JPH04221091A - Production of electrolytic copper foil and apparatus therefor - Google Patents
Production of electrolytic copper foil and apparatus thereforInfo
- Publication number
- JPH04221091A JPH04221091A JP2411764A JP41176490A JPH04221091A JP H04221091 A JPH04221091 A JP H04221091A JP 2411764 A JP2411764 A JP 2411764A JP 41176490 A JP41176490 A JP 41176490A JP H04221091 A JPH04221091 A JP H04221091A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- anode
- thickness
- cathode
- anodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 239000011889 copper foil Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 claims abstract description 10
- 230000005611 electricity Effects 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 239000008151 electrolyte solution Substances 0.000 claims description 9
- 239000011888 foil Substances 0.000 abstract description 12
- 239000006185 dispersion Substances 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 12
- 230000007423 decrease Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、電解銅箔の製造方法及
び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing electrolytic copper foil.
【0002】0002
【従来の技術】電解銅箔は、不溶性金属製の陽極(アノ
ード)と表面を鏡面研磨された金属製陰極(カソード)
胴(ドラム)との間に電解液を流しそして陽極及び陰極
胴間に電位を与えることにより、陰極胴表面に銅を電着
させそして所定厚となった電着物を陰極胴から剥離する
ことにより製造される。得られる銅箔は生箔と呼ばれ、
爾後に様々の表面処理を施して印刷回路その他向けの製
品とされる。[Prior art] Electrolytic copper foil consists of an insoluble metal anode and a metal cathode with a mirror-polished surface.
By flowing an electrolytic solution between the drum and applying a potential between the anode and cathode drums, copper is electrodeposited on the surface of the cathode drum, and the electrodeposited material, which has reached a predetermined thickness, is peeled off from the cathode drum. Manufactured. The resulting copper foil is called raw foil.
It was later subjected to various surface treatments and made into products for printed circuits and other uses.
【0003】図5は、従来からの電解銅箔製造における
陰極胴と陽極との配置関係を示す説明図である。電解液
を収蔵する電解槽(図示なし)において、陰極胴1は電
解液に部分的に浸漬された状態で回転しうるよう設置さ
れる(ここでは時計方向)。陰極胴1の浸漬された、お
およそ下半部分を覆って且つ回転胴表面から一定間隔を
おいて例えば2枚の陽極5が配設される。電解槽内で2
枚の陽極5の間の6時の位置(短針の位置、以下同じ)
から電解液が供給されそして電解液は陰極胴と陽極との
間の間隙を通して流れて陽極上縁から溢出して循環され
る。整流器6が陰極胴と陽極との間に所定の電圧を維持
している。FIG. 5 is an explanatory diagram showing the arrangement relationship between a cathode body and an anode in conventional production of electrolytic copper foil. In an electrolytic cell (not shown) that stores an electrolytic solution, the cathode body 1 is installed so as to be able to rotate (here, clockwise) while being partially immersed in the electrolytic solution. For example, two anodes 5 are disposed to cover approximately the immersed lower half of the cathode barrel 1 and at a constant distance from the rotating barrel surface. 2 in the electrolytic cell
6 o'clock position between the two anodes 5 (position of the hour hand, same below)
An electrolyte is supplied from the cathode shell and the anode, and the electrolyte flows through the gap between the cathode body and the anode, overflows from the upper edge of the anode, and is circulated. A rectifier 6 maintains a predetermined voltage between the cathode shell and the anode.
【0004】陰極胴1が回転するにつれ、電解液から電
着する銅は厚みを増し、およそ12時の位置において所
定の厚さとなった生箔が適宜の剥離手段により剥離され
て巻き取られる。As the cathode body 1 rotates, the thickness of the copper electrodeposited from the electrolyte increases, and at approximately the 12 o'clock position, the raw foil having a predetermined thickness is peeled off by an appropriate peeling means and wound up.
【0005】このようにして製造された生箔は、陽極−
陰極間の距離、供給される電解液の流速あるいは供給さ
れる電気量等の不均一性により、その厚みにバラツキが
生じる。[0005] The raw foil produced in this way is used as an anode.
The thickness varies due to non-uniformity in the distance between the cathodes, the flow rate of the electrolyte supplied, the amount of electricity supplied, etc.
【0006】一方で、電解銅箔製造設備においては、或
る一定期間の運転を終ると、特に陽極の減耗により陽極
及び陰極間の間隔にムラが生じて、使用に耐えない状態
となる。特に端部と中央部とでは電解液の流れ状況が異
なり、巾方向の厚みのバラツキが生じる。On the other hand, in electrolytic copper foil manufacturing equipment, after a certain period of operation, the spacing between the anode and cathode becomes uneven, especially due to wear and tear of the anode, and the equipment becomes unusable. In particular, the flow of the electrolyte differs between the ends and the center, resulting in variations in the thickness in the width direction.
【0007】このように、製造される電解銅箔は、図5
に示すように、長さ方向及び巾方向厚みにバラツキを生
じている。The electrolytic copper foil produced in this way is shown in FIG.
As shown in the figure, there are variations in the thickness in the length direction and width direction.
【0008】電解銅箔の巾方向の厚みの均一化を達成す
るためには、従来次のような対策がとられてきた:(1
)陽極ミリング:電解銅箔製造設備においては、陽極は
或る一定期間の運転を終ると、その減耗により陽極及び
陰極間にムラが生じ、使用に耐えない状態となる。
使用に耐えない状態とは、電解電圧が異常に上昇した状
態或いは製造された銅箔の厚みのバラツキが激しい状態
を云う。この状態を回避するために、一定期間使用され
た陽極は特殊な切削機械で表面を円筒加工する。
(2)陽極部分削り:陽極ミリング後製造された銅箔の
巾方向の厚みのバラツキを測定し、そのデータに応じて
陽極の表面を部分的に削り取り、銅箔の厚みを修正する
。In order to achieve a uniform thickness in the width direction of electrolytic copper foil, the following measures have conventionally been taken: (1
) Anode milling: In electrolytic copper foil manufacturing equipment, after the anode has been operated for a certain period of time, unevenness occurs between the anode and cathode due to wear and tear, and the anode becomes unusable. A state that cannot be used refers to a state in which the electrolytic voltage has increased abnormally or a state in which the thickness of the manufactured copper foil has large variations. To avoid this situation, the surface of anodes that have been used for a certain period of time is machined into a cylinder using a special cutting machine. (2) Partial scraping of the anode: After anode milling, the thickness variation in the width direction of the copper foil produced is measured, and according to the data, the surface of the anode is partially scraped off to correct the thickness of the copper foil.
【0009】この他、陽極の少なくとも一部を複数個の
巾方向厚み均一化用分割陽極として構成し、電解銅箔の
巾方向厚みが均一となるようこれら分割陽極への電気量
を個別に制御することが提唱され、これは操業中に巾方
向厚みを制御しうる点で優れており、大きな成果を挙げ
ている。In addition, at least a part of the anode is constituted as a plurality of divided anodes for making the thickness uniform in the width direction, and the amount of electricity to these divided anodes is individually controlled so that the thickness in the width direction of the electrolytic copper foil is uniform. This method is excellent in that the thickness in the width direction can be controlled during operation, and has achieved great results.
【0010】ところが、銅箔の長さ方向厚みのバラツキ
に関しては、これまで何故かほとんど問題認識されず、
現在に至っている。[0010] However, for some reason, there has been little awareness of the problem with the variation in the thickness of copper foil in the longitudinal direction.
It continues to this day.
【0011】[0011]
【発明が解決しようとする課題】銅箔は主としてプリン
ト配線板に使用されるが、そのプリント配線板の高密度
化に伴い、回路の狭巾化、多層化による一層当たりの厚
みの低下により、銅箔の薄箔化が進展すると同時に、銅
箔の厚みの均一化への要求は益々厳しくなっている。[Problems to be Solved by the Invention] Copper foil is mainly used for printed wiring boards, but as printed wiring boards become more dense, circuits become narrower and the thickness per layer decreases due to multilayering. At the same time as the copper foil becomes thinner, the demand for uniform thickness of the copper foil becomes more and more severe.
【0012】それに伴い、従来看過されてきた長さ方向
厚みの均一化の解決も重大な課題となっている。[0012] Along with this, it has become an important issue to solve the problem of uniformity of the thickness in the longitudinal direction, which has been overlooked in the past.
【0013】本発明の課題は、操業中の長さ方向の厚み
修正を可能とする新たな電解銅箔製造方法及び装置を開
発することである。An object of the present invention is to develop a new method and apparatus for producing electrolytic copper foil that allows for longitudinal thickness correction during operation.
【0014】[0014]
【課題を解決するための手段】本発明者等は、陽極の少
なくとも一部を複数個の長さ方向厚み均一化用分割陽極
として構成し、製造された電解銅箔の長さ方向厚みの変
化に応じて長さ方向厚みが均一となるよう分割陽極への
電気量を制御することを想到した。[Means for Solving the Problems] The present inventors configured at least a part of the anode as a plurality of divided anodes for making the thickness uniform in the longitudinal direction, and the change in the longitudinal thickness of the produced electrolytic copper foil. We came up with the idea of controlling the amount of electricity to the divided anodes so that the thickness in the longitudinal direction is uniform according to the thickness.
【0015】この知見に基づいて、本発明は、(1)回
転自在の陰極胴と該陰極胴に対面する少なくとも1枚の
陽極との間に電解液を流し、該陰極胴表面に銅を電着さ
せそして電着した銅箔を該陰極胴から剥離する電解銅箔
の製造方法において、前記陽極の少なくとも一部を長さ
方向厚み均一化用分割陽極として構成し、そして該長さ
方向厚み均一化用分割陽極に供給する電気量を個別に制
御することにより銅箔の長さ方向厚みを均一化すること
を特徴とする電解銅箔の製造方法及び(2)長さ方向厚
み均一化分割陽極に供給する電気量を、陰極胴一周当た
りの銅箔の長さ方向厚みのパターンに基づいて個別に制
御することを特徴とする前記(1)記載の電解銅箔の製
造方法、並びに(3)回転自在の陰極胴と該陰極胴に対
面する少なくとも1枚の陽極との間に電解液を流し、該
陰極胴表面に銅を電着させそして電着した銅箔を該陰極
胴から剥離する電解銅箔の製造装置において、前記陽極
の少なくとも一部を長さ方向厚み均一化用分割陽極とし
て構成し、そして該長さ方向厚み均一化用分割陽極に供
給する電気量を個別に制御する手段を備えることにより
銅箔の長さ方向厚みを均一化することを特徴とする電解
銅箔の製造装置、及び(4)長さ方向厚み均一化分割陽
極に供給する電気量を、陰極胴一周当たりの銅箔の長さ
方向厚みのパターンに基づいて個別に制御する手段を備
えていることを特徴とする前記(3)記載の電解銅箔の
製造装置を提供する。Based on this knowledge, the present invention provides (1) flowing an electrolyte between a freely rotatable cathode shell and at least one anode facing the cathode shell, and depositing copper on the surface of the cathode shell. A method for manufacturing an electrolytic copper foil comprising depositing and peeling the electrodeposited copper foil from the cathode body, wherein at least a portion of the anode is configured as a segmented anode for making the thickness uniform in the longitudinal direction; A method for manufacturing an electrolytic copper foil, characterized in that the lengthwise thickness of the copper foil is made uniform by individually controlling the amount of electricity supplied to the divided anodes, and (2) a divided anode with uniform longitudinal thickness. The method for manufacturing an electrolytic copper foil according to (1) above, characterized in that the amount of electricity supplied to each cathode body is individually controlled based on the pattern of the longitudinal thickness of the copper foil per circumference of the cathode body, and (3) Electrolysis in which an electrolytic solution is flowed between a freely rotatable cathode shell and at least one anode facing the cathode shell, copper is electrodeposited on the surface of the cathode shell, and the electrodeposited copper foil is peeled off from the cathode shell. In the copper foil manufacturing apparatus, at least a part of the anode is configured as a segmented anode for making the thickness uniform in the longitudinal direction, and means for individually controlling the amount of electricity supplied to the segmented anode for making the thickness uniform in the longitudinal direction. (4) An electrolytic copper foil manufacturing apparatus characterized in that the thickness of the copper foil is made uniform in the longitudinal direction by providing an electrolytic copper foil manufacturing apparatus, and (4) the amount of electricity supplied to the divided anode for making the thickness uniform in the longitudinal direction is equal to There is provided an electrolytic copper foil manufacturing apparatus according to the above (3), characterized in that the apparatus is equipped with means for individually controlling the lengthwise thickness pattern of the copper foil.
【0016】[0016]
【作用】本発明に従えば、電解銅箔生箔の長さ方向厚み
のばらつきを低減するために、図5において既に説明し
た陽極の、少なくとも一部、好ましくは少なくとも銅箔
取り出し側の1枚或いはその一部が巾方向に分割された
複数個の長さ方向箔厚み均一化用分割陽極として構成さ
れる。もちろん、既存の陽極に追加してこれら長さ方向
箔厚み均一化用分割陽極を補助陽極として設置すること
が出来る。[Operation] According to the present invention, in order to reduce the variation in the longitudinal thickness of the raw electrolytic copper foil, at least a portion of the anode already explained in FIG. 5, preferably at least one sheet on the copper foil extraction side. Alternatively, a portion thereof may be configured as a plurality of divided anodes for making the foil thickness uniform in the length direction by being divided in the width direction. Of course, in addition to the existing anode, these divided anodes for making the foil thickness uniform in the longitudinal direction can be installed as auxiliary anodes.
【0017】[0017]
【実施例】図1及び図2には、2枚の陽極のうちの銅箔
引出し側の陽極の一部を長さ方向箔厚み均一化用分割陽
極(以下、単に分割陽極という)9として構成した例を
示す。また、分割陽極は、巾方向に分割せずに1枚巾の
分割陽極としても良い。[Example] In FIGS. 1 and 2, a part of the anode on the copper foil drawer side of the two anodes is configured as a split anode (hereinafter simply referred to as split anode) 9 for making the foil thickness uniform in the longitudinal direction. Here is an example. Moreover, the divided anode may be a single sheet width divided anode without being divided in the width direction.
【0018】図3は、長さ方向分割陽極を9を銅箔引出
し側陽極5の全体にわたって複数列設けた例であるり、
これら複数列の各々を巾方向に分割せずに1枚巾の分割
陽極としても良い。FIG. 3 shows an example in which a plurality of longitudinally divided anodes 9 are provided over the entire copper foil drawer side anode 5.
Each of these multiple rows may not be divided in the width direction, but may be made into a single width divided anode.
【0019】図4は、銅箔引出し側のみならず、電着開
始側の陽極の一部をも長さ方向分割陽極として構成した
例を示す。FIG. 4 shows an example in which not only the anode on the copper foil draw-out side but also a part of the anode on the electrodeposition start side is constructed as a longitudinally divided anode.
【0020】巾方向分割数並びに分割陽極の列数は、多
い程きめ細かな制御が出来るが、それだけ作製及びメン
テナンスが大変であり、製造すべき銅箔の巾並びに電解
銅箔製造設備の状況に応じて、一列当たり10〜40個
、通常20〜30個前後に分割される。[0020] The number of divisions in the width direction and the number of rows of divided anodes can be controlled more precisely as they increase, but production and maintenance are accordingly more difficult, and the number of divisions in the width direction and the number of rows of divided anodes can be controlled accordingly. Each row is divided into 10 to 40 pieces, usually around 20 to 30 pieces.
【0021】図1及び図2の例をもって、電解銅箔製造
の操業態様を説明する。[0021] The operational mode of electrolytic copper foil production will be explained using the examples shown in FIGS. 1 and 2.
【0022】硫酸銅の硫酸溶液のような電解液を収蔵す
る電解槽(図示なし)において、例えばステンレス鋼或
いはチタン製の、回転円筒体である陰極胴1は電解液に
部分的に浸漬され、ここでは時計方向に回転しうるよう
支持装置によって設置されている。In an electrolytic cell (not shown) containing an electrolytic solution, such as a sulfuric acid solution of copper sulfate, a rotating cylindrical cathode body 1, made of stainless steel or titanium, for example, is partially immersed in the electrolytic solution; Here it is mounted by means of a support device so that it can be rotated clockwise.
【0023】陰極胴1の浸漬された、おおよそ下半部分
を覆って且つ陰極胴表面から一定間隔をおいて例えば2
枚の円弧状の不溶性陽極5が配設される。不溶性陽極は
、鉛、鉛とアンチモン、銀、インジウム等との鉛合金等
から作製される。別様には、この不溶性陽極は、DSE
或いはDSA(Dimension StableE
lecrode,Anode)と呼ばれる、チタンに代
表されるバルブ金属上に主として白金族金属或いはその
酸化物を被覆した構造のものとなしうる。陽極は、図示
のように陰極胴のおおよそ下1/4部分に沿って配設さ
れる2枚の陽極シートから構成するのが好ましいが、場
合によっては1枚、3枚或いは4枚といった、もっと多
くの陽極シートから構成することも出来る。[0023] Covering approximately the immersed lower half of the cathode shell 1 and spaced apart from the surface of the cathode shell by, for example, two
A circular arc-shaped insoluble anode 5 is provided. The insoluble anode is made of lead, a lead alloy of lead and antimony, silver, indium, or the like. Alternatively, the insoluble anode is DSE
Or DSA (Dimension StableE
It may have a structure in which a valve metal represented by titanium is coated mainly with a platinum group metal or an oxide thereof. The anode preferably consists of two anode sheets disposed along approximately the lower quarter of the cathode barrel as shown, but in some cases more such as one, three or four sheets may be used. It can also be constructed from many anode sheets.
【0024】本具体例に従えば、こうした陽極の銅箔取
り出し側の1枚の一部が、前述したような分割陽極9と
して構成されるのである。適宜数の分割陽極9’、9”
、・・・・が形成される。前述したように、長さ方向分
割陽極9は、巾方向に分割せずに1枚巾の分割陽極とし
ても良い。According to this specific example, a portion of one sheet of the anode on the copper foil extraction side is configured as the split anode 9 as described above. Appropriate number of divided anodes 9', 9''
,... are formed. As described above, the longitudinally divided anode 9 may be a single width divided anode without being divided in the width direction.
【0025】陰極胴と陽極との間隔は通常2〜100m
mの範囲で一定位置に維持される。間隔が狭い程、電気
量が少なくてすむが、膜厚及び品質の管理が難しくなる
。[0025] The distance between the cathode body and the anode is usually 2 to 100 m.
It is maintained at a constant position within a range of m. The narrower the spacing, the less electricity is required, but it becomes more difficult to control film thickness and quality.
【0026】陰極胴と陽極との間隔は電解液の流通路を
形成する。2枚の陽極5間の6時の位置から電解液が槽
内の適宜のポンプ(図示なし)を通して供給されそして
電解液は陰極胴と陽極との間の間隙を通して両側に流れ
て各陽極上縁から溢出して循環される。The gap between the cathode body and the anode forms a flow path for the electrolyte. Electrolyte is supplied from the 6 o'clock position between the two anodes 5 through a suitable pump (not shown) in the tank, and the electrolyte flows to both sides through the gap between the cathode body and the anode to the upper edge of each anode. It overflows and is circulated.
【0027】整流器6が陰極胴と陽極との間に所定の電
圧を維持している。A rectifier 6 maintains a predetermined voltage between the cathode shell and the anode.
【0028】陰極胴1が回転するにつれ、電解液からの
銅の電着は、ほぼ3時の位置から始まり、次第に厚みを
増し、ほぼ9時の位置において電着を終えて所定の厚み
となり、おおよそ12時の位置において所定の厚みとな
った生箔が適宜の剥離手段により剥離されて巻き取られ
る。As the cathode body 1 rotates, the electrodeposition of copper from the electrolyte starts at approximately the 3 o'clock position, gradually increases in thickness, and ends at approximately the 9 o'clock position to reach a predetermined thickness. The raw foil, which has reached a predetermined thickness at approximately the 12 o'clock position, is peeled off by an appropriate peeling means and wound up.
【0029】しかしながら、前述したように、供給され
る電解液の流速あるいは供給される電気量等の不均一性
により、生箔に長さ方向厚みの局所的変動が生ずる。However, as described above, local variations in the thickness in the longitudinal direction occur in the green foil due to non-uniformity in the flow rate of the electrolytic solution supplied or the amount of electricity supplied.
【0030】本実施例に従えば、実際に製造された銅箔
サンプルの長さ及び巾方向幾つかの位置での陰極胴一周
当たりの厚みパターンを測定し、その測定結果に応じて
子整流器7が、個々の分割陽極と陰極胴との間の電流量
を調整する。According to this embodiment, the thickness pattern per circumference of the cathode body is measured at several positions in the length and width directions of an actually manufactured copper foil sample, and the child rectifier 7 is adjusted according to the measurement results. adjusts the amount of current between the individual segmented anodes and the cathode body.
【0031】本発明において、陰極胴一周当たりの厚み
のパターンとは、陰極胴が一周したときに製造された銅
箔を、例えば長さ方向に36そして巾方向に20カ所に
分割した場合には36×20=720カ所の銅箔の厚み
を測定し、その720カ所の厚みの変動(バラツキ)の
状態を示したものをいう。In the present invention, the thickness pattern per circumference of the cathode shell means that when the copper foil produced when the cathode shell goes around is divided into, for example, 36 parts in the length direction and 20 parts in the width direction, The thickness of the copper foil was measured at 36×20=720 locations, and the state of variation in the thickness at the 720 locations was shown.
【0032】長さ方向及び巾方向の分割数を増やすほど
、銅箔の厚みの変動は少なくなるけれども、このための
制御装置のメンテナンス等を考慮に入れると、通常は1
0〜40が好ましい。Although the variation in the thickness of the copper foil decreases as the number of divisions in the length and width directions increases, if maintenance of the control device for this purpose is taken into consideration, normally 1.
0-40 is preferred.
【0033】銅箔の巾方向の各位置での厚みの測定は、
適宜のサンプリングによって単位面積当たりの重量を測
定することにより簡易に行ないうるし、静電容量検知型
のような厚み測定装置を用いることも出来る。Measurement of the thickness at each position in the width direction of the copper foil is as follows:
This can be easily done by measuring the weight per unit area by appropriate sampling, or a thickness measuring device such as a capacitance sensing type can also be used.
【0034】各分割陽極間には好ましくは、絶縁シール
が設けられる。絶縁シール材としては、PVC板、常温
加硫ゴム(RTV:商品名)等が使用出来る。この外に
も、例えば、絶縁性接着剤で隣り合う分割陽極を接合す
ることにより或いは絶縁膜を挟んで分割陽極を一体化す
ることによりもたらされる。An insulating seal is preferably provided between each segmented anode. As the insulating seal material, a PVC board, room temperature vulcanized rubber (RTV: trade name), etc. can be used. In addition to this, it can also be achieved, for example, by joining adjacent divided anodes with an insulating adhesive or by integrating the divided anodes with an insulating film in between.
【0035】本発明に従えば、分割陽極の個々の制御は
それぞれの設定位置を制御することによっても実施しう
る。電解液中で陽極を支持する支持装置とは別に、分割
陽極を個別に支持しそして個々の分割陽極を陰極胴に近
付け或いはそこから引離すための手段が設置される。こ
れら分割陽極が、螺子機構、ピストン−シリンダ機構等
の適宜の位置調節機構により前後に移動される。特定部
位に相当する特定の分割陽極の支持棒が位置調節機構に
より変位される。分割陽極が陰極胴に近付く程電流密度
は高まり、電着銅の厚みは増大する。逆に分割陽極を陰
極胴から引き離す程、電流密度は減少して電着銅厚みは
減少する。According to the invention, individual control of the segmented anodes can also be carried out by controlling their respective set positions. Apart from the support device for supporting the anodes in the electrolyte, means are provided for individually supporting the segmented anodes and for moving the individual segmented anodes towards or away from the cathode barrel. These divided anodes are moved back and forth by an appropriate position adjustment mechanism such as a screw mechanism or a piston-cylinder mechanism. A support rod of a specific divided anode corresponding to a specific region is displaced by a position adjustment mechanism. The closer the segmented anode is to the cathode shell, the higher the current density and the greater the thickness of the electrodeposited copper. Conversely, as the divided anode is separated from the cathode body, the current density decreases and the thickness of the electrodeposited copper decreases.
【0036】こうして本発明に従えば、長さ方向箔厚み
均一化用分割陽極を利用して、そこに供給する電気量を
個別に制御するか、或いはその設定位置を個別に制御す
ることにより製造される電解銅箔の長さ方向厚みを均一
化することができる。Thus, according to the present invention, manufacturing can be carried out by individually controlling the amount of electricity supplied to the divided anodes for making the foil thickness uniform in the longitudinal direction, or by individually controlling the setting positions thereof. The longitudinal thickness of the electrolytic copper foil can be made uniform.
【0037】(実施例1)直径2.0m及び巾1.3m
の陰極胴と図示したように陰極胴のほぼ下半部分に沿っ
て配設された巾1.3mの、2枚の陽極を使用して硫酸
銅溶液を用いて厚み35μmの銅箔の製造を行なった。
本発明に従う陽極構成としては、図1及び図2に示した
構成を使用し、そして長さ方向分割陽極を20個の分割
陽極から構成した。(Example 1) Diameter 2.0m and width 1.3m
A copper foil with a thickness of 35 μm was manufactured using a copper sulfate solution using a cathode body and two anodes with a width of 1.3 m arranged along the lower half of the cathode body as shown in the figure. I did it. As the anode configuration according to the present invention, the configuration shown in FIGS. 1 and 2 was used, and the longitudinally segmented anode was composed of 20 segmented anodes.
【0038】そして、あらかじめ測定された、陰極胴一
周当たりの長さ方向厚みのパターン(巾方向:20×長
さ方向:36=720)に基づいて、個々の陽極をパソ
コンを用い、0.1〜10A/dm2 の範囲で調節し
た。この結果、本発明方法によって長さ方向の厚みの変
動は小さくなり、従来の約3%の変動から0.5%以下
の変動へと低減することができた。Then, based on the pre-measured pattern of the longitudinal thickness per circumference of the cathode shell (width direction: 20 x length direction: 36 = 720), each anode was sized to a thickness of 0.1 by using a computer. It was adjusted in the range of ~10 A/dm2. As a result, the variation in the thickness in the longitudinal direction was reduced by the method of the present invention, and was able to be reduced from the conventional variation of about 3% to 0.5% or less.
【0039】(実施例2)本発明に従う陽極構成として
は、図5に示した銅箔の引き出し側の既存の陽極上に2
0個の分割陽極から成る長さ方向分割陽極を配設するこ
とにより構成し、実施例1と同様に厚み35μmの銅箔
を製造した。得られた銅箔の長さ方向の厚みの変動は0
.5%以下であった。(Example 2) As an anode structure according to the present invention, two
A copper foil having a thickness of 35 μm was manufactured in the same manner as in Example 1, by arranging longitudinally divided anodes consisting of 0 divided anodes. The thickness variation in the length direction of the obtained copper foil is 0.
.. It was less than 5%.
【0040】[0040]
【発明の効果】従来あまり考慮されることのなかった、
供給される電解液の流速あるいは供給される電気量等の
不均一性に起因する長さ方向の厚みのバラツキを低減す
ることに成功した。巾方向厚みのバラツキを制御する手
段と併用することにより、厚みの均一な高品質銅箔が製
造出来る。[Effect of the invention] This has not been considered much in the past.
We succeeded in reducing the variation in thickness in the length direction due to non-uniformity in the flow rate of the electrolyte supplied or the amount of electricity supplied. By using this method in combination with a means to control the variation in thickness in the width direction, high quality copper foil with uniform thickness can be manufactured.
【図1】2枚の陽極のうちの銅箔引出し側の陽極の一部
を箔厚み均一化用分割陽極として構成した実施例の、陰
極胴と陽極との配置関係を示す概略斜視図である。FIG. 1 is a schematic perspective view showing the arrangement relationship between the cathode body and the anode in an embodiment in which a part of the anode on the copper foil drawer side of the two anodes is configured as a divided anode for equalizing the foil thickness; .
【図2】図1の陽極の斜視図である。FIG. 2 is a perspective view of the anode of FIG. 1;
【図3】図2の銅箔引出し側陽極全体を複数列の長さ方
向分割陽極として構成した具体例の陽極の斜視図である
。3 is a perspective view of a specific example of an anode in which the entire copper foil drawer-side anode of FIG. 2 is constructed as a plurality of longitudinally divided anodes; FIG.
【図4】電着側陽極の一部をも長さ方向分割陽極として
構成した例を示す。FIG. 4 shows an example in which a part of the electrodeposited anode is also configured as a longitudinally divided anode.
【図5】従来からの電解銅箔製造における陰極胴と陽極
との配置関係を示す説明図である。FIG. 5 is an explanatory diagram showing the arrangement relationship between a cathode body and an anode in conventional electrolytic copper foil production.
1 陰極胴 2 中心軸 4 外周壁 5 陽極 6 整流器 7 子整流器 9 分割陽極 1 Cathode body 2 Central axis 4. Outer peripheral wall 5 Anode 6 Rectifier 7 Child rectifier 9 Split anode
Claims (4)
る少なくとも1枚の陽極との間に電解液を流し、該陰極
胴表面に銅を電着させそして電着した銅箔を該陰極胴か
ら剥離する電解銅箔の製造方法において、前記陽極の少
なくとも一部を長さ方向厚み均一化用分割陽極として構
成し、そして該長さ方向厚み均一化用分割陽極に供給す
る電気量を個別に制御することにより銅箔の長さ方向厚
みを均一化することを特徴とする電解銅箔の製造方法。Claim 1: An electrolytic solution is flowed between a rotatable cathode shell and at least one anode facing the cathode shell, copper is electrodeposited on the surface of the cathode shell, and the electrodeposited copper foil is attached to the cathode. In a method for producing an electrolytic copper foil that is peeled off from a shell, at least a portion of the anode is configured as a segmented anode for making the thickness uniform in the longitudinal direction, and the amount of electricity supplied to the segmented anode for making the thickness uniform in the longitudinal direction is individually controlled. 1. A method for producing electrolytic copper foil, characterized by making the thickness of the copper foil uniform in the longitudinal direction by controlling the thickness.
する電気量を、陰極胴一周当たりの銅箔の長さ方向厚み
のパターンに基づいて個別に制御することを特徴とする
請求項1の電解銅箔の製造方法。2. Claim 1, wherein the amount of electricity supplied to the divided anodes for making the thickness uniform in the longitudinal direction is individually controlled based on the pattern of the longitudinal thickness of the copper foil per circumference of the cathode body. A method for producing electrolytic copper foil.
る少なくとも1枚の陽極との間に電解液を流し、該陰極
胴表面に銅を電着させそして電着した銅箔を該陰極胴か
ら剥離する電解銅箔の製造装置において、前記陽極の少
なくとも一部を長さ方向厚み均一化用分割陽極として構
成し、そして該長さ方向厚み均一化用分割陽極に供給す
る電気量を個別に制御する手段を備えることにより銅箔
の長さ方向厚みを均一化することを特徴とする電解銅箔
の製造装置。3. An electrolytic solution is flowed between a rotatable cathode shell and at least one anode facing the cathode shell, copper is electrodeposited on the surface of the cathode shell, and the electrodeposited copper foil is attached to the cathode. In an apparatus for manufacturing electrolytic copper foil that is peeled off from a shell, at least a portion of the anode is configured as a segmented anode for making the thickness uniform in the longitudinal direction, and the amount of electricity supplied to the segmented anode for making the thickness uniform in the longitudinal direction is individually controlled. 1. An electrolytic copper foil manufacturing apparatus characterized by comprising means for controlling the thickness of the copper foil in the longitudinal direction.
する電気量を、陰極胴一周当たりの銅箔の長さ方向厚み
のパターンに基づいて個別に制御する手段を備えている
ことを特徴とする請求項3の電解銅箔の製造装置。4. The method further comprises means for individually controlling the amount of electricity supplied to the divided anodes for making the thickness uniform in the longitudinal direction based on the pattern of the longitudinal thickness of the copper foil per circumference of the cathode body. 4. The electrolytic copper foil manufacturing apparatus according to claim 3.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2411764A JP2506573B2 (en) | 1990-12-19 | 1990-12-19 | Method and apparatus for producing electrolytic copper foil |
TW080108694A TW239169B (en) | 1990-05-31 | 1991-11-05 | |
MYPI91002092A MY138622A (en) | 1990-12-19 | 1991-11-13 | Method of producing electrolytic copper foil |
DE69117155T DE69117155T2 (en) | 1990-12-19 | 1991-11-13 | Method and device for the electrolytic production of copper foils |
EP91119338A EP0491163B1 (en) | 1990-12-19 | 1991-11-13 | Method and apparatus for producing electrolytic copper foil |
KR1019910021865A KR940007609B1 (en) | 1990-12-19 | 1991-11-30 | Method and apparatus for producing electrolytic copper foil |
US07/965,115 US5326455A (en) | 1990-12-19 | 1992-10-22 | Method of producing electrolytic copper foil and apparatus for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2411764A JP2506573B2 (en) | 1990-12-19 | 1990-12-19 | Method and apparatus for producing electrolytic copper foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04221091A true JPH04221091A (en) | 1992-08-11 |
JP2506573B2 JP2506573B2 (en) | 1996-06-12 |
Family
ID=18520710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2411764A Expired - Lifetime JP2506573B2 (en) | 1990-05-31 | 1990-12-19 | Method and apparatus for producing electrolytic copper foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2506573B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000068465A1 (en) * | 1999-05-06 | 2000-11-16 | Union Steel Manufacturing Co., Ltd. | THE APPARATUS FOR MANUFACTURING Ni-Fe ALLOY THIN FOIL |
JP2009256772A (en) * | 2008-03-17 | 2009-11-05 | Akahoshi Kogyo Kk | Electrode base body in electrolytic metal foil production apparatus |
TWI422713B (en) * | 2009-04-01 | 2014-01-11 | Permelec Electrode Ltd | Electrolytic metal foil manufacturing apparatus and manufacturing method of sheet-like insoluble metal electrode used in electrolytic metal foil manufacturing apparatus |
JP2017511428A (en) * | 2014-02-19 | 2017-04-20 | インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ | Anode structure for metal electrowinning cell |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103210124B (en) | 2010-11-15 | 2016-01-06 | 吉坤日矿日石金属株式会社 | Electrolytic copper foil |
KR102524005B1 (en) | 2016-08-31 | 2023-04-19 | 에스케이넥실리스 주식회사 | Manufacturing Apparatus For Electrolytic Copper Foil |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0436491A (en) * | 1990-05-31 | 1992-02-06 | Nikko Guurudo Foil Kk | Device for producing electrolytic copper foil |
JPH0436489A (en) * | 1990-05-31 | 1992-02-06 | Nikko Guurudo Foil Kk | Production of electrolytic copper foil |
-
1990
- 1990-12-19 JP JP2411764A patent/JP2506573B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0436491A (en) * | 1990-05-31 | 1992-02-06 | Nikko Guurudo Foil Kk | Device for producing electrolytic copper foil |
JPH0436489A (en) * | 1990-05-31 | 1992-02-06 | Nikko Guurudo Foil Kk | Production of electrolytic copper foil |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000068465A1 (en) * | 1999-05-06 | 2000-11-16 | Union Steel Manufacturing Co., Ltd. | THE APPARATUS FOR MANUFACTURING Ni-Fe ALLOY THIN FOIL |
US6428672B1 (en) | 1999-05-06 | 2002-08-06 | Union Steel Manufacturing Co., Ltd. | Apparatus and method for manufacturing Ni—Fe alloy thin foil |
JP2009256772A (en) * | 2008-03-17 | 2009-11-05 | Akahoshi Kogyo Kk | Electrode base body in electrolytic metal foil production apparatus |
TWI422713B (en) * | 2009-04-01 | 2014-01-11 | Permelec Electrode Ltd | Electrolytic metal foil manufacturing apparatus and manufacturing method of sheet-like insoluble metal electrode used in electrolytic metal foil manufacturing apparatus |
JP2017511428A (en) * | 2014-02-19 | 2017-04-20 | インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ | Anode structure for metal electrowinning cell |
Also Published As
Publication number | Publication date |
---|---|
JP2506573B2 (en) | 1996-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5326455A (en) | Method of producing electrolytic copper foil and apparatus for producing same | |
KR101886914B1 (en) | Electrolytic copper foil | |
EP2236653B1 (en) | Production apparatus for electro-deposited metal foil, production method of thin plate insoluble metal electrode used in production apparatus for electro-deposited metal foil, and electro-deposited metal foil produced by using production apparatus for electro-deposited metal foil | |
US4318794A (en) | Anode for production of electrodeposited foil | |
JP2594840B2 (en) | Method and apparatus for producing electrolytic copper foil | |
JPH04221092A (en) | Production of electrolytic copper foil and apparatus therefor | |
JP2012107266A (en) | Method and apparatus for manufacturing electrolytic copper foil | |
EP0554793B1 (en) | Electroplating method and apparatus for the preparation of metal foil and split insoluble electrode used therein | |
WO1997034029A1 (en) | Compound electrode for electrolysis | |
JP2019099897A (en) | Metal foil manufacturing device, electrode sheet and manufacturing method of metal foil | |
JPH0693490A (en) | Manufacture of electrolytic metallic foil | |
US5489368A (en) | Insoluble electrode structural material | |
JPH04221091A (en) | Production of electrolytic copper foil and apparatus therefor | |
KR940007609B1 (en) | Method and apparatus for producing electrolytic copper foil | |
JPH04221093A (en) | Method and device for producing electrolytic copper foil | |
JPH0436491A (en) | Device for producing electrolytic copper foil | |
JPH0436494A (en) | Device for producing electrolytic copper foil | |
JPH0436493A (en) | Device for producing electrolytic copper foil | |
JP3416620B2 (en) | Electrolytic copper foil manufacturing apparatus and electrolytic copper foil manufacturing method | |
JPH0436492A (en) | Device for producing electrolytic copper foil | |
JP4465084B2 (en) | Copper foil manufacturing method and manufacturing apparatus | |
US3856653A (en) | Platinum clad tantalum anode assembly | |
JPH06264280A (en) | Apparatus for producing electrolytic metallic foil | |
US3920524A (en) | Method for high speed continuous electroplating using platinum clad anode assembly | |
JP2567537B2 (en) | Metal foil electrolytic production equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960116 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080402 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090402 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100402 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110402 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110402 Year of fee payment: 15 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110402 Year of fee payment: 15 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110402 Year of fee payment: 15 |