再結晶焼鈍を行っ
たのち、鋼板表面上にMgO を主成分とする焼鈍分離
剤を塗布し、(a)は 850℃から10℃/hで11
00℃まで昇温、 (b)は 850℃で50h の2
次再結晶焼鈍を施してゴス方位2次再結晶粒を発達させ
た後、1200℃の乾H2中で鈍化処理を行った。
【0016】その後、鋼板表面上にりん酸塩とコロイダ
ルシリカを主成分とする絶縁被膜を被成した。その後
800℃×2h の絶縁被膜の結晶化焼鈍を施し(A)
、または施さなかった(B) のち、次の条件でEB
照射を実施した。
・加速電圧:200 kV、電流:1.0 mA、ドッ
ト間隔:150 μm 、間隔:7mmのEB照射(片
面照射)。しかるのち 800℃, 2時間の歪取り焼
鈍を行った。
【0017】かくして得られた製品の磁気特性について
調べた結果を表1に示す。
【0018】
*3次元粗度計による凹凸測定○ 凹凸2μm 以下
△ 凹凸2〜10μm
【0019】
【発明の効果】かくしてこの発明によれば、鉄損特性に
優れ、しかもこの特性がひずみ取り焼鈍によっても劣化
することのない一方向性けい素鋼板を安定して製造する
ことができる。Description: [0001] The present invention relates to a method for producing grain-oriented silicon steel sheets, which achieves low core loss through magnetic domain refining, particularly by EB irradiation. [Prior Art] Unidirectional silicon steel sheets have secondary recrystallized grains of the product highly concentrated in the Goss orientation, a forsterite coating on the surface, and a thermal expansion coefficient on the surface. It is coated with a small insulating film and is manufactured through a complex and diverse process that requires strict control. These unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and their magnetic properties include high magnetic flux density (represented by the B8 value) and iron loss (W17/ 50) and an insulating film with good surface properties. Particularly in the wake of the energy crisis, the need to reduce power loss has become particularly strong, and the need for unidirectional silicon steel sheets with lower iron loss as core materials for transformers has become increasingly important. ing. Now, it is no exaggeration to say that the history of improving the iron loss of grain-oriented silicon steel sheets is the history of improving the Goss-oriented secondary recrystallized texture, and it is no exaggeration to say that the history of improving the iron loss of grain-oriented silicon steel sheets is the history of improving the Goss-oriented secondary recrystallized grains. As a method for this purpose, a method has been implemented in which primary recrystallized grain growth control agents such as AlN, MnS, and MnSe, so-called inhibitors are used to preferentially grow Goss-oriented secondary recrystallized grains. Recently, in addition to controlling the secondary recrystallization texture, laser irradiation on the steel plate surface has been developed.
Tadashi Ichiyama: Tetsu to Hagane, 69 (1983), P. 895
, Special Publication No. 57-2252, No. 57-53419,
58-24605 and 58-24606} or plasma irradiation {JP-A-62-96617
No. 62-151511, No. 62-152516, and No. 62-151517], an innovative method was proposed to introduce small local strains to subdivide magnetic domains and thereby reduce iron loss. ing. however,
Steel sheets manufactured according to these methods have the disadvantage that they cannot be used as materials for wound core transformers, which require high-temperature strain relief annealing, because minute strains disappear when heated to a high temperature range. [0004] As a method that does not cause deterioration of iron loss even when such high-temperature strain relief annealing is performed, there is a method of forming grooves or serrations on the surface of a finish annealed plate (Japanese Patent Publication No. 1973-
35679, JP-A No. 59-28525 and JP-A-59-28525
197520) or a method of forming a fine crystal grain region on the surface of a finish annealed plate (Japanese Patent Laid-Open No. 1975-130).
454), a method for forming a different thickness or defective region in a forsterite film (Japanese Patent Laid-Open No. 60-9247)
No. 9, No. 60-92480, No. 60-92481, and No. 60-258479), a method of forming a different composition region in a steel base, in a forsterite coating, or in a tension insulation coating (JP-A No. No. 60-103124 and No. 6
0-103182), etc. are known. However, all of these methods have complicated processes, have little effect on reducing iron loss, and have high manufacturing costs, so they have not yet been adopted industrially. However, unlike the above-mentioned known invention, the inventors have previously developed a laminated iron core by irradiating an electron beam (EB) on the insulation coating of a unidirectional silicon steel sheet in a direction perpendicular to the rolling direction. It has been disclosed that a low iron loss unidirectional silicon steel sheet that can be used for both wound cores can be manufactured (see, for example, Japanese Patent Laid-Open No. 186826/1983). However, as a material for wound core transformers, further improvements in properties have been desired. [0006] The present invention advantageously satisfies the above-mentioned requirements, and uses the EB method to create a steel core with excellent iron loss characteristics that is suitable not only for stacked cores but also for wound cores. The purpose of this study is to propose a new manufacturing method for unidirectional silicon steel sheets. [Means for Solving the Problems] In this invention, the reason why the EB method is used as a means of manufacturing a low core loss unidirectional silicon steel sheet by performing magnetic domain refining is that the EB method requires high vacuum. Although it has the major disadvantages of having to utilize it, on the other hand, it is possible to narrow down the beam, ■ it is easy to scan the beam, and ■ it has a deep beam penetration depth.
■This is because it has many advantages, including a good beam energy effect. Furthermore, in recent EB technology, high voltage and small current EB has been developed, and it has become possible to irradiate unidirectional silicon steel sheets with an insulating coating continuously and extremely efficiently at high speed. Now, as the cross section of a normal grain-oriented silicon steel sheet is schematically shown in FIG. An insulating film 3 is coated. This insulating film 3 is normally amorphous in the state of coating and baking treatment. Next, FIG. 2 is a schematic diagram showing a cross section of a steel plate when the magnetic domain refining technique using EB irradiation is applied. As shown in the figure, by applying EB irradiation (in a direction perpendicular to the rolling direction) on the insulating coating 3 and locally introducing minute strain, the magnetic domains can be subdivided, thereby achieving low iron loss. . For wound core materials, it is essential that the magnetic domain refining effect does not disappear even after strain relief annealing. For this purpose, it is necessary to apply strong EB irradiation to deepen the press-fit area of the steel plate. However, when the EB power density is increased and irradiated strongly, the steel plate is bent at the EB irradiation position, as shown in Figure 3, and even if magnetic domain refining is performed, the space factor is poor due to the unevenness of the steel plate. It can no longer be used as a product for rolled iron cores. In this regard, the inventors discovered that when EB irradiation is performed after crystallizing the insulating film, the irradiation effect is accelerated and irradiation scratches are effectively introduced into the insulating film (from the forsterite film to the ground). As a result, magnetic domain refinement is effectively carried out, and in this case, E as shown in Figure 3
It was newly discovered that no unevenness was observed on the steel plate 4 due to B irradiation. Furthermore, after such EB irradiation, if the EB irradiation position is pickled or electrolytically etched and then further coated, the effect of improving the magnetic properties will be further enhanced. The present invention is based on the above findings. In other words, the present invention provides an insulating film that is mainly composed of phosphate and colloidal silica, after forming an insulating film mainly composed of phosphate and colloidal silica on the forsterite film of a grain-oriented silicon steel sheet that has been subjected to finish annealing to have a forsterite film on its surface. This is a method for producing a unidirectional silicon steel sheet with low core loss, which comprises performing a crystallization annealing treatment on the coating, and then performing EB irradiation in a direction transverse to the rolling direction of the steel sheet to subdivide the magnetic domains. [Operation] Crystallization of the insulating film is achieved by annealing at a temperature of 800° C. or higher for 10 to 300 minutes. For this annealing method, a conventionally known method may be applied as is. The degree of crystallization was determined by X-ray diffraction as Mg2P2O7.
When the peak of is detected, sufficient EB irradiation effect appears. The EB irradiation at this time may be the same as for stacked iron cores, but the irradiation dot spacing should be narrowed to about 1.2 to 3 times (100 to 2
00 μm), and finer irradiation intervals of 2 to 10 mm.
It is more effective if the amount is reduced. [Example] Material component (a) C: 0.078%, Si
:3.36%, Mn:0.078%, Al:0.02
6%, Se: 0.020% and Mo: 0.013
%, Material component (b) C: 0.044%, Si: 3.42
%, Mn: 0.072%, Se: 0.018%, S
A hot rolled sheet containing 0.025% b and 0.015% Mo was cold rolled twice with intermediate annealing at about 1000° C. in between to obtain a final product sheet with a thickness of 0.23 mm. After decarburization and primary recrystallization annealing in wet hydrogen at 840°C, an annealing separator containing MgO as a main component was applied to the surface of the steel plate, and (a) was annealed at 10°C/h from 850°C. 11
Temperature raised to 00℃, (b) 2 for 50h at 850℃
After performing secondary recrystallization annealing to develop Goss-oriented secondary recrystallized grains, annealing treatment was performed in dry H2 at 1200°C. [0016] Thereafter, an insulating film containing phosphate and colloidal silica as main components was formed on the surface of the steel plate. after that
Crystallization annealing of the insulating film at 800°C x 2h (A)
, or did not apply (B), then EB under the following conditions
Irradiation was performed. - EB irradiation (single-sided irradiation) with accelerating voltage: 200 kV, current: 1.0 mA, dot spacing: 150 μm, and spacing: 7 mm. After that, strain relief annealing was performed at 800°C for 2 hours. Table 1 shows the results of investigating the magnetic properties of the product thus obtained. *Measurement of irregularities using a three-dimensional roughness meter ○ Unevenness 2 μm or less Δ Unevenness 2 to 10 μm [Effects of the Invention] Thus, according to the present invention, the iron loss property is excellent, and this property can be improved by strain relief annealing. It is possible to stably produce unidirectional silicon steel sheets that do not deteriorate.
【図1】通常の一方向性けい素鋼板の断面図である。FIG. 1 is a cross-sectional view of a typical unidirectional silicon steel plate.
【図2】EB照射による磁区細分化技術を適用したとき
の一方向性けい素鋼板の断面図である。FIG. 2 is a cross-sectional view of a grain-oriented silicon steel sheet to which magnetic domain refining technology using EB irradiation is applied.
【図3】高電圧・小電流のEBのパワー密度を上げて強
く照射したときの一方向性けい素鋼板の断面図である。FIG. 3 is a cross-sectional view of a grain-oriented silicon steel sheet when the EB power density of high voltage and small current is increased and intense irradiation is performed.
1 地鉄 2 フォルステライト被膜 3 絶縁被膜 4 鋼板 1 Subway 2 Forsterite coating 3 Insulating coating 4 Steel plate
Claims (1)
イト被膜をそなえる方向性けい素鋼板の該フォルステラ
イト被膜上に、りん酸塩とコロイダルシリカを主成分と
する絶縁被膜を被成したのち、該絶縁被膜の結晶化焼鈍
処理を施し、しかるのち鋼板の圧延方向を横切る向きに
EB照射を行って磁区を細分化することを特徴とする低
鉄損一方向性けい素鋼板の製造方法。Claim 1: An insulating film containing phosphate and colloidal silica as main components is formed on the forsterite film of a grain-oriented silicon steel sheet which has been subjected to finish annealing to have a forsterite film on its surface. A method for producing a unidirectional silicon steel sheet with low iron loss, characterized in that the film is subjected to crystallization annealing treatment, and then EB irradiation is performed in a direction transverse to the rolling direction of the steel sheet to subdivide the magnetic domains.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41800790A JPH04224629A (en) | 1990-12-25 | 1990-12-25 | Manufacture of low core loss grain-oriented silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41800790A JPH04224629A (en) | 1990-12-25 | 1990-12-25 | Manufacture of low core loss grain-oriented silicon steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04224629A true JPH04224629A (en) | 1992-08-13 |
Family
ID=18525981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP41800790A Pending JPH04224629A (en) | 1990-12-25 | 1990-12-25 | Manufacture of low core loss grain-oriented silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04224629A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023191029A1 (en) * | 2022-03-31 | 2023-10-05 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and method for manufacturing same |
-
1990
- 1990-12-25 JP JP41800790A patent/JPH04224629A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023191029A1 (en) * | 2022-03-31 | 2023-10-05 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7245285B2 (en) | Grain-oriented electrical steel sheet and its magnetic domain refinement method | |
JP6319605B2 (en) | Manufacturing method of low iron loss grain oriented electrical steel sheet | |
EP0033878B1 (en) | Method for treating an electromagnetic steel sheet by laser-beam irradiation | |
JP3023242B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics | |
JPH0651887B2 (en) | Ultra-rapid heat treatment method and manufacturing method of grain-oriented silicon steel strip | |
US11459633B2 (en) | Low-iron-loss grain-oriented electrical steel sheet and production method for same | |
US4545828A (en) | Local annealing treatment for cube-on-edge grain oriented silicon steel | |
US20230060105A1 (en) | Grain-oriented electrical steel sheet and magnetic domain refinement method thereof | |
JP3399991B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet | |
JPH062042A (en) | Method for producing low iron loss unidirectional silicon steel sheet for laminated iron core | |
JPH03260020A (en) | Method for radiating eb | |
JPS5836051B2 (en) | Processing method for electrical steel sheets | |
JP2638180B2 (en) | Low iron loss unidirectional silicon steel sheet and method for producing the same | |
JPS6227126B2 (en) | ||
JPH04224629A (en) | Manufacture of low core loss grain-oriented silicon steel sheet | |
JPH04231415A (en) | Manufacturing method of low iron loss unidirectional silicon steel sheet | |
JP3393218B2 (en) | Manufacturing method of low iron loss unidirectional electrical steel sheet | |
JPH05179355A (en) | Method for manufacturing low iron loss unidirectional silicon steel sheet | |
JPH03260022A (en) | Method for radiating linear eb | |
JPH05311241A (en) | Method for manufacturing low iron loss unidirectional silicon steel sheet and electron beam irradiation apparatus | |
JPH0543945A (en) | Method of manufacturing low iron loss unidirectional silicon steel sheet | |
JPH0565543A (en) | Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing | |
JPS6089521A (en) | Production of grain oriented silicon steel sheet having excellent magnetic characteristic | |
JPH0379722A (en) | Manufacture of grain oriented silicon steel sheet having excellent magnetic characteristics | |
JPH03287725A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss |