JPH04221427A - Manufacture of magnetic recording medium - Google Patents
Manufacture of magnetic recording mediumInfo
- Publication number
- JPH04221427A JPH04221427A JP2405196A JP40519690A JPH04221427A JP H04221427 A JPH04221427 A JP H04221427A JP 2405196 A JP2405196 A JP 2405196A JP 40519690 A JP40519690 A JP 40519690A JP H04221427 A JPH04221427 A JP H04221427A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- magnetic
- iron
- fe4n
- acicular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Paints Or Removers (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】この発明は、磁性体としてFe4
Nを用いた磁気記憶媒体の製造方法に関する。[Industrial Application Field] This invention uses Fe4 as a magnetic material.
The present invention relates to a method of manufacturing a magnetic storage medium using N.
【0002】0002
【従来の技術及び発明が解決しようとする課題】磁気記
憶媒体に用いられる粉末磁性材料としては、従来より針
状のフェライト(γ−Fe2 O3)が使用されている
。
しかし、フェライトの飽和磁化の大きさは高々70〜7
5emu/g程度、保磁力が0.3kOe程度であり、
高性能オ−ディオテ−プ、VTR等の高密度記録が要求
される用途に対しては不十分である。このため、さらに
高飽和磁化及び高保磁力を有する磁性材料が種々開発さ
れている。BACKGROUND OF THE INVENTION Acicular ferrite (γ-Fe2 O3) has conventionally been used as a powder magnetic material used in magnetic storage media. However, the saturation magnetization of ferrite is at most 70 to 7
It has a coercive force of about 5 emu/g and a coercive force of about 0.3 kOe,
This is insufficient for applications requiring high-density recording such as high-performance audio tapes and VTRs. For this reason, various magnetic materials having higher saturation magnetization and higher coercive force have been developed.
【0003】このような材料の一つとして、金属Feが
あり、一部実用化されている。しかしながら、金属Fe
は極めて酸化されやすいため、磁気記憶媒体として用い
た場合でも酸化により飽和磁化が純鉄の半分程度に低下
し、出力が低下するという問題点を有している。[0003] One such material is metal Fe, which has been put into practical use to some extent. However, metal Fe
Since it is extremely easily oxidized, even when used as a magnetic storage medium, the saturation magnetization decreases to about half that of pure iron due to oxidation, resulting in a problem that the output decreases.
【0004】このような欠点を解消する材料としてFe
4 Nが注目されている(特開昭59−11532)。
Fe4 Nは表面に緻密なα−Fe2 O3 が形成さ
れるため、Feよりも遥かに耐酸化性に優れ、また飽和
磁化及び保磁力も十分な値を保持している。Fe4 N
を形成した粒子を含む粉末はFe粒子粉末を窒化処理す
ることにより形成される。[0004] Fe is a material that eliminates these drawbacks.
4N is attracting attention (Japanese Patent Application Laid-Open No. 59-11532). Since Fe4N has dense α-Fe2O3 formed on its surface, it has much better oxidation resistance than Fe, and also maintains sufficient saturation magnetization and coercive force. Fe4N
A powder containing particles having the above structure is formed by nitriding Fe particles.
【0005】しかしながら、針状の鉄粒子粉末を窒化処
理すると、針状粒子が凝集してしまい、針状を維持する
ことが困難となる。磁気記録媒体の磁性体粒子がこのよ
うに非針状になると所望の磁気特性が得られなくなり、
磁気記録媒体への適用が困難となる。この発明はかかる
事情に鑑みてなされたものであって、耐酸化性に優れ、
しかも磁気特性が良好な磁気記憶媒体を提供することを
目的とする。However, when nitriding acicular iron particles, the acicular particles aggregate, making it difficult to maintain their acicular shape. When the magnetic particles of a magnetic recording medium become non-acicular like this, it becomes impossible to obtain the desired magnetic properties.
Application to magnetic recording media becomes difficult. This invention was made in view of the above circumstances, and has excellent oxidation resistance,
Moreover, it is an object of the present invention to provide a magnetic storage medium with good magnetic properties.
【0006】[0006]
【課題を解決するための手段及び作用】この発明に係る
磁気記憶媒体は、針状ゲ−サイト粒子を還元して針状の
鉄粒子粉末を形成し、この鉄粒子粉末を浮遊流動させて
分散させつつ、該粉末を窒化処理してFe4 Nを形成
し、このFe4 Nが形成された粒子粉末を基体に塗布
することを特徴とする。[Means and effects for solving the problems] A magnetic storage medium according to the present invention reduces acicular goethite particles to form acicular iron particle powder, and disperses the iron particle powder by floating and fluidizing it. The present invention is characterized in that the powder is nitrided to form Fe4N while the powder is being heated, and the particle powder in which Fe4N is formed is applied to a substrate.
【0007】この発明は、Fe4 Nを磁気記憶媒体と
して使用するにあたり、最終的なFe4 N粉末粒子形
状を針状に維持することができる磁気記録媒体の製造方
法を提供するものである。[0007] The present invention provides a method for producing a magnetic recording medium that can maintain the final shape of the Fe4N powder particles in an acicular shape when Fe4N is used as a magnetic recording medium.
【0008】この発明において使用されるFe4 Nは
、第1図に示す鉄−窒素系の状態図におけるγ´相に対
応する。Fe4 Nは、鉄のfcc相の体心位置に窒素
原子が入ったペロブスカイト型結晶格子を有している。
この相は常温でも安定であり、Tc=488℃の強磁性
体である。常温での飽和磁化は195emu/gと純鉄
より若干低い程度であり、また表面に緻密なα−Fe2
O3 が形成されるので表面にFe3 O4 が形
成されるFeよりも表面の酸化物層が薄く飽和磁化の低
下が少ない。
さらに、保磁力が比較的高い。従って、針状粒子の長手
方向を揃えることにより、磁場−磁化(磁束密度)曲線
におけるヒステリシスカ−ブの角型比を良好にすること
ができ、磁気記録媒体として適したものとなる。Fe4N used in the present invention corresponds to the γ' phase in the phase diagram of the iron-nitrogen system shown in FIG. Fe4N has a perovskite crystal lattice in which nitrogen atoms are located at the body center of the fcc phase of iron. This phase is stable even at room temperature and is a ferromagnetic material with Tc=488°C. The saturation magnetization at room temperature is 195 emu/g, which is slightly lower than that of pure iron, and the surface contains dense α-Fe2.
Since O3 is formed, the oxide layer on the surface is thinner and the saturation magnetization decreases less than that of Fe, where Fe3 O4 is formed on the surface. Furthermore, the coercive force is relatively high. Therefore, by arranging the longitudinal directions of the acicular particles, the squareness ratio of the hysteresis curve in the magnetic field-magnetization (magnetic flux density) curve can be improved, making it suitable as a magnetic recording medium.
【0009】また、Fe4 Nは、その表面の緻密なα
−Fe2 O3 の存在により、Feよりも遥かに耐酸
化性が良好である。さらに、金属窒化物は一般に金属に
比較して硬度が高く、Fe4 NもFeよりも硬度が高
い。従って、金属磁性体を用いた磁気記憶媒体で問題に
なるヘッドの焼付きを防止することができる。このよう
なFe4 Nを使用した磁気記憶媒体は、以下のように
して製造することができる。[0009] Moreover, Fe4N has a dense α
- Due to the presence of Fe2O3, the oxidation resistance is much better than that of Fe. Furthermore, metal nitrides generally have higher hardness than metals, and Fe4N also has higher hardness than Fe. Therefore, it is possible to prevent head burn-in, which is a problem with magnetic storage media using magnetic metal materials. A magnetic storage medium using such Fe4N can be manufactured as follows.
【0010】先ず、水酸化鉄である針状ゲ−サイト(α
−FeOOH)粉末を還元して鉄粉末を得る。この際の
還元は、ゲ−サイトが還元されて針状粒子の鉄粉末が得
られれば方法は特に限定されない。一例として水素還元
が挙げられる。First, acicular goethite (α
-FeOOH) powder to obtain iron powder. The method of reduction at this time is not particularly limited as long as goethite is reduced and iron powder in the form of acicular particles can be obtained. An example is hydrogen reduction.
【0011】次に、このようにして形成した針状粒子の
鉄粉末に対して窒化処理を施し、Fe4 Nを形成する
。
この窒化処理により、鉄粉末粒子の略全体をFe4 N
にすることが好ましいが、部分的にFe4 Nが形成さ
れても構わない。また、粒子の外周部がFe4 Nであ
れば、耐酸化性の面からは効果的である。ここでの窒化
処理方法としては、種々の方法があるが、ガス窒化法及
びイオン窒化法が好適である。[0011] Next, the thus formed acicular particle iron powder is subjected to a nitriding treatment to form Fe4N. By this nitriding treatment, almost the entire iron powder particles are converted into Fe4N
Although it is preferable that Fe4N be formed partially, it is also possible. Moreover, if the outer peripheral part of the particles is made of Fe4N, it is effective from the viewpoint of oxidation resistance. There are various nitriding methods, but gas nitriding and ion nitriding are preferred.
【0012】この窒化処理は、鉄粒子粉末を浮遊流動さ
せて分散させつつ行う。具体的には、ガス窒化法を用い
る場合には、反応容器内に鉄粉末を装入し、外部ヒ−タ
にて容器内を例えば500℃程度に加熱しながら、この
容器の下方からNH3 ガス、H2 ガス等を送入して
鉄粉末を浮遊流動させつつ窒化処理を行う。また、イオ
ン窒化法を用いる場合には、反応容器内を高真空に保持
し、この容器の下方から反応ガスとしてのN2 ガス等
を送入して鉄粉末を流動させつつ、グロ−放電により窒
化処理を行う。この際には、生成される窒化鉄が確実に
Fe4 Nを主体とするものになるように、窒化条件を
適宜設定する。このようにして窒化処理を行うことによ
り、粉末粒子の凝集を回避することができ、針状の粒子
形状を維持することができる。従って、従来窒化処理の
際の凝集により針状粒子を維持することができなかった
ため、磁気記憶媒体として適した磁気特性を有している
にもかかわらず実際の使用が困難であったFe4 Nを
、磁気記憶媒体として適用することが可能となる。[0012] This nitriding treatment is carried out while the iron particles are suspended and dispersed. Specifically, when using the gas nitriding method, iron powder is charged into a reaction vessel, and while the inside of the vessel is heated to about 500°C using an external heater, NH3 gas is added from below the vessel. , H2 gas, etc. are introduced to make the iron powder float and flow while nitriding treatment is performed. In addition, when using the ion nitriding method, the interior of the reaction vessel is kept in a high vacuum, and N2 gas as a reaction gas is introduced from the bottom of the vessel to flow the iron powder, while nitriding is performed by glow discharge. Perform processing. At this time, the nitriding conditions are appropriately set so that the produced iron nitride will surely be mainly composed of Fe4N. By performing the nitriding treatment in this manner, agglomeration of the powder particles can be avoided and the acicular particle shape can be maintained. Therefore, Fe4N, which has conventionally been difficult to use in practice despite having magnetic properties suitable for magnetic storage media, has been unable to maintain its acicular particles due to agglomeration during nitriding. , it becomes possible to apply it as a magnetic storage medium.
【0013】なお、最終的に形成されたFe4 N粒子
は、磁気特性上、そのアスペクト比が6〜9の範囲にな
るように、出発原料及び窒化条件等を調整することが好
ましい。このように窒化処理が終了した後、粒子粉末を
バインダ−中に分散させて磁性塗料を作成し、これを基
体上に塗布し、磁気記憶媒体を得る。[0013] In view of magnetic properties, it is preferable to adjust the starting materials, nitriding conditions, etc. so that the finally formed Fe4N particles have an aspect ratio in the range of 6 to 9. After the nitriding process is completed in this way, the particles are dispersed in a binder to create a magnetic paint, which is applied onto a substrate to obtain a magnetic storage medium.
【0014】Fe4 Nは、上述したように、耐酸化性
が良好でありかつ磁気記憶媒体として良好な磁気特性を
有しているため、Fe4 Nを使用することにより耐酸
化性に優れしかも磁気特性が良好な磁気記憶媒体を得る
ことができる。As mentioned above, Fe4N has good oxidation resistance and good magnetic properties as a magnetic storage medium, so by using Fe4N, it has excellent oxidation resistance and magnetic properties. However, a good magnetic storage medium can be obtained.
【0015】なお、長手方向の長さが10μm程度以下
の微粉は、上述のような浮遊流動の際に容器内の反応部
分の上方へ飛散してしまい、均一な流動層を形成するこ
とが困難となる。従って、この場合には、容器上部の周
囲に電磁石等の磁場発生手段を設け、これにより粉末に
磁場を印加して粉末粒子を掃引し、粉末粒子の飛散を防
止することが効果的である。この際の磁場印加の態様と
しては、複数段の電磁石を上下方向に沿って並設し、格
段の電磁石に交流を順次位相を変えて通電することが好
ましい。この際の磁場の強さは、供給するガスの速度等
により適宜調節する必要がある。[0015] Note that fine powder with a length of about 10 μm or less in the longitudinal direction is scattered above the reaction area in the container during the above-mentioned floating flow, making it difficult to form a uniform fluidized bed. becomes. Therefore, in this case, it is effective to provide a magnetic field generating means such as an electromagnet around the upper part of the container, apply a magnetic field to the powder, sweep the powder particles, and prevent the powder particles from scattering. As for the mode of applying the magnetic field at this time, it is preferable that a plurality of electromagnets are arranged in parallel along the vertical direction, and alternating current is applied to the electromagnets in sequence while changing the phase. The strength of the magnetic field at this time needs to be appropriately adjusted depending on the speed of the gas to be supplied.
【0016】また、このような磁場印加と共に、反応容
器に振動を付加することにより、粉末粒子を下方に搬送
することができ、粉末粒子の飛散を一層効果的に防止す
ることができる。また、さらに反応容器の下部に磁場印
加手段を設け、これによる印加磁場によって、粉末粒子
が反応容器内の反応部位から落下することを防止するこ
ともできる。[0016] In addition to applying such a magnetic field, by applying vibration to the reaction vessel, the powder particles can be transported downward, and scattering of the powder particles can be more effectively prevented. Furthermore, it is also possible to further provide a magnetic field applying means at the lower part of the reaction vessel, and to apply the magnetic field thereby to prevent powder particles from falling from the reaction site within the reaction vessel.
【0017】[0017]
【実施例】以下、この発明の実施例について説明する。[Embodiments] Examples of the present invention will be described below.
【0018】先ず、針状ゲ−サイトを水素還元して針状
鉄を得た。この針状鉄のアスペクト比は約9であり、平
均の粒子の長さは約0.3μmであった。次いで、容器
内に針状鉄を装入し、下方からNH3 ガス及びH2
を装入して流動層を形成しながら窒化を行った。この際
の窒化は、NH3 /H2 を90/10〜50/50
とし、温度を80〜450℃に設定して行い、処理後1
0〜30分間で回収した。なお、この処理においては、
処理温度に応じてガスの割合を変化させた。この処理の
結果Fe4 Nの針状粒子粉末が得られた。この針状粒
子粉末の磁場−磁束密度曲線の一例を図2に示す。この
図に示すように、良好なヒステリシスカ−ブの角型比が
得られることが確認された。また、NH3 /H2 を
80/20に設定し、300℃で処理したものについて
は、残留磁束密度が2300〜6000Gauss 、
保磁力が1000〜2000 Oeと磁気記憶媒体と
して良好な特性を有していることが確認された。First, acicular goethite was reduced with hydrogen to obtain acicular iron. The aspect ratio of this acicular iron was about 9, and the average particle length was about 0.3 μm. Next, needle iron is charged into the container, and NH3 gas and H2 are poured from below.
The nitriding was carried out while forming a fluidized bed. At this time, nitriding is carried out using NH3 /H2 in a ratio of 90/10 to 50/50.
The temperature was set at 80 to 450℃, and after treatment 1
It was collected in 0-30 minutes. In addition, in this process,
The proportion of gas was varied depending on the processing temperature. As a result of this treatment, acicular particle powder of Fe4N was obtained. An example of the magnetic field-magnetic flux density curve of this acicular particle powder is shown in FIG. As shown in this figure, it was confirmed that a good squareness ratio of the hysteresis curve was obtained. In addition, for those treated at 300°C with NH3 /H2 set to 80/20, the residual magnetic flux density was 2300 to 6000 Gauss,
It was confirmed that the coercive force was 1,000 to 2,000 Oe, and that it had good characteristics as a magnetic storage medium.
【0019】次に、このような窒化鉄粉末を塗布した磁
気記憶媒体と従来のマグネタイト膜の磁気記憶媒体とを
温度60℃、湿度99%の環境下に保持して耐環境性を
試験した。この試験においては、これら記憶媒体を1週
間毎に取り出して、これらの残留磁束密度を測定した。
その結果を図3に示す。この図から明らかなように、針
状の窒化鉄粉を用いた記憶媒体は4週間後も飽和磁束密
度の低下が少ないのに対し、従来の記憶媒体では1週間
の間に飽和磁束密度が大きく低下することが確認された
。Next, a magnetic storage medium coated with such iron nitride powder and a conventional magnetic storage medium made of a magnetite film were maintained in an environment of a temperature of 60° C. and a humidity of 99% to test their environmental resistance. In this test, these storage media were removed every week and their residual magnetic flux densities were measured. The results are shown in FIG. As is clear from this figure, the saturation magnetic flux density of the storage medium using acicular iron nitride powder does not decrease much even after 4 weeks, whereas the saturation magnetic flux density of the conventional storage medium decreases significantly within 1 week. It was confirmed that this decreases.
【0020】[0020]
【発明の効果】この発明によれば、針状のFe4 N粒
子を磁気記憶媒体の磁性粉として用いることができるの
で、耐酸化性に優れしかも磁気特性が良好な磁気記憶媒
体を得ることができる。[Effects of the Invention] According to the present invention, since acicular Fe4N particles can be used as magnetic powder in a magnetic storage medium, a magnetic storage medium with excellent oxidation resistance and good magnetic properties can be obtained. .
【図1】鉄−窒素系の状態図。FIG. 1: Phase diagram of the iron-nitrogen system.
【図2】磁場−磁束密度曲線のヒステリシスカ−ブを示
す図。FIG. 2 is a diagram showing a hysteresis curve of a magnetic field-magnetic flux density curve.
【図3】飽和磁束密度の経時変化を示す図。FIG. 3 is a diagram showing changes in saturation magnetic flux density over time.
Claims (3)
鉄粒子粉末を形成し、この鉄粒子粉末を浮遊流動させて
分散させつつ、該粉末を窒化処理してFe4 Nを形成
し、このFe4 Nが形成された粒子粉末を基体に塗布
することを特徴とする磁気記憶媒体の製造方法。[Claim 1] Acicular goethite particles are reduced to form acicular iron particle powder, and while the iron particle powder is suspended and flowed and dispersed, the powder is nitrided to form Fe4N. , a method for manufacturing a magnetic storage medium, comprising applying the Fe4N formed particle powder to a substrate.
粉末を装入し、この容器の下方から流体を送入して行う
ことを特徴とする請求項1に記載の磁気記憶媒体。2. The magnetic storage medium according to claim 1, wherein the floating flow of the iron powder is performed by charging the iron powder into a container and introducing a fluid from below the container.
場を印加しながら行うことを特徴とする磁気記憶媒体の
製造方法。3. A method for manufacturing a magnetic storage medium, wherein the floating flow of the iron powder is performed while applying a magnetic field to the iron powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2405196A JPH04221427A (en) | 1990-12-21 | 1990-12-21 | Manufacture of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2405196A JPH04221427A (en) | 1990-12-21 | 1990-12-21 | Manufacture of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04221427A true JPH04221427A (en) | 1992-08-11 |
Family
ID=18514824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2405196A Pending JPH04221427A (en) | 1990-12-21 | 1990-12-21 | Manufacture of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04221427A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015507354A (en) * | 2011-12-15 | 2015-03-05 | ケース ウェスターン リザーヴ ユニヴァーシティ | Rare earth element-free nitride magnet obtained by transition and method for producing the same |
-
1990
- 1990-12-21 JP JP2405196A patent/JPH04221427A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015507354A (en) * | 2011-12-15 | 2015-03-05 | ケース ウェスターン リザーヴ ユニヴァーシティ | Rare earth element-free nitride magnet obtained by transition and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dronskowski | The little maghemite story: A classic functional material | |
JP3848486B2 (en) | Iron nitride magnetic powder material for magnetic recording medium, method for producing the same, and magnetic recording medium | |
US3770500A (en) | Magnetic materials and method of making same | |
JP2000277311A5 (en) | ||
JPH04221427A (en) | Manufacture of magnetic recording medium | |
JP2625708B2 (en) | Method for producing ultra-high coercivity metal powder | |
JPH0123402B2 (en) | ||
JPS61196502A (en) | Magnetic material and its manufacturing method | |
JP3169105B2 (en) | Needle-like alloy magnetic fine particle powder containing iron as a main component and method for producing the same | |
JPS62158801A (en) | Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof | |
JPS6258604A (en) | Method for producing magnetic iron powder for magnetic recording | |
JPH0143683B2 (en) | ||
JPH0743824B2 (en) | Magnetic recording medium and manufacturing method thereof | |
JP3171223B2 (en) | Method for producing acicular magnetic particle powder | |
JPH04218607A (en) | Sintered compact having pore in surface | |
JPS627635A (en) | Cobalt modified ferric oxide particle | |
JP3242102B2 (en) | Magnetic powder and method for producing the same | |
JPH047083B2 (en) | ||
KR900005686B1 (en) | Acicular particle material containing iron carbide | |
JPH04132618A (en) | Production of cobalt-containing ferromagnetic iron oxide particulate | |
JPH0532421A (en) | Production of needlelike magnetic iron oxide grain powder | |
JPH0235627A (en) | magnetic recording medium | |
JPH0782924B2 (en) | Method for producing powder of metallic magnetic particles containing iron as the main component and having an isotropic shape | |
JPH0312027A (en) | Magnetic recording medium | |
JPH03199301A (en) | Metal magnetic powder, its manufacturing method and magnetic recording medium |