[go: up one dir, main page]

JPH04215845A - Catalyst for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification

Info

Publication number
JPH04215845A
JPH04215845A JP2282867A JP28286790A JPH04215845A JP H04215845 A JPH04215845 A JP H04215845A JP 2282867 A JP2282867 A JP 2282867A JP 28286790 A JP28286790 A JP 28286790A JP H04215845 A JPH04215845 A JP H04215845A
Authority
JP
Japan
Prior art keywords
catalyst
transition metal
exhaust gas
precious metals
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2282867A
Other languages
Japanese (ja)
Other versions
JP3251009B2 (en
Inventor
Tamotsu Nakamura
保 中村
Hirobumi Shinjo
博文 新庄
Koji Yokota
幸治 横田
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP28286790A priority Critical patent/JP3251009B2/en
Publication of JPH04215845A publication Critical patent/JPH04215845A/en
Application granted granted Critical
Publication of JP3251009B2 publication Critical patent/JP3251009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To efficiently remove hydrocarbons, carbon monoxides and nitrogen oxides in exhaust gas by contacting catalysts comprising transition metal oxides and precious metal (excluding gold) with exhaust gas of internal combustion engine or the like at a temperature of 250 deg.C or lower. CONSTITUTION:Metal nitrates, organic metal salts or metal chlorides of transition metal are thermally decomposed, which are impregnated with an aqueous solution of precious metal salts (excluding gold). As a result, catalysts for purifying exhaust gas comprising one or more kinds of transition metal oxides and one or more kinds of precious metals (excluding gold) are obtained. The transition metal oxides, for example, are Co3O4, NiO, Fe2O3, Cr2O3, Mn2O3, etc., and precious metals are Pt, Rh, Pd. The transition metal oxides discharge O2 occluded in transition metal itself at a temperature of 250 deg.C or lower and accelerate the reaction with CO adsorbed preferentially on precious metals and convert the CO to CO2, so that O2, HC and NO are adsorbed on the precious metals thereby enabling purification of HC and NO.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動車等の内燃機関、石油ストーブあるいは工
場等から排出される炭化水素(HC)、一酸化炭素(C
O)ならびに窒素酸化物(NOx)を250℃以下の低
温において効率良く除去する触媒に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to hydrocarbons (HC) and carbon monoxide (C
The present invention relates to a catalyst that efficiently removes O) and nitrogen oxides (NOx) at a low temperature of 250°C or lower.

(従来技術) 最近、自然環境の維持が特に重視されつつあり、自動車
等の排気ガスの規制が強化される傾向にある。規制強化
の一貫として自動車の運転始動時(コールドスタート)
の排ガスからのNOx、HC、CO浄化の問題がある。
(Prior Art) Recently, the maintenance of the natural environment has become particularly important, and there is a tendency for regulations on exhaust gas from automobiles to be tightened. As part of tightening regulations, when starting a car (cold start)
There is a problem in purifying NOx, HC, and CO from exhaust gas.

コールドスタート時の触媒層温度は、排気熱によって加
熱されるまでの間(約2分間)、300℃以下と低く、
従来の白金(Pt)、ロジウム(Rh)等の貴金属から
なる触媒金属、助触媒であるセリア(CeO2)等の希
土類酸化物とアルミナ(Al2O3)等の担体からなる
自動車排気用三元触媒では浄化活性を十分発揮する温度
が300℃以上と高いため排気熱によって触媒層が30
0℃以上に加熱されるまでに排出される前記有害成分、
特にHCは十分に浄化されないのが現状である。そのた
め、■コールドスタート時に触媒が活性を発揮する温度
まで加熱するためのヒータを内蔵した触媒コンバーター
や、■触媒の活性が生じるまでの間、前記有害成分をゼ
オライト等を用いた吸着トラッパーによってトラップす
る方法、■COを酸化する能力を−70℃から有してい
る金(Au)/酸化鉄(Fe2O3)触媒を用いる方法
等が考えられている。しかし、それらはコスト面と技術
的問題を有し、すなわち■ではヒータ用バッテリーの容
量の問題、すなわちヒータ加熱に余分の電力が必要とな
って従来のバッテリーでは容量が不足し大容量のバッテ
リーが必要となる。■ではコールドスタート時に排出さ
れるHCをすべて吸着するためには非常に大きな吸着ト
ラッパを設ける必要がある。■ではHC浄化能が極めて
劣っている点が大きな問題となっている。
The temperature of the catalyst layer during a cold start is as low as 300°C or less until it is heated by exhaust heat (about 2 minutes).
Conventional three-way catalysts for automobile exhaust consisting of catalyst metals made of noble metals such as platinum (Pt) and rhodium (Rh), rare earth oxides such as ceria (CeO2) as co-catalysts, and supports such as alumina (Al2O3) do not purify the exhaust gas. Since the temperature at which it fully exhibits its activity is as high as 300°C or higher, the catalyst layer is heated to 30°C by exhaust heat.
The harmful components discharged before being heated to 0°C or higher;
In particular, the current situation is that HC is not sufficiently purified. Therefore, ■ a catalytic converter with a built-in heater to heat the catalyst to a temperature at which it becomes active during a cold start, and ■ an adsorption trapper using zeolite to trap the harmful components until the catalyst becomes active. A method using a gold (Au)/iron oxide (Fe2O3) catalyst, which has the ability to oxidize CO from -70 DEG C., has been considered. However, these methods have cost and technical problems, namely, the problem of the capacity of the heater battery (i.e., extra power is required to heat the heater, and the capacity of conventional batteries is insufficient, so large-capacity batteries are not needed). It becomes necessary. In case (2), it is necessary to provide a very large adsorption trapper in order to adsorb all the HC discharged during a cold start. The major problem with (2) is that the HC purification ability is extremely poor.

また石油ストーブ等においても、低温時に発生するHC
等の有害ガスの除去について同様な問題がある。
In addition, HC generated at low temperatures in oil stoves, etc.
Similar problems exist regarding the removal of harmful gases such as

(発明の目的) 本発明は上記従来技術の欠点を解消するため、250℃
以下の低温域において、自動車の内燃機関等から排出さ
れる排気ガス中のNOx、HC、CO特にHCを効率良
く除去可能な新たな排気ガス浄化用の触媒を提供するこ
とを目的とする。
(Object of the invention) In order to eliminate the drawbacks of the above-mentioned prior art, the present invention aims to
It is an object of the present invention to provide a new catalyst for exhaust gas purification that can efficiently remove NOx, HC, CO, especially HC, from exhaust gas emitted from an internal combustion engine of an automobile in the following low temperature range.

(第1発明の説明) 本第1発明は、遷移金属酸化物の1種以上と貴金属(A
uを除く)の1種以上とからなり、内燃機関等の排気ガ
ス中の炭化水素、一酸化炭素、窒素酸化物を250℃以
下の温度において除去する排気ガス浄化用触媒に関する
(Description of the first invention) The first invention provides one or more transition metal oxides and a noble metal (A
The present invention relates to an exhaust gas purifying catalyst that removes hydrocarbons, carbon monoxide, and nitrogen oxides in exhaust gas from internal combustion engines, etc., at a temperature of 250° C. or lower.

本触媒によれば250℃以下という低温域においてHC
、CO、NOxを効率良く浄化できる。特に従来の触媒
ではほとんど浄化できなかったHCの浄化を可能とした
According to this catalyst, HC in the low temperature range of 250℃ or less
, CO, and NOx can be efficiently purified. In particular, it has made it possible to purify HC, which could hardly be purified using conventional catalysts.

本触媒のかかる作用は明確ではないが以下のように考え
られる。
Although the effect of this catalyst is not clear, it is thought to be as follows.

従来の前記三元触媒は排気ガス中の有害成分であるCO
、HC、NOxを貴金属上に吸着し、以下に示すような
反応によって除去するものである。
The conventional three-way catalyst eliminates CO, a harmful component in exhaust gas.
, HC, and NOx are adsorbed onto the noble metal and removed by the reaction shown below.

また助触媒であるCeO2に代表される希土類酸化物は
担体の熱安定性の向上、貴金属の高分散化の確保ととも
に、400℃以上において還元雰囲気下、すなわち排気
ガス中に酸素(O2)が不足していてもCeO2がO2
を貴金属に供給するいわゆるO2ストレージ能によりC
OやHCの酸化を進行させる働きを有する。しかし、2
50℃以下の低温ではCOの貴金属への吸着か優先して
おこり、O2、HC等の吸着が妨げられHC、NOxの
除去がほとんど行われなくなり、また、CeO2のO2
供給も250℃以下という低温ではほとんど行われずC
eO2のO2ストレージ能に基づくHC等の浄化も不可
能であった。
In addition, the rare earth oxides represented by CeO2, which are co-catalysts, improve the thermal stability of the carrier and ensure high dispersion of precious metals. Even if CeO2 is O2
C due to the so-called O2 storage ability that supplies precious metals with
It has the function of advancing the oxidation of O and HC. However, 2
At low temperatures below 50°C, adsorption of CO to noble metals occurs preferentially, preventing the adsorption of O2, HC, etc., and removing almost no HC and NOx.
At low temperatures below 250°C, C
It was also impossible to purify HC and the like based on the O2 storage capacity of eO2.

本発明における遷移金属酸化物は前記CeO2とは異な
り250℃以下の低温で遷移金属自身が吸蔵しているO
2を吐き出して貴金属に優先的に吸着したCOとの反応
を促進せしめ、COをCO2に変えることができ、その
ためO2、HCやNOxをも貴金属に吸着できるように
し、HCやNOxの浄化を可能とするのである。
The transition metal oxide in the present invention differs from CeO2 in that the transition metal itself occludes O at a low temperature of 250°C or lower.
2 can be expelled to accelerate the reaction with CO preferentially adsorbed on precious metals, converting CO into CO2. Therefore, O2, HC, and NOx can also be adsorbed on precious metals, making it possible to purify HC and NOx. That is to say.

また、このように前記した反応■〜■が行われるためそ
の反応熱によって触媒自身の温度が上昇して触媒活性も
高められることになる。
Furthermore, since the reactions (1) to (4) described above are carried out in this way, the temperature of the catalyst itself rises due to the reaction heat, and the catalytic activity is also increased.

(第1発明のその他の発明の説明) 前記第1発明において遷移金属酸化物はCo3O4、N
iO、Fe2O3、Cr2O3、Mn2O3等が挙げら
れるが、これらは例示にすぎない。これらの1種以上を
用いる。遷移金属酸化物の大きさは2000Å以下、ま
た、比表面積は0.2〜200m2/gで用いる。この
範囲を超えると良好な浄化活性を発揮できない。望まし
くは100Å以下、50m2/g〜200m2/gが良
い。
(Description of other inventions of the first invention) In the first invention, the transition metal oxide is Co3O4, N
Examples include iO, Fe2O3, Cr2O3, Mn2O3, but these are merely examples. One or more of these are used. The size of the transition metal oxide is 2000 Å or less, and the specific surface area is 0.2 to 200 m 2 /g. If it exceeds this range, good purifying activity cannot be exhibited. The thickness is desirably 100 Å or less, preferably 50 m 2 /g to 200 m 2 /g.

貴金属はRh、Pt、Pdの1種以上を用いる。As the noble metal, one or more of Rh, Pt, and Pd is used.

貴金属の量は遷移金属酸化物に対し0.05〜10at
%とする。0.05at%以下だと浄化活性が発揮され
ず、逆に10at%以上だと貴金属の量が多すぎて互い
に凝集してしまい活性が低下することになる。望ましく
は1〜5at%が良い。貴金属の粒径は500Å以下と
する。
The amount of noble metal is 0.05 to 10 at for transition metal oxide.
%. If it is less than 0.05 at%, purification activity will not be exhibited, and conversely, if it is more than 10 at%, the amount of precious metals will be too large and will coagulate with each other, resulting in a decrease in activity. It is preferably 1 to 5 at%. The particle size of the noble metal is 500 Å or less.

これら遷移金属酸化物と貴金属とは均一に混合して用い
る。前記したように貴金属の表面に吸着したCOを遷移
金属酸化物から吐き出されるO2によって酸化してCO
を効率良く貴金属表面から除去するためには貴金属と遷
移金属酸化物とが密接して存在していることが必要なた
めである。またこれら両物質が接触する界面は固溶し合
っている方が良好な浄化特性を発揮する。
These transition metal oxides and noble metals are used in a uniform mixture. As mentioned above, CO adsorbed on the surface of the noble metal is oxidized by O2 discharged from the transition metal oxide, and CO is
This is because the noble metal and the transition metal oxide need to be in close contact with each other in order to efficiently remove them from the surface of the noble metal. In addition, when these two substances are in solid solution at the interface where they come into contact, better purification properties are exhibited.

本発明に係る触媒は以下に示す方法によって製造する。The catalyst according to the present invention is manufactured by the method shown below.

従来公知の方法、■遷移金属の硝酸金属塩、有機金属塩
又は金属塩化物を熱分解したものに貴金属塩の水溶液を
含浸して製造する方法、■上記各種金属塩を加水分解し
、得られた水酸化物を焼成後、貴金属を担持する方法、
■遷移金属塩と貴金属塩とからなる混合溶液から共沈し
て製造する方法のいずれを用いてもよい。
Conventionally known methods, (1) a method of impregnating thermally decomposed metal nitrates, organic metal salts, or metal chlorides of transition metals with an aqueous solution of noble metal salts, (2) hydrolyzing the various metal salts mentioned above, A method of supporting a noble metal after firing a hydroxide,
(2) Any method of producing by co-precipitation from a mixed solution consisting of a transition metal salt and a noble metal salt may be used.

遷移金属酸化物と貴金属とからなる触媒は、粉状、ペレ
ット状、ハニカム状等その形状・構造は問わない。また
粉末状の触媒にアルミナゾルやシリカゾル、ジルコニア
ゾル、チタニアゾル等のバインダーを添加して、所定の
形状に成形したり、水を加えて、スラリー状としてハニ
カム等の形状のアルミナ等の耐火性基体に塗布してもよ
い。
The catalyst composed of a transition metal oxide and a noble metal may have any shape or structure, such as powder, pellet, or honeycomb shape. In addition, a binder such as alumina sol, silica sol, zirconia sol, titania sol, etc. is added to the powdered catalyst, and it is molded into a predetermined shape, or water is added to form a slurry that can be applied to a refractory substrate such as alumina in the shape of a honeycomb, etc. May be applied.

実施例 本発明に係る触媒を製造し、該触媒について理論空燃比
のモデルガスを用い、NOx、CO、HCに対する浄化
活性評価を行った。また比較触媒についても同様の活性
評価を行った。
EXAMPLE A catalyst according to the present invention was manufactured, and its purification activity against NOx, CO, and HC was evaluated using a model gas at a stoichiometric air-fuel ratio. Similar activity evaluations were also conducted for comparative catalysts.

実施例1 硝酸コバルト54gと硝酸パラジウム0.433gとを
、イオン交換水2■に溶かしたもの(原子比Pd:Co
=1:100)を室温下で、分液ロートより約0.6m
■/sec速度で、炭酸ナトリウム50gをイオン交換
水2■に溶かしたアルカリ性水溶液に滴下、撹拌する。
Example 1 54 g of cobalt nitrate and 0.433 g of palladium nitrate were dissolved in 2 μg of ion-exchanged water (atomic ratio Pd:Co
= 1:100) at room temperature, approximately 0.6 m from the separating funnel.
Add dropwise to an alkaline aqueous solution prepared by dissolving 50 g of sodium carbonate in 2 cm of ion-exchanged water at a rate of 1/sec and stir.

この溶液を一時間放置した後、ろ過、洗浄し、減圧乾燥
する。そして得られた粉末を空気中で350℃3時間焼
成した。
After leaving the solution for one hour, it is filtered, washed, and dried under reduced pressure. The obtained powder was then calcined in air at 350°C for 3 hours.

この焼成物を約2〜3mmのサイコロ状に圧粉成型し、
PdとCo3O4とからなる実施例触媒No.1を得た
This baked product is compacted into a dice shape of approximately 2 to 3 mm,
Example catalyst No. consisting of Pd and Co3O4. I got 1.

実施例2 実施例1の方法において、硝酸パラジウムの代わりにジ
ニトロジアミノPtを用い(PtとCoとの原子比は1
:100と同一)アルカリ性水溶液として炭酸アンモニ
ウムを用いた以外は同一の条件でPtとCo3O4とか
らなる触媒No.2を得た。
Example 2 In the method of Example 1, dinitrodiamino Pt was used instead of palladium nitrate (the atomic ratio of Pt and Co was 1).
: Same as 100) Catalyst No. 1 consisting of Pt and Co3O4 under the same conditions except that ammonium carbonate was used as the alkaline aqueous solution. I got 2.

実施例3 硝酸コバルト水溶液(50g/■)を、炭酸ナトリウム
水溶液(50g/■)に滴下して撹拌し、水酸化コバル
トを沈澱させた後、ろ過、洗浄し、さらに減圧乾燥し、
その後空気中で350℃3hr焼成して得た粉末に硝酸
Pd水溶液をPd含有量として1at%含浸し、その後
空気中350℃で焼成した。この焼成物を2〜3mmの
サイコロ状に圧粉成型し、PdとCo3O4とからなる
実施例触媒No.3を得た。
Example 3 A cobalt nitrate aqueous solution (50 g/■) was added dropwise to a sodium carbonate aqueous solution (50 g/■) and stirred to precipitate cobalt hydroxide, which was then filtered, washed, and further dried under reduced pressure.
Thereafter, the powder was baked at 350° C. for 3 hours in air, and the obtained powder was impregnated with an aqueous solution of Pd nitrate to have a Pd content of 1 at %, and then baked at 350° C. in air. This calcined product was compacted into a 2 to 3 mm dice shape, and the Example Catalyst No. 1 consisting of Pd and Co3O4 was prepared. I got 3.

実施例4 実施例3の方法において硝酸Pdの代わりにジニトロジ
アミノPtを用いた以外は同一の条件でptとCo3O
4とからなる実施例触媒No.4を得た。
Example 4 Pt and Co3O were produced under the same conditions as in Example 3 except that dinitrodiamino Pt was used instead of Pd nitrate.
Example catalyst No. 4 consisting of I got 4.

実施例5 硝酸Coを600℃空気中5hr焼成し、熱分解させC
o3O4を得る。このCo3O4粉末に硝酸Pd含有量
3.5at%になるように含浸し、その後空気中で35
0℃3hr焼成した。この焼成物を2〜3mmのサイコ
ロ状に圧粉成型し、PdとCo3O4とからなる実施例
触媒No.5を得た。
Example 5 Co nitric acid was fired at 600°C in air for 5 hours to thermally decompose the C
Obtain o3O4. This Co3O4 powder was impregnated with a Pd nitrate content of 3.5 at%, and then
It was baked at 0°C for 3 hours. This calcined product was compacted into a 2 to 3 mm dice shape, and the Example Catalyst No. 1 consisting of Pd and Co3O4 was prepared. Got 5.

実施例6 実施例5の方法において、硝酸Pdの代わりにジニトロ
ジアミノptを用いた以外は同一の条件でPtとCo3
O4とからなる実施例触媒No.6を得た。
Example 6 In the method of Example 5, Pt and Co3 were prepared under the same conditions except that dinitrodiaminopt was used instead of Pd nitrate.
Example catalyst No. consisting of O4. I got 6.

実施例7 実施例5の方法において、硝酸Coの代わりに硝酸Ni
を用いた以外は同一の条件でPtとNiOとからなる実
施例触媒No.7を得た。
Example 7 In the method of Example 5, Ni nitrate was used instead of Co nitrate.
Example catalyst No. 1 consisting of Pt and NiO was prepared under the same conditions except that catalyst No. 1 was used. I got a 7.

実施例8 実施例5の方法において、硝酸Coの代わりに硝酸第二
鉄を用いた以外は同一の条件で、PtとFe2O3とか
らなる実施例触媒No.8を得た。
Example 8 Example catalyst No. 1 consisting of Pt and Fe2O3 was prepared under the same conditions as in Example 5 except that ferric nitrate was used instead of Co nitrate. I got 8.

実施例9 実施例1の方法において、硝酸コバルト54gと硝酸パ
ラジウム0.433gの他に硝酸ニッケル18gを加え
、そして炭酸ナトリウム量を70gとした。それ以外は
同一の条件でPdとNiOならびにCo3O4とからな
る実施例触媒No.9を得た。
Example 9 In the method of Example 1, 18 g of nickel nitrate was added in addition to 54 g of cobalt nitrate and 0.433 g of palladium nitrate, and the amount of sodium carbonate was 70 g. Example catalyst No. 1 consisting of Pd, NiO and Co3O4 was prepared under the same conditions except for the above. I got a 9.

比較例1 比表面積約220m2/gLa含有のγ−A■2O3(
La0.03mol/120g)粉末120g中にCe
O2として0.3mol含有する様に硝酸Ceを用い含
浸させ650℃3hr大気中で焼成、その後Pt量とし
て1.5g含有する様にジニトロジアミノPt水溶液を
用い、含浸させ大気中で250℃、3hr仮焼した。そ
の後、Rh量として0.3g含有する様に硝酸Rh水溶
液を用いて含浸させ110℃−昼夜空気中乾燥させた。
Comparative Example 1 γ-A2O3 (with specific surface area of about 220 m2/gLa)
Ce in 120g of powder (La0.03mol/120g)
Impregnated with Ce nitric acid to contain 0.3 mol of O2 and fired in the atmosphere at 650°C for 3 hours, then impregnated with a dinitrodiamino Pt aqueous solution to contain 1.5 g of Pt in the air at 250°C for 3 hours. Calcined. Thereafter, it was impregnated with an aqueous solution of Rh nitric acid so that the amount of Rh contained was 0.3 g, and was dried in the air at 110° C. day and night.

これを2〜3mm程度のサイコロ状に圧粉成型し、比較
触媒No.C1を得た。本比較例触媒は、通常自動車排
気触媒に用いられているPt−Rh系三元触媒である。
This was compacted into a dice shape of about 2 to 3 mm, and the comparison catalyst No. Obtained C1. The catalyst of this comparative example is a Pt-Rh based three-way catalyst that is commonly used in automobile exhaust catalysts.

比較例2 実施例1の方法において、硝酸パラジウムを加えないで
それ以外は同一の条件でCo3O4のみからなる比較例
触媒No.C2を得た。
Comparative Example 2 Comparative Example Catalyst No. 1 consisting of only Co3O4 was prepared in the same manner as in Example 1 without adding palladium nitrate under the same conditions. Obtained C2.

比較例3 比表面積約140m2/gのγ−A■2O3ペレット担
体(2〜3mmφ)を硝酸パラジウム水溶液に浸漬し、
γ−A■2O3重量に対しPd量が0.14wt%にな
る様に含浸し、空気中110℃、5hr、乾燥し、60
0℃空気中3hr、焼成した。この焼成物を約2〜3m
mのサイコロ状に圧粉成型し、PdとA■2O3とから
なる比較例触媒No.C3を得た。
Comparative Example 3 A γ-A2O3 pellet carrier (2 to 3 mmφ) with a specific surface area of about 140 m2/g was immersed in a palladium nitrate aqueous solution,
γ-A ■ Impregnated so that the amount of Pd was 0.14 wt% based on the weight of 2O3, dried in air at 110°C for 5 hours, and dried for 60 hours.
It was baked in air at 0°C for 3 hours. Approximately 2 to 3 m long of this fired material
Comparative Example Catalyst No. 1, which was compacted into a dice shape of m and made of Pd and A2O3. Obtained C3.

比較例4 比較例3の方法において、硝酸パラジウムの代わりに、
ジニトロジアミノPtを用いた以外は同一の条件でPt
とA■2O3とからなる比較例触媒No.C4を得た。
Comparative Example 4 In the method of Comparative Example 3, instead of palladium nitrate,
Pt under the same conditions except that dinitrodiamino Pt was used.
Comparative example catalyst No. consisting of and A2O3. C4 was obtained.

触媒活性評価 サイコロ状とした本実施例触媒No.1〜9および比較
例触媒No.C1〜C4を用い、第1表に示した理論空
燃比のモデルガス中での500℃〜600℃における各
成分(NO、Co、HC)の昇温浄化特性を測定した。
Catalyst activity evaluation This example catalyst No. 1 was diced. 1 to 9 and Comparative Example Catalyst No. Using C1 to C4, the heating purification characteristics of each component (NO, Co, HC) at 500°C to 600°C in a model gas having the stoichiometric air-fuel ratio shown in Table 1 was measured.

その結果のうち、実施例触媒No.1を第1図に比較例
触媒No.C1(従来の自動車排気用三元触媒)を第2
図に示した。
Among the results, Example catalyst No. Comparative Example Catalyst No. 1 is shown in FIG. C1 (conventional three-way catalyst for automobile exhaust)
Shown in the figure.

実施例触媒No.1は200℃においてCO、HC、N
Oを100%浄化することができる。しかし、比較例触
媒No.C1は、200℃においても40〜80%程度
低い浄化率であるにすぎない。
Example catalyst No. 1 is CO, HC, N at 200℃
It is possible to purify 100% of O. However, comparative example catalyst No. C1 has a purification rate that is only about 40 to 80% lower even at 200°C.

また、上記各触媒の測定結果をNO、CO、HCの50
%浄化率温度で整理して第2表に示した。
In addition, the measurement results for each of the above catalysts were
The results are shown in Table 2, sorted by % purification rate and temperature.

実施例触媒No.1は、比較例触媒No.C1等に比べ
(第1図と第2図の比較並びに第2表での比較)、著し
く低温活性、特にHCに対し優れていることがわかる。
Example catalyst No. 1 is Comparative Example Catalyst No. It can be seen that compared to C1 etc. (comparison between Figures 1 and 2 and comparison in Table 2), it is significantly superior in low temperature activity, especially against HC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例触媒No.1、第2図は比較例触媒No
.C1についての温度に対する浄化率の関係を示した図
である。
FIG. 1 shows Example catalyst No. 1. Figure 2 shows comparative example catalyst No.
.. It is a figure which showed the relationship of the purification rate with respect to temperature regarding C1.

Claims (1)

【特許請求の範囲】[Claims] 遷移金属酸化物の1種以上と貴金属(金を除く)の1種
以上とからなり、内燃機関等の排気ガス中の炭化水素、
一酸化炭素、窒素酸化物を250℃以下の温度において
除去する排気ガス浄化用触媒。
Comprising one or more transition metal oxides and one or more noble metals (excluding gold), hydrocarbons in exhaust gas from internal combustion engines, etc.
An exhaust gas purification catalyst that removes carbon monoxide and nitrogen oxides at temperatures below 250°C.
JP28286790A 1990-10-19 1990-10-19 Exhaust gas purification catalyst Expired - Fee Related JP3251009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28286790A JP3251009B2 (en) 1990-10-19 1990-10-19 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28286790A JP3251009B2 (en) 1990-10-19 1990-10-19 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH04215845A true JPH04215845A (en) 1992-08-06
JP3251009B2 JP3251009B2 (en) 2002-01-28

Family

ID=17658117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28286790A Expired - Fee Related JP3251009B2 (en) 1990-10-19 1990-10-19 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3251009B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757920A2 (en) * 1995-08-07 1997-02-12 SAES GETTERS S.p.A. Combination of getter materials and device for containing the same
CN103394351A (en) * 2013-05-30 2013-11-20 北京工业大学 Three-dimensional ordered macroporous Mn2O3 supported Au catalyst, preparation method and application
KR20200053475A (en) 2017-09-14 2020-05-18 스미또모 가가꾸 가부시끼가이샤 Oxidation method of carbon monoxide, carbon monoxide oxidation device, air purifier, and gas mask

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145691B2 (en) * 2003-03-27 2008-09-03 松下電器産業株式会社 Carbon monoxide removal unit, carbon monoxide removal method, and air cleaning device
JP3912377B2 (en) 2003-12-25 2007-05-09 日産自動車株式会社 Method for producing exhaust gas purification catalyst powder
JP4547930B2 (en) 2004-02-17 2010-09-22 日産自動車株式会社 Catalyst, catalyst preparation method and exhaust gas purification catalyst
JP4547935B2 (en) * 2004-02-24 2010-09-22 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification catalyst, and catalyst manufacturing method
JP4513372B2 (en) 2004-03-23 2010-07-28 日産自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst
JP4513384B2 (en) 2004-03-31 2010-07-28 日産自動車株式会社 High heat-resistant exhaust gas purification catalyst and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757920A2 (en) * 1995-08-07 1997-02-12 SAES GETTERS S.p.A. Combination of getter materials and device for containing the same
EP0757920A3 (en) * 1995-08-07 1997-04-16 Getters Spa Combination of getter materials and device for containing the same
CN1081485C (en) * 1995-08-07 2002-03-27 工程吸气公司 Combination of getter materials and device for containing the same
CN103394351A (en) * 2013-05-30 2013-11-20 北京工业大学 Three-dimensional ordered macroporous Mn2O3 supported Au catalyst, preparation method and application
KR20200053475A (en) 2017-09-14 2020-05-18 스미또모 가가꾸 가부시끼가이샤 Oxidation method of carbon monoxide, carbon monoxide oxidation device, air purifier, and gas mask

Also Published As

Publication number Publication date
JP3251009B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JP2010022918A (en) Honeycomb-structured catalyst for purifying exhaust gas discharged from automobile, method for producing the catalyst, and method for purifying exhaust gas by using the catalyst
WO2008065819A1 (en) Composite oxide for exhaust gas clean-up catalyst, exhaust gas clean-up catalyst, and diesel exhaust gas clean-up filter
JPH10286462A (en) Catalyst of purifying exhaust gas
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH04215845A (en) Catalyst for exhaust gas purification
JP5616382B2 (en) Oxidation catalyst and exhaust gas purification method using the same
JP3589383B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JP2003144926A (en) Exhaust gas purification catalyst for internal combustion engine, purification method and purification device
JP3417702B2 (en) Nitrogen oxide storage composition and exhaust gas purification method
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP4503314B2 (en) Exhaust gas purification catalyst
JP3506301B2 (en) High heat resistant catalyst
JP2563393B2 (en) Combustible gas oxidation catalyst
JPH1176819A (en) Catalyst for cleaning of exhaust gas
JP2005169280A (en) Exhaust gas purification catalyst
JP5051009B2 (en) NOx storage reduction catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees