JPH0421849B2 - - Google Patents
Info
- Publication number
- JPH0421849B2 JPH0421849B2 JP16005382A JP16005382A JPH0421849B2 JP H0421849 B2 JPH0421849 B2 JP H0421849B2 JP 16005382 A JP16005382 A JP 16005382A JP 16005382 A JP16005382 A JP 16005382A JP H0421849 B2 JPH0421849 B2 JP H0421849B2
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- light
- refractive index
- channel
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 45
- 239000013078 crystal Substances 0.000 claims description 37
- 238000005342 ion exchange Methods 0.000 claims description 34
- 230000005684 electric field Effects 0.000 claims description 29
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000005855 radiation Effects 0.000 description 31
- 239000000758 substrate Substances 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 10
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000005697 Pockels effect Effects 0.000 description 1
- YZSKZXUDGLALTQ-UHFFFAOYSA-N [Li][C] Chemical compound [Li][C] YZSKZXUDGLALTQ-UHFFFAOYSA-N 0.000 description 1
- 238000005513 bias potential Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000002641 lithium Chemical group 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/035—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Description
【発明の詳細な説明】
本発明は誘電体結晶の電気光学効果を使つた光
変調器、とくに結晶の基板表面に光導波路を形成
した動作電圧が低く、動作速度の速い、構成の簡
便な導波形光変調器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical modulator that uses the electro-optic effect of a dielectric crystal, and in particular to an optical modulator that has an optical waveguide formed on the surface of a crystal substrate, has a low operating voltage, high operating speed, and has a simple structure. Related to waveform light modulators.
前記光学光変調器は、結晶に印加する電界の強
度に比例した屈折率の変化を生ずる結果(ポツケ
ルス効果)を利用して拘束の光変調器として古く
から研究が開発がなされている。形状の大きな結
晶中に光ビームを透過し、光ビームの透過方向と
は垂直な方向に電界を印加して、結晶中に透過す
る光ビームの偏光面を回転させ、結晶出射後に配
置された偏光子を透過させて光強度を変化させる
という原理に基づくバルク形の光変調器は、印加
電圧が高く、温度安定性に欠けるという欠点があ
る。高印加電圧の原因のひとつは、結晶の光透過
長を長くし、電極間の距離を狭める、すなわち結
晶の厚さを薄くすると、光入出射面での光の回折
を生ずるため、結晶長と結晶の厚さとの比を一定
値より大きく出来ないことによつている。結晶長
の長くしても光の回折を生ずることのないように
するには導波構造となつていることが必要であ
る。 The optical light modulator has long been researched and developed as a constrained light modulator by utilizing the result of a change in refractive index proportional to the intensity of an electric field applied to a crystal (Pockels effect). A light beam is transmitted through a large-sized crystal, and an electric field is applied in a direction perpendicular to the direction of transmission of the light beam to rotate the plane of polarization of the light beam transmitted through the crystal. Bulk type optical modulators based on the principle of changing light intensity by transmitting light have the disadvantages of high applied voltage and lack of temperature stability. One of the causes of high applied voltage is that when the light transmission length of the crystal is increased and the distance between the electrodes is narrowed, that is, the thickness of the crystal is thinned, light diffraction occurs at the light input/output surface, so the length of the crystal increases. This is due to the fact that the ratio to the crystal thickness cannot be made larger than a certain value. In order to prevent light diffraction from occurring even if the crystal length is increased, it is necessary to have a waveguide structure.
誘電体や半導体基板の表面に屈折率の高い、層
またはチヤンネルを設け、これを光の導波路と
し、この光導波路の近傍に設けた対向する電極間
に電圧を印加し、光導波路中に発生する電場によ
つて導波路中の屈折率を変化させ、ここを伝わる
導波光に回折、屈折、散乱、モード変換等の光学
的現象を生じさせ、導波光の透過振幅を変化させ
て変調を行う素子が導波形の光変調器と称せられ
ている。導波形光変調器の特長は、前述の導波に
よる光の回折損が少いため電界の作用長すなわち
素子長を長くできることに加えて、導波層または
導波路の幾可学長が小さいことによつて、電極間
隔を接近させて設け、印加電界強度を強めること
ができることから高感度であるという点にある。
具体的な素子の構成法として従来から知られてい
るもののひとつは、ブラツグ回折形と称するもの
で、電気光学効果を有する結晶板の表面一様に高
屈折率の層を設け、これを光導波層とし、更にこ
の導波層の上にインターデイジタル電極を設け、
この電極に印加する電場によつて導波層中に形成
される周期電場が導波光を基板面内で回折させ、
透過光の強度を変調するものである。この形の光
変調器は、導波路が平面であるため、フアイバ光
の変調などに用いるには導波路入出射端部に円筒
レンズ等を用いて光フアイバとの光の結合をはか
らねばならず構成が複雑となり、光損失の増大や
信頼性、安定性に不安がある。 A layer or channel with a high refractive index is provided on the surface of a dielectric or semiconductor substrate, and this is used as an optical waveguide.A voltage is applied between opposing electrodes placed near this optical waveguide, and the generated voltage is generated in the optical waveguide. The refractive index in the waveguide is changed by the electric field generated by the waveguide, causing optical phenomena such as diffraction, refraction, scattering, and mode conversion in the guided light that travels there, and modulation is performed by changing the transmission amplitude of the guided light. The device is called a waveguide type optical modulator. The advantage of waveguide optical modulators is that the length of the electric field, that is, the length of the element, can be increased due to the small diffraction loss of light caused by waveguide, as described above, and the fact that the length of the waveguide layer or waveguide is small. Another advantage of this method is that it has high sensitivity because the electrodes are closely spaced and the applied electric field strength can be increased.
One of the conventionally known methods of constructing a specific element is the Bragg diffraction type, in which a layer with a high refractive index is provided uniformly on the surface of a crystal plate that has an electro-optic effect, and this is used as an optical waveguide. layer, further providing interdigital electrodes on this waveguide layer,
A periodic electric field formed in the waveguide layer by the electric field applied to this electrode causes the guided light to be diffracted within the substrate plane,
It modulates the intensity of transmitted light. This type of optical modulator has a flat waveguide, so in order to use it for modulating fiber light, it is necessary to couple the light with the optical fiber by using a cylindrical lens or the like at the input/output end of the waveguide. However, the structure becomes complicated, and there are concerns about increased optical loss, reliability, and stability.
導波形光変調器の他の例は方向性結合形と称さ
れる素子で、この素子の原理は、電気光学結晶板
の表面に2本のチヤンネル形導波路を極く接近さ
せて設け、一方の導波路に光を入射させ、導波路
の接近した領域において他方の導波路への光の結
合の量を、結晶板表面に設けた電極から生ずる電
界によつて制御するものである。この方式の素子
は導波路がチヤンネル状であるため、光フアイバ
等との結合が容易であるという利点を有する。光
の結合の方式として、電界を印加しない状態で一
方の導波路から他方の導波路へ光が大部分移るよ
うに素子を設定し、電界を印加して双方の導波路
の屈折率を変えて位相定数を変化させて結合を解
くという方式が印加電圧が低くてすむためとられ
ている。しかしながら光の損失を少くするために
は、電界印加しない状態で完全な結合が生じてい
ることが必要で、このためには、導波路が接近し
ている領域の長さすなわち結合長の設定に精度を
要する。実際にはこのような状態を作り出すこと
は困難で、このため、電極構造の工夫によつて、
2つの電圧値で光の結合、解離のいずれかの状態
が生ずるように設計されている。このため光のパ
ルス変調器として用いる場合には、バイアス電位
を必要とする。また、透過する光の波長が変ると
特性が大きく異なり、波長に合せた素子の最適設
計が必要とされる。また2つの平行する導波路の
幅や間隔は3〜10μmと微細で、長さは10〜20mm
と長い。このようなパタンを欠損なく歩留よく得
るのは非常に難かしく製造価格が高くなるという
欠点をもつ。 Another example of a waveguide type optical modulator is a device called a directional coupling type, and the principle of this device is that two channel waveguides are provided very close to each other on the surface of an electro-optic crystal plate. Light is incident on one waveguide, and the amount of light coupled to the other waveguide in a region close to one waveguide is controlled by an electric field generated from an electrode provided on the surface of the crystal plate. Since the waveguide of this type of element is in the form of a channel, it has the advantage of being easy to couple with an optical fiber or the like. The method of coupling light is to set up an element so that most of the light moves from one waveguide to the other without applying an electric field, and then apply an electric field to change the refractive index of both waveguides. A method of breaking the coupling by changing the phase constant is used because it requires only a low applied voltage. However, in order to reduce optical loss, it is necessary that complete coupling occurs without an electric field being applied. Requires precision. In reality, it is difficult to create such a state, so by devising the electrode structure,
It is designed so that either light coupling or dissociation occurs at two voltage values. Therefore, when used as an optical pulse modulator, a bias potential is required. Furthermore, the characteristics vary greatly when the wavelength of the transmitted light changes, and it is necessary to optimally design the element according to the wavelength. In addition, the width and spacing between two parallel waveguides is minute, 3 to 10 μm, and the length is 10 to 20 mm.
and long. It is very difficult to obtain such a pattern without defects and at a high yield, and the manufacturing cost is high.
導波形光変調器のまた他の例は、導波層を伝わ
る導波光を電界の印加によつて基板中の放射モー
ドへ変換する形の変調器である。具体的な構成と
しては、複屈折結晶であるニオブ酸リチウム結晶
のCカツト板の表面に金属イオンを拡散し、基板
よりも屈折率が僅かに大なる高屈折率層を設け、
C軸方向に振動電界成分を有する光波モードであ
るTM波を励起する。基板面内で光透過方向とは
直交する方向に電場を印加すると、TM波は基板
に平行な振動電界成分を有し基板中に放射する放
射モードに変換され、導波TMモードの強度が低
下する。このような構成に基づく導波形光変調器
は構成が簡単であるという利点はあるが、導波
TMモードの屈折率と基板に平行な振動電界成分
を有する放射モードにたいする屈折率差が大きい
ために、変換効率が低く、高い印加電圧を必要と
するという欠点を有しており実用性が低い。 Another example of a waveguide type optical modulator is a modulator that converts guided light traveling through a waveguide layer into a radiation mode in a substrate by applying an electric field. Specifically, metal ions are diffused on the surface of a C-cut plate made of lithium niobate crystal, which is a birefringent crystal, and a high refractive index layer with a slightly higher refractive index than that of the substrate is provided.
A TM wave, which is a light wave mode having an oscillating electric field component in the C-axis direction, is excited. When an electric field is applied within the substrate plane in a direction perpendicular to the light transmission direction, the TM wave is converted into a radiation mode that has an oscillating electric field component parallel to the substrate and radiates into the substrate, reducing the intensity of the guided TM mode. do. Waveguide optical modulators based on this type of configuration have the advantage of simple configuration, but waveguide
Since there is a large refractive index difference between the refractive index of the TM mode and the radiation mode having an oscillating electric field component parallel to the substrate, the conversion efficiency is low and a high applied voltage is required, making it less practical.
このように従来の導波形光変調器はいずれも難
点を有している。本発明の目的は上記難点を除去
した、高性能・安価な導波形光変調器を提供する
ことにある。 As described above, all conventional waveguide optical modulators have drawbacks. An object of the present invention is to provide a high-performance, inexpensive waveguide optical modulator that eliminates the above-mentioned drawbacks.
本発明によれば、電気光学結晶表面付近に形成
された1本のチヤンネル形光導波路と該光導波路
の周囲に設け、該光導波路の光透過方向に沿つて
厚さが周期的に変化したイオン交換層と、前記チ
ヤンネル形光導波路中に電界を印加する手段とに
よつて、高性能安価で温度特性の優れた導波形電
気光学光変調器が得られる。 According to the present invention, there is provided a channel-shaped optical waveguide formed near the surface of an electro-optic crystal, and ions provided around the optical waveguide, the thickness of which changes periodically along the light transmission direction of the optical waveguide. By using the exchange layer and the means for applying an electric field into the channel-type optical waveguide, a waveguide type electro-optic optical modulator that is high-performance, inexpensive, and has excellent temperature characteristics can be obtained.
第1図は本発明の導波形電気光学光変調器の依
つて立つ原理を説明する図で、1はCカツトニオ
ブ酸リチウム結晶板、2はチタンを熱拡散させた
チヤンネル光導波路、3はチヤンネル導波路2以
外の基板表面近くでイオン交換処理を施こされた
層4はイオン交換処理を施こした層3の方面を覆
う金属電極膜であり、5はチヤンネル光導波路2
に入射される基板に平行な直線偏光光6はチヤン
ネル光導波路の部位を挾んで向い合う電極4に印
加する電位である。印加電極4に電圧が印加され
たとき、チヤンネル光導波路2に入射した光は、
光導波路2を伝搬するにつれ、イオン交換層3に
拡がる放射光に変換され、この放射光は電極4に
よる減衰を受けて消失する。印加電極4に電圧が
印加されないとき、入射光5はチヤンネル導波路
2を導波され減衰を受けることなく出射する。印
加電圧6の大きさに応じてチヤンネル導波路2を
導波され出射する光の強度が変化し、光の強度変
調が行なわれる。この動作は以下に述べる機構に
よつて説明される。 FIG. 1 is a diagram explaining the principle on which the waveguide electro-optic optical modulator of the present invention relies. 1 is a carbon lithium niobate crystal plate, 2 is a channel optical waveguide made of thermally diffused titanium, and 3 is a channel optical waveguide. A layer 4 subjected to ion exchange treatment near the substrate surface other than the waveguide 2 is a metal electrode film that covers the area of the layer 3 subjected to ion exchange treatment, and 5 is a channel optical waveguide 2.
The linearly polarized light 6 parallel to the substrate that is incident on the substrate has a potential applied to the electrodes 4 facing each other across the channel optical waveguide. When a voltage is applied to the application electrode 4, the light incident on the channel optical waveguide 2 is
As it propagates through the optical waveguide 2, it is converted into emitted light that spreads to the ion exchange layer 3, and this emitted light is attenuated by the electrodes 4 and disappears. When no voltage is applied to the application electrode 4, the incident light 5 is guided through the channel waveguide 2 and exits without being attenuated. The intensity of the light guided through the channel waveguide 2 and emitted varies depending on the magnitude of the applied voltage 6, and the intensity of the light is modulated. This operation is explained by the mechanism described below.
ニオブ酸リチウム結晶は一軸の光学的異方性を
有し、例えば波長1.3μmの光波にたいする屈折率
はC軸方向に振動電界成分をもつ光波にたいする
屈折率すなわち異常光屈折率neは2.145、C軸に
直交する方向に振動電界成分をもつ光波にたいす
る屈折率すなわちnpは2.222程度の値を有する。
この結晶表面にチタン金属膜を蒸着法等によつて
設け、1000℃程度の高温にさらすとチタン金属は
結晶中に拡散し、基板表面近くに屈折率のわずか
に高い領域が生成する。その屈折率の上昇は5×
10-3程度である。チタン薄膜を細い線状に設けこ
れを熱拡散させると第1図のチヤンネル導波路2
を生成させることができる。このチヤンネル導波
路を伝わる導波モードの等価屈折率すなわち伝搬
波数を空気中の波数で除した値(等価屈折率)は
チヤンネル導波路の断面サイズで異なり、基板に
水平な偏光のモード(TEモード)の等価屈折率
は2.225〜2.222の間の値をもち、基板に垂直な偏
光のモード(TMモード)のそれは2.150〜2.145
の間の値をもつ。またニオブ酸リチウム結晶のリ
チウム原子を他の原子例えば銀や水素等の原子で
置換すると異常光屈折率neのみが増加し、常光屈
折率npは変化しない。たとえばニオブ酸リチウム
結晶を安息香酸中で249℃程度の温度で1時間煮
沸しイオン交換処理を施こすと基板表面から2μ
m程度の深さにわたり、結晶中のリチウムイオン
が水素原子に置換されneが0.11程度(λ=1.3μ
m)上昇する。第1図のイオン交換層3はTMモ
ードにたいする良好な導波路となり、その等価屈
折率はイオン交換層の厚さによつて異なり2.255
〜2.145の間の値をもつ。このイオン交換は交換
時に金属膜で覆われていると生ぜず、選択的に第
1図のチタン拡散導波路部分表面を交換時に金属
薄膜で覆つておくことによつて、チヤンネル導波
路2以外の表面近傍のみのイオン交換が実現され
る。 Lithium niobate crystal has uniaxial optical anisotropy, for example, the refractive index for light waves with a wavelength of 1.3 μm is the refractive index for light waves having an oscillating electric field component in the C-axis direction, that is, the extraordinary light refractive index n e is 2.145, C The refractive index, n p , for a light wave having an oscillating electric field component in a direction perpendicular to the axis has a value of about 2.222.
When a titanium metal film is provided on the surface of this crystal by vapor deposition or the like and exposed to a high temperature of about 1000°C, the titanium metal diffuses into the crystal, creating a region with a slightly higher refractive index near the substrate surface. The increase in refractive index is 5×
It is about 10 -3 . When a thin titanium film is provided in the form of a thin line and thermally diffused, the channel waveguide 2 shown in Figure 1 is formed.
can be generated. The equivalent refractive index of the waveguide mode propagating through this channel waveguide, that is, the value obtained by dividing the propagation wave number by the wave number in air (equivalent refractive index), differs depending on the cross-sectional size of the channel waveguide. ) has a value between 2.225 and 2.222, and that of the mode of polarization perpendicular to the substrate (TM mode) has a value between 2.150 and 2.145.
has a value between . Furthermore, when the lithium atom in the lithium niobate crystal is replaced with another atom, such as an atom such as silver or hydrogen, only the extraordinary refractive index n e increases, and the ordinary refractive index n p does not change. For example, if lithium niobate crystals are boiled in benzoic acid at a temperature of about 249℃ for 1 hour and subjected to ion exchange treatment, 2μ
Over a depth of about m, lithium ions in the crystal are replaced by hydrogen atoms, and n e is about 0.11 (λ = 1.3 μ
m) rise; The ion exchange layer 3 in Figure 1 serves as a good waveguide for the TM mode, and its equivalent refractive index is 2.255, which varies depending on the thickness of the ion exchange layer.
has a value between ~2.145. This ion exchange does not occur if it is covered with a metal film during exchange, and by selectively covering the surface of the titanium diffusion waveguide portion shown in Figure 1 with a thin metal film during exchange, it is possible to remove ions other than channel waveguide 2. Ion exchange only near the surface is achieved.
ニオブ酸リチウム結晶のx方向に電界を印加す
ると、電気光学定数r51を介して常光と異常光と
の間に結合が生じるが、能率のよい変換が起るた
めには屈折率がほぼ一致していなければならな
い。第1図の実施例の構成に示したように、イオ
ン交換導波路3の上に金属電極4を設け、チヤン
ネル導波路2を挟んで対向する2つの間に電圧6
を印加し、チヤンネル導波路2にTE波5を入射
させると、チヤンネル導波路2中に生じているx
方向の印加電界によつてTE波はイオン交換導波
路中のxy面内に放散する放射TMモードに変換さ
れる。何故ならばチヤンネル導波路を伝わるTE
波の等価屈折率ngは前述の如く2.225〜2.222の間
の値に設定することができ、イオン交換層の等価
屈折率nrはやはり前述の如く2.255〜2.145の間の
値に設定することができる。イオン交換層の等価
屈折率nrをチヤンネル導波路の等価屈折率ngより
ほんの少し例えば1×10-4程度大きく設定してお
く。第2図に示すようなダイヤグラムによつてチ
ヤンネル導波光とイオン交換層への放射光との整
合の関係が理解できる。イオン交換層の放射TM
導波光の等価屈折率はxy面内同一であるため、
nrを半径とする円で表示することができる。チヤ
ンネル導波光の波面進行方向はg方向であり、y
方向にngの長さをもつベクトルで表わされる。チ
ヤンネル導波光は、電界印加によつて
cosθ=ng/nr (1)
の関係を満たすθの角度の方向へのイオン交換層
の面内放射TM導波光に変換される。上記の等価
屈折率差の設定すなわちnr−ng=1×10-4にたい
してはθ0.5°方向に放射される。周知の如く、
導波層表面が金属膜で覆われているとTM波の減
衰は100dB/cm近くと非常に大きい。このためイ
オン交換層の放射TM導波光はチヤンネル導波
TE光から変換されるとたちどころに金属膜によ
つて吸収される。 When an electric field is applied in the x direction of a lithium niobate crystal, coupling occurs between the ordinary light and the extraordinary light through the electro-optic constant r51 , but for efficient conversion to occur, the refractive indices must be approximately the same. must be maintained. As shown in the configuration of the embodiment in FIG. 1, a metal electrode 4 is provided on the ion exchange waveguide 3, and a voltage of 6
When the TE wave 5 is applied to the channel waveguide 2, the x generated in the channel waveguide 2
The applied electric field in the direction converts the TE wave into a radiation TM mode that dissipates in the xy plane in the ion exchange waveguide. This is because TE propagating through the channel waveguide
The equivalent refractive index of the wave n g can be set to a value between 2.225 and 2.222 as described above, and the equivalent refractive index n r of the ion exchange layer can also be set to a value between 2.255 and 2.145 as described above. I can do it. The equivalent refractive index n r of the ion exchange layer is set to be slightly larger than the equivalent refractive index n g of the channel waveguide, for example, by about 1×10 −4 . A diagram like the one shown in FIG. 2 makes it possible to understand the matching relationship between the channel guided light and the emitted light to the ion exchange layer. Radiation TM of ion exchange layer
Since the equivalent refractive index of guided light is the same in the xy plane,
It can be expressed as a circle with radius n r . The wavefront traveling direction of the channel guided light is the g direction, and the y
It is expressed as a vector with length n g in the direction. The channel guided light is converted into in-plane radiated TM guided light of the ion exchange layer in the direction of the angle θ that satisfies the relationship cosθ=n g /n r (1) by applying an electric field. For the above equivalent refractive index difference setting, that is, n r −n g =1×10 −4 , radiation is emitted in the θ0.5° direction. As is well known,
When the waveguide layer surface is covered with a metal film, the attenuation of the TM wave is extremely large, close to 100 dB/cm. Therefore, the radiation TM waveguide light of the ion exchange layer is channel guided.
When converted from TE light, it is immediately absorbed by the metal film.
しかしながらこの構成ではニオブ酸リチウム結
晶のもつ複屈折の温度係数が大きいために、光変
調特性に温度変化が大きく生じ使用に耐えない。
すでに報告されているニオブ酸リチウム結晶の複
屈折の温度係数は、
|d(ne−np)/dT|=4:3×10-5 (1)
である。たとえば周囲温度が±25℃変化したとす
ると複屈折の変化量は±1×10-3に達する。導波
モードの等価屈折率は、基板の屈折率が変化する
とほとんど同じだけ変化する。前述の如くに、チ
ヤンネル導波TEモードの等価屈折率ngとイオン
交換層の面内放射TMモードの等価屈折率nrとの
差を1×10-4程度の大きさに設定しておくと、温
度が3℃も変化すれば、ng>nrの状態が現出す
る。この場合には第2図の2つの等価屈折率間の
整合関係を示すダイヤグラムにおいて、ngを示す
矢印の先が半径nrの半円の外に出てしまい、整合
がとれなくなつてしまう。電界を印加してもモー
ド変換すなわちチヤンネル導波光の強度の変調を
生じさせることができなくなる。 However, in this configuration, since the temperature coefficient of birefringence of the lithium niobate crystal is large, the optical modulation characteristics change greatly with temperature, making it unusable.
The temperature coefficient of birefringence of lithium niobate crystals that has already been reported is |d( ne −n p )/d T |=4:3×10 −5 (1). For example, if the ambient temperature changes by ±25°C, the amount of change in birefringence will reach ±1×10 -3 . The equivalent refractive index of the guided mode changes by almost the same amount as the refractive index of the substrate changes. As mentioned above, the difference between the equivalent refractive index n g of the channel-guided TE mode and the equivalent refractive index n r of the in-plane radiation TM mode of the ion exchange layer is set to about 1 × 10 -4 . If the temperature changes by 3°C, a state where n g > n r will appear. In this case, in the diagram showing the matching relationship between the two equivalent refractive indexes in Figure 2, the tip of the arrow indicating n g will go outside the semicircle with radius n r , making it impossible to match. . Even if an electric field is applied, it becomes impossible to cause mode conversion, that is, modulation of the intensity of channel guided light.
これを避けるために予め等価屈折率の違いを大
きく与えておき、温度が変つても第2図における
ダイヤグラムにおいて常にng<nrとなるように設
定する。たとえばnr−ng2×10-5とすると、±
25℃の温度変化内で常にng<nrの条件が満たさ
れ、チヤンネル導波路を伝搬する導波光がイオン
交換層中の面内放射モードに整合する角度が存在
する。しかしながら、導波モードから放射モード
への変換の効率が温度によつて大きく変化する。
上記の変換効率は放射角度が大きいほど低くな
る。これは、放射角度の大きい放射モードの光電
界の強度分布と導波モードのもつ光電界の強度分
布とが大きく異なるためである。2つのモードの
位相定数の大きさが近くなる温度では変換効率が
高く、違いが大きくなる温度では効率が低くなる
という温度変化が生ずる。 In order to avoid this, a large difference in equivalent refractive index is given in advance, and the setting is made so that n g <n r always holds in the diagram in FIG. 2 even if the temperature changes. For example, if n r −n g 2×10 -5 , ±
Within a temperature change of 25° C., the condition n g <n r is always satisfied, and there is an angle at which the guided light propagating through the channel waveguide matches the in-plane radiation mode in the ion exchange layer. However, the efficiency of conversion from guided mode to radiation mode varies greatly depending on temperature.
The above conversion efficiency becomes lower as the radiation angle becomes larger. This is because the intensity distribution of the optical electric field in the radiation mode with a large radiation angle is significantly different from the intensity distribution of the optical electric field in the waveguide mode. A temperature change occurs in which the conversion efficiency is high at temperatures where the magnitudes of the phase constants of the two modes become close, and the efficiency decreases at temperatures where the difference becomes large.
温度の変化によつて導波モードから放射モード
への変換の効率が変化することを防ぐには、複屈
折の大きさが変化しても放射モードへの放射角度
が変化しないような工夫を施こせばよい。第3図
は本発明の一実施例の構造を示す図で、1はZカ
ツトニオブ酸リチウム結晶板、2はチタン拡散チ
ヤンネル導波路、3はイオン交換層、イオン交換
3の上面は、チヤンネル導波路2中に電界を印加
するための電極4によつて覆われている。5は入
射TE波、6は電極4に印加する電圧源である。
イオン交換層3は、その深さがチヤンネル導波路
2の光透過方向に沿つて周期的に変化しており、
その周期はΛ1からΛ2まで(Λ2>Λ1)単調に変化
している。第4図は第3図のニオブ酸リチウム結
晶をx軸に垂直に切断した断面を示し、ニオブ酸
リチウム結晶板1の表面近傍に設けられたイオン
交換層3の構造が上述の如く、その深さがy方向
に周期的に変化しており、その周期がΛ1からΛ2
までy方向に単調に変化している構造を示す。 In order to prevent the efficiency of conversion from guided mode to radiation mode from changing due to changes in temperature, measures are taken to ensure that the radiation angle to radiation mode does not change even if the magnitude of birefringence changes. Just do it. FIG. 3 is a diagram showing the structure of an embodiment of the present invention, in which 1 is a Z-cut lithium niobate crystal plate, 2 is a titanium diffusion channel waveguide, 3 is an ion exchange layer, and the upper surface of the ion exchange 3 is a channel waveguide. 2 is covered by an electrode 4 for applying an electric field. 5 is an incident TE wave, and 6 is a voltage source applied to the electrode 4.
The depth of the ion exchange layer 3 changes periodically along the light transmission direction of the channel waveguide 2,
The period changes monotonically from Λ 1 to Λ 2 (Λ 2 >Λ 1 ). FIG. 4 shows a cross section of the lithium niobate crystal shown in FIG. 3 taken perpendicularly to the x-axis. changes periodically in the y direction, and the period is from Λ 1 to Λ 2
It shows a structure that changes monotonically in the y direction until .
導波モードと放射モードの整合関係は第5図で
理解される。導波モードの等価屈折率ngよりも、
第4図に示されるイオン交換層の平均的な厚さd
における放射モードの等価屈折率nrが小さくなる
ように厚さdを定めておく。導波モードの等価屈
折率はy方向に向う矢印で示され、放射モードは
xy面内で半径をnrとする半円で表わすことがで
きる。イオン交換層の厚さはy方向に周期的に変
化しているため、この空間格子によつて放射モー
ドの存在しうる等価屈折率はnr+λ/Λ2からnr+
λ/Λ1まで連続して分布する。ここでλは光の
波長である。空間格子スペクトルはy方向に向つ
ているため、xy面内では第5図に示すように三
日月状の斜線部で示される領域内は放射モードが
存在しうる領域となる。導波モードの等価屈折率
ngが第5図の三日月状の斜線部の領域内に位置す
るように設定する。複屈折の温度変化は導波モー
ドの等価屈折率と放射モードの等価屈折率との差
が変化することである。その変化を±△nTとする
と、
ng+△nT<nr+λ/Λ1 (2)
ng−△nT>nr+λ/Λ2 (3)
なるように常温における導波モードの屈折率ngを
定める。このように設定すれば第5図におけるng
のベクトルの先は常に斜線部内に存在する。この
ため、第2図に示したイオン交換層の厚さが一様
の場合の放射モードの等価屈折率がxy面内で一
本の円弧で表わされる場合と異なつて、温度が変
つた場合に放射角度が変化し変換能率が変化する
ようにことはない。 The matching relationship between guided mode and radiation mode can be understood from FIG. From the equivalent refractive index n g of the guided mode,
Average thickness d of the ion exchange layer shown in Figure 4
The thickness d is determined so that the equivalent refractive index n r of the radiation mode at is small. The equivalent refractive index of the waveguide mode is indicated by the arrow pointing in the y direction, and the radiation mode is
It can be expressed as a semicircle with radius n r in the xy plane. Since the thickness of the ion exchange layer changes periodically in the y direction, the equivalent refractive index at which a radiation mode can exist due to this spatial lattice is n r + λ/Λ 2 to n r +
Continuously distributed up to λ/Λ 1 . Here, λ is the wavelength of light. Since the spatial grating spectrum is oriented in the y direction, in the xy plane, as shown in FIG. 5, the area indicated by the crescent-shaped diagonal line is an area where a radiation mode can exist. Equivalent refractive index of guided mode
Set so that n g is located within the crescent-shaped hatched area in FIG. A temperature change in birefringence is a change in the difference between the equivalent refractive index of the guided mode and the equivalent refractive index of the radiation mode. If the change is ±△n T , then the waveguide mode at room temperature is as follows: n g +△n T <n r +λ/Λ 1 (2) n g −△n T >n r +λ/Λ 2 (3) Determine the refractive index n g . With this setting, n g in Figure 5
The destination of the vector always lies within the shaded area. Therefore, unlike the case where the equivalent refractive index of the radiation mode is represented by a single arc in the xy plane when the thickness of the ion exchange layer is uniform, as shown in Figure 2, when the temperature changes, The conversion efficiency does not change as the radiation angle changes.
上記の場合、具体的な数値として次のような値
を設定することができる。光波長1.3μmのとき、
導波モードの等価屈折率ngの大きさを2223とし放
射モードの等価屈折率nrが2220となるようにイオ
ン交換層の平均的な厚さdを定める。温度が±25
℃変化したとき複屈折の変化量は前述の如く△nT
1×10-3であるため、上式(2)及び(3)式からΛ1
=325μm、Λ2=650μmとなる。すなわち周期を
325μmから625μmにほぼ連続的に変化させてイ
オン交換の厚さの凹凸を設ければよい。イオン交
換層の厚さの変化は、アルミ蒸着膜等を格子状に
設けて、安息香酸中で煮沸し、さらにアルミ膜を
除去した後同じようにイオン交換処理を施すこと
によつて実現される、厚さの制御は交換処理時間
を制御すればよい。 In the above case, the following values can be set as specific numerical values. When the light wavelength is 1.3μm,
The average thickness d of the ion exchange layer is determined so that the equivalent refractive index n g of the waveguide mode is 2223 and the equivalent refractive index n r of the radiation mode is 2220. Temperature is ±25
As mentioned above, the amount of change in birefringence when the temperature changes is △n T
1×10 -3 , so from equations (2) and (3) above, Λ 1
= 325 μm, Λ 2 = 650 μm. In other words, the period
The unevenness of the ion exchange thickness may be provided by changing the thickness almost continuously from 325 μm to 625 μm. Changes in the thickness of the ion-exchange layer can be achieved by providing an aluminum vapor-deposited film or the like in a lattice pattern, boiling it in benzoic acid, and then performing the same ion-exchange treatment after removing the aluminum film. The thickness can be controlled by controlling the exchange processing time.
イオン交換層の放射TMモードの等価屈折率nr
のほうが、導波TEモードの等価屈折率ngよりも
大になるように設定してもよい。すなわち、
ng+△nT<nr−λ/Λ2 (4)
ng−△nT>nr−λ/Λ1 (5)
としても第6図の整合ダイヤグラムに示すように
導波モードの等価屈折率を示すngのベクトルの先
に常に斜線部内に存在し、やはり導波モードから
放射モードへの変換効率の温度変化は抑圧され
る。この場合具体的な数値としてλ=1.3μm、ng
=2.223、nr=2.226、Λ1=325μm、Λ2=650μmと
すればよい。 Equivalent refractive index n r of the radiation TM mode of the ion exchange layer
may be set to be larger than the equivalent refractive index n g of the guided TE mode. That is, even if n g +△n T <n r −λ/Λ 2 (4) n g −△n T >n r −λ/Λ 1 (5), the waveguide is It always exists within the shaded area beyond the vector of n g indicating the equivalent refractive index of the mode, and temperature changes in the conversion efficiency from the waveguide mode to the radiation mode are also suppressed. In this case, the specific values are λ=1.3μm, n g
= 2.223, n r = 2.226, Λ 1 = 325 μm, and Λ 2 = 650 μm.
以上の説明では、直線のチヤンネル導波路の場
合について述べた。勿論基板面内で曲線を描く導
波路、たとえば導波TE波にたいして放射損失の
少い極率半径に設定すれば曲線部では、導波光の
強度分布がチヤンネル内で曲線の外側に片寄るた
め放射モードとの結合が容易になり、更に印加電
圧が少くてすむ。 In the above explanation, the case of a straight channel waveguide has been described. Of course, if a waveguide is curved in the substrate plane, for example, if the polarity radius is set to have a small radiation loss for guided TE waves, then in the curved part, the intensity distribution of the guided light will be biased to the outside of the curve within the channel, resulting in a radiation mode. This makes it easier to couple with the material, and requires less applied voltage.
以上の説明のとおり本発明の導波形光変調器
は、従来知られている導波形の光変調器に較べ、
単一のチヤンネル導波路で構成され、更には変調
特性が素子作製精度に大きく依存せず、バイアス
電圧も必要でないため、前述の方向性結合形変調
器よりも優れ、基板面内の放射モードに変換する
ため、基板固有の複屈折による印加電圧特性の制
限がなく、また、放射光を面内で吸収することが
でき、基板裏面からの反射光などによる変調特性
の劣化が生じないことから、前述の基板放射形の
光変調よりも優れている。そして温度変化に対し
て極めて動作が安定である。 As explained above, the waveguide optical modulator of the present invention has the following advantages compared to conventionally known waveguide optical modulators:
Since it is composed of a single channel waveguide, the modulation characteristics do not depend greatly on the device fabrication precision, and no bias voltage is required, it is superior to the directionally coupled modulator described above, and can be used for radiation modes within the substrate plane. Since the applied voltage characteristics are not limited by the inherent birefringence of the substrate, and the synchrotron radiation can be absorbed in-plane, the modulation characteristics will not deteriorate due to light reflected from the back surface of the substrate. This is superior to the substrate radiation type optical modulation described above. And its operation is extremely stable against temperature changes.
上記の実施例ではニオブ酸リチウム結晶板を基
板として用いる場合について説明した。他の電気
光学結晶たとえばタンタル酸リチウム結晶を用い
てもイオン交換層の形成は同様に出来、素子を同
様に構成することができる。 In the above embodiment, a case where a lithium niobate crystal plate is used as a substrate has been described. Even if other electro-optic crystals such as lithium tantalate crystals are used, the ion exchange layer can be formed in the same way, and the device can be constructed in the same way.
また電気光学結晶のCカツト(Zカツト)板を
用い、結晶基板に沿つた印加電界を利用してチヤ
ンネル導波光から放射光への変換を行わせる場合
について述べたが、たとえばXカツト板を用い
て、基板面に垂直な電界を利用する方法でも構成
することができる。 In addition, we have described a case in which a C-cut (Z-cut) plate of an electro-optic crystal is used to convert channel guided light into synchrotron radiation using an applied electric field along the crystal substrate. Alternatively, a method using an electric field perpendicular to the substrate surface can be used.
またチヤンネル導波路の形成方法として、金属
を基板中に熱拡散させる場合を述べたが、基板と
格子整合のとれた電気光学結晶のエピタキシヤル
成長層を用い、この成長層にリブ形導波路や、誘
電体を表面に装荷した導波路等を形成してもよ
い。 In addition, as a method for forming channel waveguides, we have described the case where metal is thermally diffused into a substrate, but an epitaxially grown layer of electro-optic crystal that is lattice-matched to the substrate is used, and a rib-shaped waveguide or a rib-shaped waveguide is formed in this grown layer. , a waveguide or the like whose surface is loaded with a dielectric material may be formed.
以上の説明の如く、本発明によれば安価で高性
能の導波形光変調器を得ることができる。 As described above, according to the present invention, an inexpensive and high-performance waveguide optical modulator can be obtained.
第1図は本発明の基づく原理を説明する図で、
1は電気光学結晶、2は金属イオン拡散導波路、
3はイオン交換層、4は電極、5は入射光であ
る。第2図は上記の原理を説明するチヤンネル導
波光と放射光との整合条件を示すダイヤグラムで
ある。第3図は本発明の一実施例の構造と示す図
で1は電気光学結晶、2は金属イオン拡散導波
路、3はイオン交換層、4は電極、5は入射光、
6は電圧源である。第4図は第3図のx軸に垂直
な一断面図である。第5図と第6図は第3図の本
発明の実施例の動作を説明するチヤンネル導波光
と放射光との整合条件を示すダイヤグラムであ
る。
FIG. 1 is a diagram explaining the principle on which the present invention is based.
1 is an electro-optic crystal, 2 is a metal ion diffusion waveguide,
3 is an ion exchange layer, 4 is an electrode, and 5 is incident light. FIG. 2 is a diagram illustrating the matching conditions between the channel guided light and the emitted light to explain the above principle. FIG. 3 is a diagram showing the structure of an embodiment of the present invention, in which 1 is an electro-optic crystal, 2 is a metal ion diffusion waveguide, 3 is an ion exchange layer, 4 is an electrode, 5 is an incident light beam,
6 is a voltage source. FIG. 4 is a sectional view perpendicular to the x-axis of FIG. 3. FIGS. 5 and 6 are diagrams showing matching conditions between the channel guided light and the emitted light to explain the operation of the embodiment of the present invention shown in FIG.
Claims (1)
チヤンネル形光導波路と該光導波路の周囲に設け
たイオン交換層と、前記チヤンネル形光導波路中
に電界を印加する手段とを有する導波形電気光学
光変調器であつて、前記イオン交換層の厚さが前
記チヤンネル形光導波路の光透過方向に沿つて周
期的に変化していることを特徴とする導波形電気
光学光変調器。1. A waveguide type electric waveguide comprising a single channel type optical waveguide formed near the surface of an electro-optic crystal, an ion exchange layer provided around the optical waveguide, and means for applying an electric field into the channel type optical waveguide. 1. A waveguide electro-optic modulator, characterized in that the thickness of the ion exchange layer changes periodically along the light transmission direction of the channel-type optical waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16005382A JPS5949517A (en) | 1982-09-14 | 1982-09-14 | Waveguide type electrooptic optical modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16005382A JPS5949517A (en) | 1982-09-14 | 1982-09-14 | Waveguide type electrooptic optical modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5949517A JPS5949517A (en) | 1984-03-22 |
JPH0421849B2 true JPH0421849B2 (en) | 1992-04-14 |
Family
ID=15706888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16005382A Granted JPS5949517A (en) | 1982-09-14 | 1982-09-14 | Waveguide type electrooptic optical modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5949517A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9100852A (en) * | 1991-05-16 | 1992-12-16 | Nederland Ptt | MODE CONVERTER. |
NL9200328A (en) * | 1992-02-21 | 1993-09-16 | Nederland Ptt | OPTICAL SWITCHING COMPONENT. |
-
1982
- 1982-09-14 JP JP16005382A patent/JPS5949517A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5949517A (en) | 1984-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4583817A (en) | Non-linear integrated optical coupler and parametric oscillator incorporating such a coupler | |
US4384760A (en) | Polarization transformer | |
US3874782A (en) | Light-guiding switch, modulator and deflector employing antisotropic substrate | |
JP5313198B2 (en) | Waveguide polarizer | |
US5815610A (en) | Optical modulation system | |
JPH0366642B2 (en) | ||
JPH0296121A (en) | Wavelength converting element | |
Sun et al. | Experimental investigation on the unbalanced Mach–Zehnder interferometer on lithium niobate thin film | |
JPS60119522A (en) | Optical waveguide | |
US4953931A (en) | Second harmonic wave generating device | |
US4953943A (en) | Second harmonic wave generating device | |
JPH0421849B2 (en) | ||
Noda | Ti-Diffused LiNbO3 Waveguides and Modulators | |
JPH0570128B2 (en) | ||
JPS6038689B2 (en) | Method for manufacturing waveguide electro-optic light modulator | |
JP2613942B2 (en) | Waveguide type optical device | |
Petrov | Acoustooptic and electrooptic guided wave conversion to leaky waves in an anisotropic optical waveguide | |
JPH0627427A (en) | Optical function element | |
JP2658381B2 (en) | Waveguide type wavelength conversion element | |
JPH02118605A (en) | Manufacture of single mode optical waveguide and light modulating element using it | |
WO2024100865A1 (en) | Optical waveguide element and method for manufacturing same | |
JPS6020723B2 (en) | Method for manufacturing waveguide electro-optic light modulator | |
JP3969756B2 (en) | Optical functional device | |
JPH04331931A (en) | Wavelength converting element | |
McMurray et al. | Electrooptic phase modulation in CdS optical waveguides |