JPH04224060A - Induction heating tundish for continuous casting - Google Patents
Induction heating tundish for continuous castingInfo
- Publication number
- JPH04224060A JPH04224060A JP41393790A JP41393790A JPH04224060A JP H04224060 A JPH04224060 A JP H04224060A JP 41393790 A JP41393790 A JP 41393790A JP 41393790 A JP41393790 A JP 41393790A JP H04224060 A JPH04224060 A JP H04224060A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- tundish
- induction heating
- weir
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、鉄鋼製造業において、
高清浄度鋼を得る連続鋳造用誘導加熱タンディッシュに
関するものである。
【0002】
【従来の技術】連続鋳造用タンディッシュ内の溶鋼加熱
度(以下SH)は鋳片品質及び操業の安定性に大きな影
響を及ぼす。
【0003】従ってSHを目標とするある範囲に常にコ
ントロールすることが品質及び操業上望ましいが、一般
的には溶鋼の大気中あるいは耐火物への熱放散の影響に
より、特に鋳造の初期および末期においてSHの低下を
十分に補償することができなかった。
【0004】そこで近年、連続鋳造タンディッシュに加
熱機能を付与して鋳造初期及び末期のSHの低下を防止
する試みが行われている。具体的には誘導加熱、プラズ
マ加熱が用いられる事が多い。
【0005】誘導加熱方式の従来の報告例としては、特
公昭63―39343の様にTD底面と接する無段差の
中空耐火物により耐火物で仕切られた両空間を連結した
ものが挙げられる。
【0006】この方式では熱対流による溶鋼中の介在物
の浮上分離効果は期待できるが、特に近年要求されてい
る高い清浄性を得るためには不十分となりつつある。
【0007】また、受湯側区画の底面と無段差の開口と
することで受湯側への残湯を防止するとしているが、鋳
造末期のSHの低下した状況では、受湯側底面に溶鋼が
残存する可能性が高い。
【0008】特開昭61―38752では、受湯室と注
湯室に連通し、且つ受湯室側が高くなるように傾斜した
2つの孔または溝をあけるという報告がある。
【0009】連通孔を受湯室より注湯室に下向きにする
ことで、注湯室側の熱対流を抑制し、介在物の巻き込み
をなくすことを目的としているが、実鋳造において注湯
室のノズル直上への溶鋼の流れ込みが大きくなることか
ら介在物を巻き込む可能性はかえって高くなると考えら
れる。
【0010】
【発明が解決しようとする課題】高い清浄度の溶鋼を得
るためには、タンディッシュ内で積極的に介在物を捕集
することが望まれる。
【0011】本発明は、タンディッシュ内での介在物の
捕集効果を高めるとともに、介在物により誘導加熱によ
る加熱機能が低下しないようにしたもので、(1) 非
金属介在物の付着堆積による中空耐火物の閉塞を防止す
る。
(2) 従来の誘導加熱法では期待できない高い清浄度
の溶湯を得る。
ことを目的とするものである。
【0012】
【課題を解決するための手段】本発明は、鋼の連続鋳造
において使用するタンディッシュに誘導加熱手段を付与
した連続鋳造用誘導加熱タンディッシュであって、その
要旨とするところは、
【0013】(1) タンディッシュを溶鋼を受け入れ
る受湯室と鋳型に注入する注湯室とを堰で仕切り、その
堰を上下に貫通する空間に鉄芯及び一次コイルを配置す
るとともに、堰により仕切られた受湯室と注湯室の間を
連通する溶鋼通路により閉回路を形成して溶湯の誘導加
熱を行うタンディッシュにおいて、凸状の段差を有する
中空耐火物により溶鋼通路を形成したことを特徴とする
連続鋳造用誘導加熱タンディッシュ。
【0014】(2) 凸状の段差の形状は、高さh、巾
d、中空耐火物の断面高さをHとして次式により決定さ
れる0.1≦h/H≦0.5 ・・・(1)
0.1≦d/h≦1.0 ・・・(2) 連続
鋳造用誘導加熱タンディッシュ。
【0015】(3) タンディッシュを溶鋼を受け入れ
る受湯室と鋳型に注入する注湯室とを堰で仕切り、その
堰を上下に貫通する空間に鉄芯及び一次コイルを配置す
るとともに、堰により仕切られた受湯室と注湯室の間を
連通する溶鋼通路により閉回路を形成して溶湯の誘導加
熱を行うタンディッシュにおいて、凹状の段差を有する
中空耐火物により溶鋼通路を形成したことを特徴とする
連続鋳造用誘導加熱タンディッシュ。
【0016】(4) 凹状の段差の形状は、高さh、巾
d、中空耐火物の断面高さをHとして次式により決定さ
れる0.2≦h/H≦1.0 ・・・(4)
0.2≦d/h≦1.0 ・・・(5) 連続
鋳造用誘導加熱タンディッシュ。にある。
【0017】図1は本発明の第1の発明の実施態様例を
示す断面図、図2は平面図で、図1は図2のA―A断面
図、図3は図2のB―B断面図をあらわし、図4は図1
の要部拡大断面図である。
【0018】図において、1はタンディッシュの堰で、
受湯室2と給湯室3の間に設けるものである。4は溶鋼
通路で、堰1内に受湯室2と給湯室3を連通して設けら
れ、図示しない取鍋等から受湯室2に供給された溶鋼を
給湯室3へ導くためのものである。
【0019】通常、この溶鋼通路4は、堰1の下方に左
右1対設けられる。5は電磁誘導加熱装置で、鉄心と一
次コイルから構成されている。
【0020】図示の例ではT字型タンディッシュにおけ
る装着状態を示しているが、一つの受湯室から両側に給
湯室を有するため、電磁誘導加熱装置5は受湯室2と給
湯室3の間に設けた堰1にそれぞれ設けてある。
【0021】この場合、堰1のほヾ中央に鉄心ならびに
一次コイルを設置し、その外周に溶鋼通路4を設置する
ことにより、電気的に溶鋼を導電体とする閉回路(二次
回路)を形成することとなり、電磁誘導加熱装置5によ
り、溶鋼通路4内の溶鋼を主なる発熱源としてジュール
熱により溶鋼を加熱できる。6は鋳型へ流入するための
ノズルを示す。
【0022】本発明の第1の発明においては、上記した
溶鋼通路4内に凸状の段差7を設けたもので、図示の例
では溶鋼通路4の長さ方向に3個の凸状の段差7‥‥7
を設けた例を示している。
【0023】この凸状の段差7は溶鋼通路4を通る溶鋼
に乱流を与えるものである。その設置要件すなわち、凸
状の段差7の形状は、高さh、巾d、溶鋼通路の断面高
さをHとすると次式のようになる。
0.1≦h/H≦0.5 ・・・(1) 0.
1≦d/h≦1.0 ・・・(2) 【002
4】凸状の段差7の最初の設置箇所は溶鋼通路4と受湯
室2側が接する部分の底面とし、設置周期lは次式に従
う。
l≧h ・・・(3)
【0025】次に、本発明の第2の発明について説明
する。図5は、その実施態様例を示す平面図、図6は図
5のC―C断面図、図7は図5のD―D断面図をあらわ
し、図8は図6の要部拡大断面図である。タンディッシ
ュとしての基本構成および電磁誘導加熱の機能は第1の
発明の例と同様なので、説明を省略する。
【0026】本発明の第2の発明は、堰1内に設けた溶
鋼通路4内に凹状の段差8を設けたものである。図5〜
図8に示す例では、溶鋼通路4の長さ方向に3個の凹状
段差8‥‥8を設けた例を示している。
【0027】この凹状の段差8は、溶鋼通路4を通る溶
鋼に乱流を与えるものである。その設置要件すなわち、
凹状の段差8の形状は、高さh、幅d、溶鋼通路4の断
面高さをHとすると次式のようになる。
0.2≦h/H≦1.0 ・・・(4) 0.
2≦d/h≦1.0 ・・・(5) 【002
8】凹状の段差8の最初の設置箇所は溶鋼通路4と受湯
室2が接する部分の底面とし、設置周期lは次式に従う
。
l≧2h ・・・(6)
【0029】
【作用】溶湯が受湯室2側から溶鋼通路4に侵入する際
に、凸状又は凹状の段差に衝突し乱流状態となる。その
結果非金属介在物は段差に衝突して付着、堆積する。
【0030】この機構により、溶鋼中の非金属介在物は
堰状段差部に捕獲され、その結果溶鋼通路4の内壁への
非金属介在物の付着堆積は防止され溶鋼通路4の閉塞は
防止される。また溶鋼通路出側の溶鋼の清浄度が向上す
る。
【0031】凸状の段差7の非金属介在物捕集効率ηは
凸状の段差の高さh、巾d、設置周期l及び設置位置に
依存する。高さhと溶鋼通路の高さH及び捕集効率ηの
関係を図9に示す。0.1 ≦h/H≦0.5 の範囲
に捕集効率の最も良いピークが存在する。
【0032】巾dと高さh及び捕集効率ηの関係を図1
0に示す。0.1 ≦d/h≦1.0 の範囲に捕集効
率が最も良いピークが存在する。設置周期lと高さh及
び捕集効率ηの関係を図11に示す。
【0033】l<hで捕集効率ηは低下しl≧hで高位
に安定する。設置位置と捕集効率ηとの関係を図12に
示す。溶鋼通路4と受湯室2が接する部分から受湯室2
側へ離れる程捕集効率ηは低下する。
【0034】溶鋼通路内部では捕集効率ηは一定だが堰
状耐火物の交換、補修の作業効率を考えると溶鋼通路4
と受湯室2が接する部分に設置するのが最も合理的であ
る。
【0035】また凹状の段差8の非金属介在物捕集効率
ηは凹状の段差の高さh、巾d、設置周期l及び設置位
置に依存する。高さhと溶鋼通路4の高さH及び捕集効
率ηの関係を図13に示す。0.2 ≦h/H≦1.0
の範囲に捕集効率の最も良いピークが存在する。
【0036】巾dと高さh及び捕集効率ηの関係を図1
4に示す。0.2 ≦d/h≦1.0 の範囲に捕集効
率が最も良いピークが存在する。設置周期lと高さh及
び捕集効率ηの関係を図15に示す。
【0037】l<2hで捕集効率ηは低下しl≧2hで
高位に安定する。設置位置と捕集効率ηとの関係を図1
6に示す。溶鋼通路4と受湯室2が接する部分から受湯
室側へ離れる程捕集効率ηは低下する。
【0038】溶鋼通路内部では捕集効率ηは一定だが凹
状耐火物の交換、補修の作業効率を考えると溶鋼通路4
と受湯室2が接する部分に設置するのが最も合理的であ
る。
【0039】
【実施例】棒鋼向けのAlキルド鋼を4ストランドのブ
ルーム連鋳機で鋳造するに際し容量35ton のT型
TDの1、2ストランド側、3、4ストランド側それぞ
れに容量1000KWの誘導加熱装置を設置した。
【0040】1 、2 ストランド側に本発明は凸状の
段差を設けた溶鋼通路とし、3 、4 ストランド側は
従来の溶鋼通路としてセットして鋳造を行った。
【0041】溶鋼通路の内径は100mmである。凸状
の段差の形状は高さh=40mm、巾d=20mm、で
溶鋼通路の入側と出側に設置した(設置周期1400m
m)。印加電力は各々の加熱装置に250KWhrとし
た。
【0042】従来のままの溶鋼通路とした3、4ストラ
ンド側は120分で閉塞し鋳造継続が不可能となったが
、本発明の凸状の段差を設けた溶鋼通路とした1、2ス
トランド側は600分経過した後も鋳造可能であり閉塞
防止効果が認められた。
【0043】また製品の全酸素量、超音波探傷不良率、
ASTM法による介在物判定のいずれも本発明による溶
鋼通路とした1、2ストランド側が良好となっており溶
湯の清浄化効果が認められた。
【0044】なお凹状の段差については高さh=80m
m、幅d=50mmとして同様の鋼種で鋳造を行ったが
凸状の段差の場合とはほぼ同様の効果が得られた。
【0045】
【発明の効果】以上のように本発明によれば、タンディ
ッシュ誘導加熱装置を具備したタンディッシュの溶鋼通
路において積極的に介在物の捕集分離を促進し、溶鋼の
清浄化効果を得ることができる。また介在物による溶鋼
通路の閉塞も防止できるので安定した操業を行うことが
できる。Detailed Description of the Invention [0001] [Industrial Application Field] The present invention is applicable to the steel manufacturing industry.
This invention relates to an induction heating tundish for continuous casting to obtain high-cleanliness steel. [0002] The degree of heating of molten steel (hereinafter referred to as SH) in a tundish for continuous casting has a great influence on the quality of slabs and the stability of operation. [0003] Therefore, it is desirable for quality and operation to always control SH within a certain target range, but in general, due to the influence of heat dissipation of molten steel into the atmosphere or to refractories, it is generally It was not possible to sufficiently compensate for the decrease in SH. [0004] Therefore, in recent years, attempts have been made to provide a heating function to the continuous casting tundish to prevent a decrease in SH at the initial and final stages of casting. Specifically, induction heating and plasma heating are often used. [0005] As an example of a conventional induction heating method reported, as in Japanese Patent Publication No. 63-39343, there is a system in which two spaces partitioned by a refractory are connected by a stepless hollow refractory in contact with the bottom of a TD. Although this method can be expected to have an effect of flotation and separation of inclusions in molten steel due to thermal convection, it is becoming insufficient to obtain the high cleanliness that has been particularly required in recent years. [0007] Furthermore, it is said that the opening is seamless with the bottom of the receiving side compartment to prevent the remaining metal from remaining on the receiving side. is likely to remain. [0008] Japanese Patent Application Laid-Open No. 61-38752 reports that two holes or grooves are formed that communicate with the hot water receiving chamber and the pouring chamber and are inclined so that the hot water receiving chamber side is higher. By directing the communication hole downward from the receiving chamber to the pouring chamber, the purpose is to suppress heat convection on the pouring chamber side and eliminate inclusions, but in actual casting, the pouring chamber Since the flow of molten steel directly above the nozzle increases, the possibility of entrainment of inclusions is thought to increase. [0010] In order to obtain highly clean molten steel, it is desirable to actively collect inclusions within the tundish. The present invention improves the effect of collecting inclusions in the tundish and prevents the inclusions from deteriorating the heating function of induction heating. (1) Prevent blockage of hollow refractories. (2) Obtain molten metal with a high level of cleanliness that cannot be expected with conventional induction heating methods. The purpose is to [Means for Solving the Problems] The present invention is an induction heating tundish for continuous casting in which an induction heating means is provided to the tundish used in continuous casting of steel, and the gist thereof is as follows. (1) The tundish is divided by a weir into a receiving chamber for receiving molten steel and a pouring chamber for injecting it into the mold, and the iron core and primary coil are placed in the space that vertically penetrates the weir. In a tundish that performs induction heating of molten metal by forming a closed circuit with a molten steel passage communicating between a partitioned molten metal receiving chamber and a molten pouring chamber, the molten steel passage is formed by a hollow refractory having a convex step. An induction heating tundish for continuous casting featuring: (2) The shape of the convex step is determined by the following formula, with height h, width d, and the cross-sectional height of the hollow refractory being H: 0.1≦h/H≦0.5.・(1)
0.1≦d/h≦1.0 (2) Induction heating tundish for continuous casting. (3) The tundish is separated by a weir between the receiving chamber for receiving molten steel and the pouring chamber for injecting it into the mold, and the iron core and primary coil are placed in the space that vertically passes through the weir. In a tundish that performs induction heating of molten metal by forming a closed circuit with a molten steel passage communicating between a partitioned molten metal receiving chamber and a molten pouring chamber, the molten steel passage is formed with a hollow refractory having a concave step. A featured induction heating tundish for continuous casting. (4) The shape of the concave step is determined by the following formula, where the height h, the width d, and the cross-sectional height of the hollow refractory are H, 0.2≦h/H≦1.0... (4)
0.2≦d/h≦1.0 (5) Induction heating tundish for continuous casting. It is in. FIG. 1 is a sectional view showing an embodiment of the first invention of the present invention, FIG. 2 is a plan view, FIG. 1 is a sectional view taken along the line AA in FIG. 2, and FIG. 3 is a sectional view taken along the line BB in FIG. A cross-sectional view is shown, and Figure 4 is similar to Figure 1.
FIG. In the figure, 1 is a tundish weir;
It is provided between the hot water receiving chamber 2 and the hot water supply chamber 3. 4 is a molten steel passage, which is provided in the weir 1 to communicate the hot water receiving chamber 2 and the hot water supply chamber 3, and is for guiding the molten steel supplied to the hot water receiving chamber 2 from a ladle or the like (not shown) to the hot water supply chamber 3. be. Normally, a pair of left and right molten steel passages 4 are provided below the weir 1. 5 is an electromagnetic induction heating device, which is composed of an iron core and a primary coil. [0020] The illustrated example shows the installed state in a T-shaped tundish, but since there are hot water supply chambers on both sides of one hot water receiving chamber, the electromagnetic induction heating device 5 is installed in the hot water receiving chamber 2 and the hot water supply chamber 3. They are respectively provided in the weirs 1 provided in between. In this case, by installing the iron core and the primary coil in the center of the weir 1 and installing the molten steel passage 4 around the outer periphery, an electrically closed circuit (secondary circuit) using the molten steel as a conductor can be established. The electromagnetic induction heating device 5 can heat the molten steel with Joule heat using the molten steel in the molten steel passage 4 as the main heat source. 6 indicates a nozzle for flowing into the mold. In the first aspect of the present invention, a convex step 7 is provided in the molten steel passage 4 described above, and in the illustrated example, there are three convex steps 7 in the length direction of the molten steel passage 4. 7‥‥7
An example is shown below. This convex step 7 provides turbulence to the molten steel passing through the molten steel passage 4. The installation requirements, that is, the shape of the convex step 7 are as shown in the following equation, where H is the height h, the width d, and the cross-sectional height of the molten steel passage. 0.1≦h/H≦0.5 (1) 0.
1≦d/h≦1.0...(2) 002
4) The first installation location of the convex step 7 is the bottom surface of the part where the molten steel passage 4 and the molten metal receiving chamber 2 side are in contact, and the installation period l is according to the following formula. l≧h...(3)
Next, the second aspect of the present invention will be explained. 5 is a plan view showing an example of the embodiment, FIG. 6 is a sectional view taken along line CC in FIG. 5, FIG. 7 is a sectional view taken along line DD in FIG. It is. The basic configuration of the tundish and the function of electromagnetic induction heating are the same as those of the first invention, so the explanation will be omitted. A second aspect of the present invention is that a concave step 8 is provided in the molten steel passageway 4 provided within the weir 1. Figure 5~
In the example shown in FIG. 8, three concave steps 8 are provided in the length direction of the molten steel passage 4. This concave step 8 provides turbulence to the molten steel passing through the molten steel passageway 4. Its installation requirements, i.e.
The shape of the concave step 8 is expressed by the following equation, where h is the height, d is the width, and H is the cross-sectional height of the molten steel passage 4. 0.2≦h/H≦1.0 (4) 0.
2≦d/h≦1.0...(5) 002
8] The concave step 8 is first installed on the bottom surface of the part where the molten steel passage 4 and the molten metal receiving chamber 2 are in contact, and the installation period l follows the following formula. l≧2h...(6)
[Operation] When the molten metal enters the molten steel passage 4 from the molten metal receiving chamber 2 side, it collides with a convex or concave step, resulting in a turbulent flow state. As a result, non-metallic inclusions collide with the step and adhere and accumulate. With this mechanism, non-metallic inclusions in the molten steel are captured in the weir-like step portion, and as a result, the non-metallic inclusions are prevented from adhering and depositing on the inner wall of the molten steel passage 4, and the molten steel passage 4 is prevented from being blocked. Ru. Furthermore, the cleanliness of the molten steel on the outlet side of the molten steel passage is improved. The nonmetallic inclusion collection efficiency η of the convex step 7 depends on the height h, width d, installation period l, and installation position of the convex step. The relationship between the height h, the height H of the molten steel passage, and the collection efficiency η is shown in FIG. A peak with the best collection efficiency exists in the range of 0.1≦h/H≦0.5. FIG. 1 shows the relationship between the width d, height h, and collection efficiency η.
0. A peak with the best collection efficiency exists in the range of 0.1≦d/h≦1.0. FIG. 11 shows the relationship between the installation period l, the height h, and the collection efficiency η. The collection efficiency η decreases when l<h, and remains stable at a high level when l≧h. FIG. 12 shows the relationship between the installation position and the collection efficiency η. From the part where the molten steel passage 4 and the molten steel receiving chamber 2 meet, the molten steel receiving chamber 2
The collection efficiency η decreases as it moves away from the side. Although the collection efficiency η is constant inside the molten steel passage, considering the work efficiency of replacing and repairing the weir-like refractories, the molten steel passage 4
It is most rational to install it at the part where the hot water receiving chamber 2 and the hot water receiving chamber 2 are in contact with each other. The nonmetallic inclusion collection efficiency η of the concave step 8 depends on the height h, width d, installation period l, and installation position of the concave step. The relationship between the height h, the height H of the molten steel passage 4, and the collection efficiency η is shown in FIG. 0.2 ≦h/H≦1.0
The peak of the best collection efficiency exists in the range of . FIG. 1 shows the relationship between the width d, height h, and collection efficiency η.
4. A peak with the best collection efficiency exists in the range of 0.2≦d/h≦1.0. FIG. 15 shows the relationship between the installation period l, the height h, and the collection efficiency η. The collection efficiency η decreases when l<2h, and remains stable at a high level when l≧2h. Figure 1 shows the relationship between installation position and collection efficiency η.
6. The collection efficiency η decreases as the distance from the contact portion between the molten steel passageway 4 and the molten metal receiving chamber 2 toward the molten steel receiving chamber side increases. Although the collection efficiency η is constant inside the molten steel passage, considering the work efficiency of replacing and repairing the concave refractory, the molten steel passage 4
It is most rational to install it at the part where the hot water receiving chamber 2 and the hot water receiving chamber 2 are in contact with each other. [Example] When casting Al-killed steel for bar steel using a 4-strand bloom continuous caster, induction heating with a capacity of 1000 KW was applied to each of the 1st, 2nd, 3rd and 4th strand sides of a T-type TD with a capacity of 35 tons. The equipment was installed. Casting was carried out by setting the molten steel passages provided with convex steps on the strands 1 and 2, and the conventional molten steel passages on the strands 3 and 4. [0041] The inner diameter of the molten steel passage is 100 mm. The shape of the convex step was height h = 40 mm, width d = 20 mm, and it was installed on the entrance and exit sides of the molten steel passage (installation period 1400 m).
m). The applied power was 250 KWh to each heating device. The 3rd and 4th strand sides, which had the conventional molten steel passage, were blocked in 120 minutes, making it impossible to continue casting, but the 1st and 2nd strand sides, which had the molten steel passage with the convex step of the present invention, were blocked in 120 minutes, making it impossible to continue casting. The side could be cast even after 600 minutes had elapsed, and the anti-occlusion effect was observed. [0043] Also, the total oxygen content of the product, the ultrasonic flaw detection defect rate,
Both the 1st and 2nd strand sides, which were made into molten steel passages according to the present invention, were judged to have good inclusions by the ASTM method, and the molten metal cleaning effect was recognized. [0044] Regarding the concave step, the height h = 80 m.
Casting was performed using the same type of steel with m and width d = 50 mm, but almost the same effect as in the case of a convex step was obtained. As described above, according to the present invention, the collection and separation of inclusions is actively promoted in the molten steel passage of a tundish equipped with a tundish induction heating device, and the cleaning effect of molten steel is improved. can be obtained. Furthermore, since the molten steel passageway can be prevented from being blocked by inclusions, stable operations can be performed.
【図1】本発明のタンディッシュの一例を示す断面図で
、図2のA―A断面図である。FIG. 1 is a sectional view showing an example of a tundish of the present invention, and is a sectional view taken along line AA in FIG.
【図2】本発明のタンディッシュの一例を示す平面図で
ある。FIG. 2 is a plan view showing an example of the tundish of the present invention.
【図3】図2のB―B断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 2;
【図4】図1の要部拡大断面図である。FIG. 4 is an enlarged sectional view of the main part of FIG. 1;
【図5】本発明のタンディッシュの他の例を示す平面図
である。FIG. 5 is a plan view showing another example of the tundish of the present invention.
【図6】図5のC―C断面図である。6 is a sectional view taken along line CC in FIG. 5. FIG.
【図7】図5のD―D断面図である。7 is a sectional view taken along line DD in FIG. 5. FIG.
【図8】図6の要部拡大断面図である。FIG. 8 is an enlarged sectional view of the main part of FIG. 6;
【図9】本発明における凸状の段差または凹状の段差の
形状と介在物の捕集効率の関係を示す図表である。FIG. 9 is a chart showing the relationship between the shape of a convex step or a concave step and inclusion collection efficiency in the present invention.
【図10】本発明における凸状の段差または凹状の段差
の形状と介在物の捕集効率の関係を示す図表である。FIG. 10 is a chart showing the relationship between the shape of a convex step or a concave step and inclusion collection efficiency in the present invention.
【図11】本発明における凸状の段差または凹状の段差
の形状と介在物の捕集効率の関係を示す図表である。FIG. 11 is a chart showing the relationship between the shape of a convex step or a concave step and inclusion collection efficiency in the present invention.
【図12】本発明における凸状の段差または凹状の段差
の形状と介在物の捕集効率の関係を示す図表である。FIG. 12 is a chart showing the relationship between the shape of a convex step or a concave step and inclusion collection efficiency in the present invention.
【図13】本発明における凸状の段差または凹状の段差
の形状と介在物の捕集効率の関係を示す図表である。FIG. 13 is a chart showing the relationship between the shape of a convex step or a concave step and inclusion collection efficiency in the present invention.
【図14】本発明における凸状の段差または凹状の段差
の形状と介在物の捕集効率の関係を示す図表である。FIG. 14 is a chart showing the relationship between the shape of a convex step or a concave step and inclusion collection efficiency in the present invention.
【図15】本発明における凸状の段差または凹状の段差
の形状と介在物の捕集効率の関係を示す図表である。FIG. 15 is a chart showing the relationship between the shape of a convex step or a concave step and inclusion collection efficiency in the present invention.
【図16】本発明における凸状の段差または凹状の段差
の形状と介在物の捕集効率の関係を示す図表である。FIG. 16 is a chart showing the relationship between the shape of a convex step or a concave step and inclusion collection efficiency in the present invention.
1 堰 2 受湯室 3 給湯室 4 溶鋼通路 5 電磁誘導加熱装置 6 ノズル 7 凸状の段差 8 凹状の段差 1 Weir 2 Hot water room 3 Hot water supply room 4 Molten steel passage 5 Electromagnetic induction heating device 6 Nozzle 7 Convex step 8 Concave step
Claims (4)
湯室と鋳型に注入する注湯室とを堰で仕切り、その堰を
上下に貫通する空間に鉄心および一次コイルを配置する
とともに、堰により仕切られた受湯室と注湯室の間を連
通する溶鋼通路により閉回路を形成して溶鋼の誘導加熱
を行うタンディッシュにおいて、凸状の段差を有する中
空耐火物により溶鋼通路を形成したことを特徴とする連
続鋳造用誘導加熱タンディッシュ。[Claim 1] A tundish is divided by a weir into a receiving chamber for receiving molten steel and a pouring chamber for injecting it into a mold, and an iron core and a primary coil are disposed in a space that vertically passes through the weir, and is partitioned by the weir. In a tundish that performs induction heating of molten steel by forming a closed circuit with a molten steel passage communicating between a molten metal receiving chamber and a molten pouring chamber, the molten steel passage is formed by a hollow refractory having a convex step. Induction heating tundish for continuous casting.
中空耐火物の断面高さをHとして次式により決定される
0.1≦h/H≦0.5 ・・・(1) 0.
1≦d/h≦1.0 ・・・(2) 請求項1
記載の連続鋳造用誘導加熱タンディッシュ。Claim 2: The shape of the convex step has a height h, a width d,
0.1≦h/H≦0.5 (1) 0.1≦h/H≦0.5 determined by the following formula, where H is the cross-sectional height of the hollow refractory.
1≦d/h≦1.0 (2) Claim 1
The induction heating tundish for continuous casting described above.
湯室と鋳型に注入する注湯室とを堰で仕切り、その堰を
上下に貫通する空間に鉄心および一次コイルを配置する
とともに、堰により仕切られた受湯室と注湯室の間を連
通する溶鋼通路により閉回路を形成して溶鋼の誘導加熱
を行うタンディッシュにおいて、凹状の段差を有する中
空耐火物により溶鋼通路を形成したことを特徴とする連
続鋳造用誘導加熱タンディッシュ。[Claim 3] The tundish is divided by a weir into a receiving chamber for receiving molten steel and a pouring chamber for injecting the molten steel into the mold, and the iron core and primary coil are disposed in a space that vertically passes through the weir, and is partitioned by the weir. In a tundish for induction heating of molten steel by forming a closed circuit with a molten steel passage communicating between a molten steel receiving chamber and a molten pouring chamber, the molten steel passage is formed by a hollow refractory having a concave step. Induction heating tundish for continuous casting.
中空耐火物の断面高さをHとして次式により決定される
0.2≦h/H≦1.0 ・・・(4) 0.
2≦d/h≦1.0 ・・・(5) 請求項3
記載の連続鋳造用誘導加熱タンディッシュ。4. The shape of the concave step has a height h, a width d,
0.2≦h/H≦1.0 (4) 0.2≦h/H≦1.0 determined by the following formula, where H is the cross-sectional height of the hollow refractory.
2≦d/h≦1.0 (5) Claim 3
The induction heating tundish for continuous casting described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41393790A JPH04224060A (en) | 1990-12-26 | 1990-12-26 | Induction heating tundish for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41393790A JPH04224060A (en) | 1990-12-26 | 1990-12-26 | Induction heating tundish for continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04224060A true JPH04224060A (en) | 1992-08-13 |
Family
ID=18522486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP41393790A Withdrawn JPH04224060A (en) | 1990-12-26 | 1990-12-26 | Induction heating tundish for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04224060A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0686849U (en) * | 1993-05-19 | 1994-12-20 | 新日本製鐵株式会社 | Induction heating tundish |
JP2008264834A (en) * | 2007-04-20 | 2008-11-06 | Jfe Steel Kk | Tundish for continuous casting |
CN102009143A (en) * | 2010-12-29 | 2011-04-13 | 北京科技大学 | Channel induction heating device of compact cross-shaped tundish |
CN102836978A (en) * | 2012-09-06 | 2012-12-26 | 上海宝明耐火材料有限公司 | Steel flow passage assembly for tundish induction heating and production method thereof |
CN102896285A (en) * | 2011-07-29 | 2013-01-30 | 宝山钢铁股份有限公司 | Method and device for continuously casting thin strip |
JP2015530255A (en) * | 2012-09-27 | 2015-10-15 | 宝山鋼鉄股▲分▼有限公司 | Method and apparatus for continuous thin strip casting |
JP2018066030A (en) * | 2016-10-17 | 2018-04-26 | 新日鐵住金株式会社 | Manufacturing method of high cleanliness steel |
JP2019214057A (en) * | 2018-06-11 | 2019-12-19 | 日本製鉄株式会社 | Continuous casting method |
-
1990
- 1990-12-26 JP JP41393790A patent/JPH04224060A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0686849U (en) * | 1993-05-19 | 1994-12-20 | 新日本製鐵株式会社 | Induction heating tundish |
JP2008264834A (en) * | 2007-04-20 | 2008-11-06 | Jfe Steel Kk | Tundish for continuous casting |
CN102009143A (en) * | 2010-12-29 | 2011-04-13 | 北京科技大学 | Channel induction heating device of compact cross-shaped tundish |
CN102896285A (en) * | 2011-07-29 | 2013-01-30 | 宝山钢铁股份有限公司 | Method and device for continuously casting thin strip |
CN102836978A (en) * | 2012-09-06 | 2012-12-26 | 上海宝明耐火材料有限公司 | Steel flow passage assembly for tundish induction heating and production method thereof |
JP2015530255A (en) * | 2012-09-27 | 2015-10-15 | 宝山鋼鉄股▲分▼有限公司 | Method and apparatus for continuous thin strip casting |
JP2018066030A (en) * | 2016-10-17 | 2018-04-26 | 新日鐵住金株式会社 | Manufacturing method of high cleanliness steel |
JP2019214057A (en) * | 2018-06-11 | 2019-12-19 | 日本製鉄株式会社 | Continuous casting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04224060A (en) | Induction heating tundish for continuous casting | |
AU2007329897B2 (en) | Molten metal continuous casting method | |
JP4772798B2 (en) | Method for producing ultra-low carbon slab | |
US5927378A (en) | Continuous casting mold and method | |
JP2002536183A (en) | Cooling element manufacturing mold and cooling element manufactured using the mold | |
JPS62254954A (en) | Control method for molten steel flow in mold of continuous casting | |
JP2596853Y2 (en) | Tundish for induction heating | |
EP1345720B1 (en) | Process for optimizing cooling in continuous casting mold | |
EP1837100B1 (en) | Method of electromagnetically stirring molten steel | |
JP4998705B2 (en) | Steel continuous casting method | |
JPH0749142B2 (en) | Induction heating tundish | |
JP3257222B2 (en) | Curved mold for continuous casting of metal | |
JP3336962B2 (en) | Melt heating method and equipment | |
JPH04224058A (en) | Induction heating tundish | |
GB2276574A (en) | Installation for the continuous casting of metals including an orifice plate | |
Kollberg et al. | Improving productivity and quality in thick slab casting by direct control of FC mould | |
JP3362692B2 (en) | Steel continuous casting method and mold | |
Sjoden et al. | Use of electromagnetic equipment for slab and thin slab steel continuous caster | |
JPH09277006A (en) | Continuous casting method of molten metal | |
JPS63171248A (en) | Copper mold for casting cast billet hot top for aluminium and aluminium alloy | |
JPH10193056A (en) | Method for removing inclusion in continuous casting tundish | |
JPH10137905A (en) | Method for starting casting in continuous casting method of steel | |
WO1999021670A1 (en) | Device for casting of metal | |
KR101377484B1 (en) | Method for estimating carbon-increasing of molten steel | |
KR20140002143A (en) | Method for manufacting tundish |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980312 |