JPH04215393A - Optical communication method and optical communication equipment - Google Patents
Optical communication method and optical communication equipmentInfo
- Publication number
- JPH04215393A JPH04215393A JP2402052A JP40205290A JPH04215393A JP H04215393 A JPH04215393 A JP H04215393A JP 2402052 A JP2402052 A JP 2402052A JP 40205290 A JP40205290 A JP 40205290A JP H04215393 A JPH04215393 A JP H04215393A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- signal light
- transmission
- optical communication
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は波長多重通信に供する
光通信方法及び光通信装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication method and an optical communication apparatus for wavelength division multiplexing communication.
【0002】0002
【従来の技術】波長多重光通信を行なうための従来のシ
ステムとして、例えば特開昭64−27330号公報に
開示されているものがある。このシステムの構成につき
一例をあげて説明すれば、このシステムでは、第一、第
二及び第三の光伝送路の一端にそれぞれ第一、第二及び
第三の光通信装置を設け、これら第一、第二及び第三の
光伝送路の他端にそれぞれ第一、第二及び第三の光合分
波器を設ける。そして第一の光合分波器は第一の光伝送
路からの信号光を分波して第二及び第三の光合分波器に
入力し、第二の光合分波器は第二の光伝送路からの信号
光を分波し第三及び第一の光合分波器に入力し、さらに
第三の光合分波器は第三の光伝送路からの信号光を第一
及び第二の光合分波器へ入力する。また第一の光合分波
器は第二及び第三の光合分波器からの信号光を合波し第
一の光伝送路へ入力し、第二の光合分波器は第三及び第
一の光合分波器からの信号光を合波し第二の光伝送路へ
入力し、さらに第三の光合分波器は第一及び第二の光合
分波器からの信号光を合波し第三の光伝送路へ入力する
。このように信号光を伝送することによって、第一〜第
三の光通信装置の間での光通信を双方向に行なっていた
。2. Description of the Related Art A conventional system for performing wavelength division multiplexed optical communication is disclosed in, for example, Japanese Patent Laid-Open No. 64-27330. To explain the configuration of this system by giving an example, in this system, first, second, and third optical communication devices are provided at one end of the first, second, and third optical transmission paths, respectively. First, second, and third optical multiplexers/demultiplexers are provided at the other ends of the first, second, and third optical transmission lines, respectively. The first optical multiplexer/demultiplexer demultiplexes the signal light from the first optical transmission line and inputs it to the second and third optical multiplexer/demultiplexer, and the second optical multiplexer/demultiplexer demultiplexes the signal light from the first optical transmission line. The signal light from the transmission line is split and input into the third and first optical multiplexer/demultiplexer, and the third optical multiplexer/demultiplexer splits the signal light from the third optical transmission line into the first and second optical multiplexers/demultiplexers. Input to optical multiplexer/demultiplexer. Further, the first optical multiplexer/demultiplexer multiplexes the signal lights from the second and third optical multiplexers/demultiplexers and inputs the signal lights to the first optical transmission line, and the second optical multiplexer/demultiplexer The signal light from the optical multiplexer/demultiplexer is multiplexed and input to the second optical transmission line, and the third optical multiplexer/demultiplexer multiplexes the signal light from the first and second optical multiplexer/demultiplexer. input to the third optical transmission line. By transmitting signal light in this manner, optical communication between the first to third optical communication devices was performed in both directions.
【0003】この他の光通信システムとしては、例えば
特開平1−144889号公報に開示されているものを
挙げることができる。[0003] Other optical communication systems include, for example, the one disclosed in Japanese Patent Laid-Open No. 1-144889.
【0004】0004
【発明が解決しようとする課題】しかしながら上述した
従来の通信システムはいずれも光伝送路をスター状に結
合した例である。従来、光伝送路を網目状に結合した通
信システムで波長多重光通信を行なうための具体的な方
法は提案されていない。However, all of the conventional communication systems described above are examples in which optical transmission lines are coupled in a star shape. Conventionally, no specific method has been proposed for performing wavelength division multiplexing optical communication in a communication system in which optical transmission lines are connected in a network.
【0005】この発明の目的は、上述した点に鑑がみな
されたものであり、網目状に結合した光伝送路を用いた
波長多重通信を行なうための光通信方法及び光通信装置
を提供することにある。An object of the present invention is to provide an optical communication method and an optical communication device for performing wavelength division multiplexing communication using optical transmission lines coupled in a mesh. There is a particular thing.
【0006】[0006]
【課題を解決するための手段】この目的の達成を図るた
め、第一発明の光通信方法は、網目状に結合した複数の
光伝送路と、光伝送路に設けた光通信装置とから光通信
網を構成しこの光通信網を用いて波長多重光通信を行な
うに当り、送信元の光通信装置から送信先の光通信装置
へ至る信号光の伝送経路を1個の光伝送路又は複数個の
光伝送路の組合せにより構成し、伝送経路毎に、使用さ
れる信号光波長を予め定め、複数の伝送経路で共用され
る1個の光伝送路は当該光伝送路を共用する伝送経路毎
に定めた波長の信号光を波長多重で伝送し、光通信装置
は、信号光を送信する場合、この信号光の送信先に至る
伝送経路で定めた波長の信号光を、当該伝送経路を構成
する光伝送路へ送信し、光通信装置は、信号光を受信す
る場合、当該光通信装置を送信先とする伝送経路を構成
する光伝送路から入力した信号光であって、当該光通信
装置を送信先とする伝送経路で定めた波長を有する信号
光を受信し、光通信装置は、信号光を中継する場合、当
該光通信装置を送信先とする伝送経路を構成する光伝送
路以外の光伝送路から入力した信号光か又は当該光通信
装置を送信先とする伝送経路で定められた波長以外の波
長を有する信号光を中継し、当該中継信号光を、該信号
光波長に対応する伝送経路を構成する光伝送路へ出力す
ることを特徴とする。[Means for Solving the Problems] In order to achieve this object, the optical communication method of the first invention includes a plurality of optical transmission lines coupled in a mesh, and an optical communication device provided on the optical transmission lines. When configuring a communication network and performing wavelength division multiplexing optical communication using this optical communication network, the transmission path of signal light from the source optical communication device to the destination optical communication device is set to one or more optical transmission paths. The signal light wavelength to be used is determined in advance for each transmission path, and one optical transmission path that is shared by multiple transmission paths is a transmission path that is shared by multiple transmission paths. When transmitting signal light, an optical communication device transmits signal light of a predetermined wavelength on a transmission path leading to the destination of this signal light by wavelength multiplexing. When an optical communication device receives a signal light, the optical communication device receives the signal light input from the optical transmission path that makes up the transmission path with the optical communication device as the destination. When an optical communication device receives signal light having a wavelength determined by a transmission path with the device as the destination, and relays the signal light, the optical communication device uses a transmission path other than the optical transmission path that constitutes the transmission path with the optical communication device as the destination. The signal light input from the optical transmission line or the signal light having a wavelength other than the wavelength determined by the transmission route with the optical communication device as the transmission destination is relayed, and the relayed signal light corresponds to the signal light wavelength. It is characterized in that it is output to an optical transmission path that constitutes a transmission path for the transmission.
【0007】また第二発明の光通信装置は、光伝送路に
接続する中継器及び該中継器に接続する光交換器を備え
、前記中継器を光伝送路毎に設けた複数の光合分波器か
ら構成し、光合分波器は、光伝送路から入力した信号光
を分波し所定波長の信号光を光交換器へ入力すると共に
所定波長以外の残りの波長の信号光を該信号光波長に対
応付けられた光伝送路と接続する光合分波器へ入力し、
これと共に光交換器又は当該光合分波器とは別の光合分
波器から入力した信号光を合波して光伝送路へ出力する
ことを特徴とする。Further, the optical communication device of the second invention includes a repeater connected to an optical transmission line and an optical exchanger connected to the repeater, and the repeater is provided for each optical transmission line. The optical multiplexer/demultiplexer splits the signal light input from the optical transmission line, inputs the signal light of a predetermined wavelength to the optical exchanger, and divides the signal light of the remaining wavelengths other than the predetermined wavelength into the signal light. Input to the optical multiplexer/demultiplexer connected to the optical transmission line corresponding to the wavelength,
At the same time, it is characterized in that signal light input from an optical exchanger or an optical multiplexer/demultiplexer different from the optical multiplexer/demultiplexer is multiplexed and output to an optical transmission line.
【0008】[0008]
【作用】第一発明の光通信方法によれば、送信元の光通
信装置から送信先の光通信装置へ至る信号光の伝送経路
を1個の光伝送路又は複数個の光伝送路の組合せにより
構成し、伝送経路毎に、使用される信号光波長を予め定
める。従って信号光の伝送経路と、使用される信号光波
長及び信号光の伝送に供する光伝送路とは予め対応付け
られており、この発明ではこれらの対応関係を利用する
ことによって、網目状に結合した光伝送路を備える光通
信網において信号光の受信、送信及び中継を確実に行な
うものである。尚、信号光の伝送経路が分れば送信元及
び送信先も分る。[Operation] According to the optical communication method of the first invention, the transmission path of the signal light from the source optical communication device to the destination optical communication device is one optical transmission path or a combination of a plurality of optical transmission paths. The signal light wavelength to be used is determined in advance for each transmission path. Therefore, the transmission path of the signal light, the wavelength of the signal light to be used, and the optical transmission path used for the transmission of the signal light are associated in advance, and in this invention, by utilizing these correspondence relationships, the transmission path of the signal light is connected in a network. This system ensures the reception, transmission, and relay of signal light in an optical communication network equipped with optical transmission lines. Note that if the transmission path of the signal light is known, the source and destination can also be known.
【0009】これら伝送経路と、信号光波長及び光伝送
路との予め定められた対応関係に基づいて、光通信装置
が受信すべき信号光を考えれば、受信すべき信号光は当
該光通信装置を送信先とする伝送経路を構成する光伝送
路から入力した信号光であって、かつ当該光通信装置を
送信先とする伝送経路で定めた波長を有する信号光であ
る。[0009] Considering the signal light that an optical communication device should receive based on the predetermined correspondence between these transmission paths, signal light wavelengths, and optical transmission paths, the signal light that should be received by the optical communication device is This is signal light that is input from an optical transmission path that constitutes a transmission path whose destination is the optical communication device, and which has a wavelength determined by the transmission path whose destination is the optical communication device.
【0010】またこれら予め定められた対応関係に基づ
き、光通信装置が中継すべき信号光を考えれば、中継す
べき信号光は当該光通信装置を送信先とする伝送経路を
構成する光伝送路以外の光伝送路から入力した信号光か
、又は当該光通信装置を送信先とする伝送経路で定めら
れた波長以外の波長を有する信号光である。この中継信
号光を当該信号光の送信先へ送り届けるためには、中継
信号光を入力した光通信装置から、当該中継信号光波長
に対応する伝送経路を構成する光伝送路へ、中継信号光
を出力すればよい。[0010] Furthermore, considering the signal light to be relayed by the optical communication device based on these predetermined correspondence relationships, the signal light to be relayed is the optical transmission path that constitutes the transmission path with the optical communication device as the destination. The signal light is input from a different optical transmission path, or the signal light has a wavelength other than the wavelength determined by the transmission path to which the optical communication device is the transmission destination. In order to send this relay signal light to the destination of the signal light, the relay signal light is transmitted from the optical communication device that inputs the relay signal light to the optical transmission line that constitutes the transmission path corresponding to the wavelength of the relay signal light. All you have to do is output it.
【0011】またこれら予め定められた対応関係に基づ
き、光通信装置が送信する信号光について考えれば、送
信する信号光の波長を当該光通信装置からこの信号光の
送信先に至る伝送経路で定めた波長とし、この波長を有
する信号光を送信先に至る伝送経路を構成する光伝送路
へ送信する。このように送信することにより、伝送経路
上の光通信装置の中継を介し或いは中継を介さずに直接
に、送信先の光通信装置まで信号光を送り届けることが
できる。[0011] Also, based on these predetermined correspondence relationships, considering the signal light transmitted by an optical communication device, the wavelength of the signal light to be transmitted is determined by the transmission route from the optical communication device to the destination of this signal light. The signal light having this wavelength is transmitted to the optical transmission line that constitutes the transmission route to the destination. By transmitting in this manner, the signal light can be directly delivered to the destination optical communication device with or without relaying the optical communication device on the transmission path.
【0012】また第二発明の光通信装置によれば、複数
の光合分波器を光伝送路毎に設ける。そして、この光合
分波器により、光伝送路から入力した信号光を分波し所
定波長の信号光を光交換器へ入力すると共に所定波長以
外の残りの波長の信号光を該信号光波長に対応付けられ
た光伝送路と接続する光合分波器へ入力し、これと共に
光交換器又は当該光合分波器とは別の光合分波器から入
力した信号光を合波して光伝送路へ出力する。According to the optical communication device of the second aspect of the invention, a plurality of optical multiplexers/demultiplexers are provided for each optical transmission line. The optical multiplexer/demultiplexer demultiplexes the signal light input from the optical transmission line, inputs the signal light of a predetermined wavelength to the optical exchanger, and converts the signal light of the remaining wavelengths other than the predetermined wavelength into the signal light wavelength. The signal light is input to an optical multiplexer/demultiplexer connected to the associated optical transmission line, and the signal light input from an optical exchanger or another optical multiplexer/demultiplexer is combined with the optical multiplexer/demultiplexer to create an optical transmission line. Output to.
【0013】従って受信すべき信号光及び中継すべき信
号光を、同一の光伝送路から入力した場合でも、信号光
の受信処理及び中継処理を、信号光の波長に応じて簡略
に行なえる。Therefore, even when the signal light to be received and the signal light to be relayed are input from the same optical transmission path, the reception processing and relay processing of the signal light can be easily performed according to the wavelength of the signal light.
【0014】[0014]
【実施例】以下、図面を参照し、第一及び第二発明の実
施例につき説明する。尚、図面はこれら発明が理解でき
る程度に概略的に示してあるにすぎず、従ってこれら発
明を図示例に限定するものではない。[Embodiments] Hereinafter, embodiments of the first and second inventions will be described with reference to the drawings. Note that the drawings are merely shown schematically to the extent that these inventions can be understood, and therefore, these inventions are not limited to the illustrated examples.
【0015】図2は第一発明の実施例の説明に供する図
であり、網目状に結合した光伝送路を備える光通信網(
網目状の光通信網)の一例を示す。FIG. 2 is a diagram for explaining an embodiment of the first invention, and shows an optical communication network (
An example of a mesh-like optical communication network is shown below.
【0016】第一発明の実施例では、一例として図2に
示すような光通信網を用いて光波長通信を行なうことを
考える。この光通信網は、網目状に結合した複数の光伝
送路121〜126と、これら光伝送路に設けた光通信
装置10a〜10eとから成る。この例では光伝送路1
21〜126をそれぞれ1本の光ファイバとし、光通信
装置10aと光通信装置10c、10d及び10eとの
間をそれぞれ光伝送路121、126及び125で結合
する。そして光通信装置10dと光通信装置10c及び
10eとの間をそれぞれ光伝送路123及び124で結
合し、光通信装置10cと光通信装置10bとの間を光
伝送路122で結合する。In the embodiment of the first invention, it is considered that optical wavelength communication is performed using an optical communication network as shown in FIG. 2 as an example. This optical communication network consists of a plurality of optical transmission lines 121 to 126 connected in a mesh pattern and optical communication devices 10a to 10e provided on these optical transmission lines. In this example, optical transmission line 1
Each of 21 to 126 is a single optical fiber, and the optical communication device 10a and the optical communication devices 10c, 10d, and 10e are coupled by optical transmission lines 121, 126, and 125, respectively. The optical communication device 10d and the optical communication devices 10c and 10e are coupled by optical transmission lines 123 and 124, respectively, and the optical communication device 10c and the optical communication device 10b are coupled by an optical transmission line 122.
【0017】図3は第一発明の実施例の説明に供する図
であり、図2の光通信網に光伝送路を追加した状態を示
す。FIG. 3 is a diagram for explaining an embodiment of the first invention, and shows a state in which an optical transmission line is added to the optical communication network of FIG. 2.
【0018】図2の光通信網において、光通信装置10
a及び10bの間、光通信装置10b及び10dの間、
光通信装置10b及び10eの間、及び光通信装置10
c及び10eの間での光通信を考えた場合、図3中に一
点鎖線で示すように、これら光通信装置の間にそれぞれ
光伝送路141、143、142及び144を設け、図
2の光通信網にこれら光伝送路141〜144を新たに
追加すればよい。しかし光伝送路を追加すれば追加する
光伝送路の形成に余計に光ファイバを必要とする。そこ
で光伝送路を追加せずにこれら光通信装置の間での光通
信を行なうことを考える。In the optical communication network shown in FIG.
between a and 10b, between optical communication devices 10b and 10d,
Between the optical communication devices 10b and 10e, and the optical communication device 10
When considering optical communication between 10c and 10e, optical transmission lines 141, 143, 142, and 144 are provided between these optical communication devices, respectively, as shown by dashed lines in FIG. These optical transmission lines 141 to 144 may be newly added to the communication network. However, if an optical transmission line is added, an additional optical fiber is required to form the additional optical transmission line. Therefore, we will consider performing optical communication between these optical communication devices without adding an optical transmission path.
【0019】図1は第一発明の実施例の説明に供する図
であり、図2の光通信網を用いた信号光の伝送経路の例
を示す。FIG. 1 is a diagram for explaining an embodiment of the first invention, and shows an example of a signal light transmission path using the optical communication network of FIG. 2. In FIG.
【0020】図1において、1ab、1bd、1be、
1ceは送信元の光通信装置から送信先の光通信装置へ
至る信号光の伝送経路を示す。In FIG. 1, 1ab, 1bd, 1be,
1ce indicates a transmission path of signal light from a source optical communication device to a destination optical communication device.
【0021】伝送経路1abは光通信装置10aを送信
元(又は送信先)及び光通信装置10bを送信先(又は
送信元)とする伝送経路であり、光伝送路121及び1
22から成る。伝送経路1bdは光通信装置10bを送
信元(又は送信先)及び光通信装置10dを送信先(又
は送信元)とする伝送経路であり、光伝送路122及び
123から成る。また伝送経路1beは光通信装置10
bを送信元(又は送信先)及び光通信装置10eを送信
先(又は送信元)とする伝送経路であり、光伝送路12
2、123及び124から成る。さらに伝送経路1ce
は光通信装置10cを送信元(又は送信先)及び光通信
装置10eを送信先(又は送信元)とする伝送経路であ
り、光伝送路123及び124から成る。The transmission path 1ab is a transmission path in which the optical communication device 10a is the transmission source (or destination) and the optical communication device 10b is the transmission destination (or transmission source), and the optical transmission paths 121 and 1
Consists of 22. The transmission path 1bd is a transmission path with the optical communication device 10b as the transmission source (or destination) and the optical communication device 10d as the transmission destination (or transmission source), and is composed of optical transmission paths 122 and 123. Furthermore, the transmission path 1be is the optical communication device 10.
This is a transmission path with b as the source (or destination) and the optical communication device 10e as the destination (or source), and the optical transmission path 12
2, 123 and 124. Furthermore, transmission route 1ce
is a transmission path with the optical communication device 10c as the transmission source (or destination) and the optical communication device 10e as the transmission destination (or transmission source), and is composed of optical transmission paths 123 and 124.
【0022】この場合伝送経路1ab、1bd及び1b
eを構成するために光伝送路122を重複使用している
が、このように光伝送路を重複使用しても各伝送経路毎
に使用される信号光波長を予め定めることにより、図3
の光伝送路141〜144を新たに追加せずに、光通信
装置10a及び10bの間、10b及び10dの間、1
0b及び10eの間、10c及び10eの間での光通信
を行なうことができる。以下図4及び図5を参照し、よ
り詳細に説明する。In this case, transmission paths 1ab, 1bd and 1b
Although the optical transmission lines 122 are used redundantly to configure e, even if the optical transmission lines are used redundantly in this way, by predetermining the signal light wavelength to be used for each transmission path, it is possible to
1 between the optical communication devices 10a and 10b, between 10b and 10d, without adding new optical transmission lines 141 to 144.
Optical communication can be performed between 0b and 10e and between 10c and 10e. A more detailed explanation will be given below with reference to FIGS. 4 and 5.
【0023】図4及び図5は第一発明の実施例の説明に
供する図である。ここでは、説明の簡単化のため、図4
に示すように光通信装置10bと残りの光通信装置10
a、10c、10d及び10eとの間の光通信を行なう
ための伝送経路1ab、1bc、1bd及び1beを設
定し、図5に示すように光通信装置10cと残りの光通
信装置10a、10b、10d及び10eとの間の光通
信を行なうための伝送経路1ac、1bc、1cd及び
1ceを設定した場合について考える。FIGS. 4 and 5 are diagrams for explaining an embodiment of the first invention. Here, to simplify the explanation, we will use Figure 4.
As shown in FIG.
Transmission paths 1ab, 1bc, 1bd, and 1be are set for optical communication between the optical communication devices 10c, 10c, 10d, and 10e, and the optical communication devices 10c and the remaining optical communication devices 10a, 10b, Let us consider the case where transmission paths 1ac, 1bc, 1cd, and 1ce are set for optical communication between 10d and 10e.
【0024】伝送経路1ab、1bc、1bd、1be
、1ac、1cd及び1ceは、送信元から送信先へ至
る信号光の伝送経路であり、1個の光伝送路又は複数個
の光伝送路の組合せから成る。Transmission paths 1ab, 1bc, 1bd, 1be
, 1ac, 1cd, and 1ce are signal light transmission paths from the source to the destination, and are composed of one optical transmission path or a combination of multiple optical transmission paths.
【0025】図4にも示すように、伝送経路1bcは光
通信装置10bを送信元(又は送信先)及び光通信装置
10cを送信先(又は送信元)とする伝送経路であり、
光伝送路122から成る。As shown in FIG. 4, the transmission path 1bc is a transmission path in which the optical communication device 10b is the transmission source (or destination) and the optical communication device 10c is the transmission destination (or transmission source),
It consists of an optical transmission line 122.
【0026】また図5にも示すように、伝送経路1ac
は光通信装置10cを送信元(又は送信先)及び光通信
装置10aを送信先(又は送信元)とする伝送経路であ
り、光伝送路121から成る。また伝送経路1cdは光
通信装置10cを送信元(又は送信先)及び光通信装置
10dを送信先(又は送信元)とする伝送経路であり、
光伝送路123から成る。Further, as shown in FIG. 5, the transmission path 1ac
is a transmission path having the optical communication device 10c as the transmission source (or destination) and the optical communication device 10a as the transmission destination (or transmission source), and is composed of an optical transmission path 121. Further, the transmission route 1cd is a transmission route in which the optical communication device 10c is the transmission source (or destination) and the optical communication device 10d is the transmission destination (or transmission source),
It consists of an optical transmission line 123.
【0027】そして、伝送経路1ab、1bc、1bd
、1be、1ac、1cd及び1ce毎に、使用される
信号光波長を予め定める。この際、複数の伝送経路に共
用される光伝送路を伝送する信号光が、それぞれ異なる
波長を有するように、信号光波長を定める。このように
定めることによって、共用される光伝送路を伝送する信
号光がどの伝送経路に対応するものであるかを信号光の
波長により区別できるようにする。[0027] Then, the transmission paths 1ab, 1bc, 1bd
, 1be, 1ac, 1cd, and 1ce, the signal light wavelength to be used is determined in advance. At this time, the signal light wavelength is determined so that the signal light transmitted through the optical transmission path shared by the plurality of transmission paths has different wavelengths. By determining in this way, it is possible to distinguish which transmission path the signal light transmitted through the shared optical transmission line corresponds to, based on the wavelength of the signal light.
【0028】そこで共用される光伝送路について考えれ
ば、光伝送路122は伝送経路1ab、1bc、1bd
及び1beを構成するために重複使用されるので、これ
ら伝送経路1ab、1bc、1bd及び1beで使用さ
れる信号光波長をそれぞれ異なる波長Λab、Λbc、
Λbd及びΛbeとする。そして共用される光伝送路1
22により、当該光伝送路122を共用する伝送経路毎
に定めた波長Λab、Λbc、Λbd及びΛbeの信号
光を波長多重で伝送する。Considering the optical transmission lines that are shared, the optical transmission line 122 is divided into transmission paths 1ab, 1bc, and 1bd.
and 1be, the signal light wavelengths used in these transmission paths 1ab, 1bc, 1bd, and 1be are set to different wavelengths Λab, Λbc, and 1be, respectively.
Let Λbd and Λbe. And shared optical transmission line 1
22, signal lights having wavelengths Λab, Λbc, Λbd, and Λbe determined for each transmission path that shares the optical transmission line 122 are transmitted by wavelength multiplexing.
【0029】また光伝送路121は伝送経路1ab及び
1acを構成するために重複使用されるので、これら伝
送経路1ab及び1acで使用される信号光波長をそれ
ぞれ異なる波長Λab及びΛacとする。しかしながら
伝送経路1bcを構成する光伝送路と、伝送経路1ac
を構成する光伝送路とは重複しないので、例えばΛac
=Λbcとして波長Λbcを重複使用しても、信号光が
どの光伝送路で伝送され信号光波長がどの波長であるか
の2点から信号光がどの伝送経路に対応するものである
かを、明確に区別できる。例えば光通信装置10cは、
光伝送路121から波長Λac(=Λbc)の信号光を
入力し、光伝送路122から波長Λbcの信号光を入力
するが、Λac=Λbcであっても、光伝送路121か
ら入力した信号光は伝送経路1abに対応する信号光で
あり、光伝送路122から入力した信号光は伝送経路1
bcに対応する信号光であり、信号光がどの伝送経路に
対応するものであるかを区別することができる。Furthermore, since the optical transmission line 121 is used redundantly to constitute the transmission paths 1ab and 1ac, the signal light wavelengths used in these transmission paths 1ab and 1ac are set to different wavelengths Λab and Λac, respectively. However, the optical transmission line constituting the transmission route 1bc and the transmission route 1ac
For example, Λac
Even if the wavelength Λbc is used twice as =Λbc, it is possible to determine which transmission path the signal light corresponds to from two points: which optical transmission path the signal light is transmitted through and which wavelength is the signal light wavelength. Can be clearly distinguished. For example, the optical communication device 10c is
A signal light having a wavelength Λac (=Λbc) is input from the optical transmission line 121, and a signal light having a wavelength Λbc is input from the optical transmission line 122. However, even if Λac=Λbc, the signal light input from the optical transmission line 121 is the signal light corresponding to the transmission path 1ab, and the signal light input from the optical transmission path 122 is the signal light corresponding to the transmission path 1ab.
bc, and it is possible to distinguish which transmission path the signal light corresponds to.
【0030】また光伝送路123は伝送経路1bd、1
be、1cd及び1ceを構成するために重複使用され
るので、これら伝送経路1bd、1be、1cd及び1
ceで使用される信号光波長をそれぞれ異なる波長Λb
d、Λbe、Λcd及びΛceとする。しかしながら送
経路1cdを構成する光伝送路と、伝送経路1acを構
成する光伝送路と、伝送経路1bcを構成する光伝送路
とは重複しないので、例えばΛcd=Λac=Λbcと
して波長Λbcを重複使用しても、信号光がどの光伝送
路で伝送され信号光波長がどの波長であるかの2点から
信号光がどの伝送経路に対応するものであるかを、明確
に区別できる。例えば光通信装置10cは、光伝送路1
23から波長Λcd(=Λbc)の信号光を入力し、光
伝送路121から波長Λac(=Λbc)の信号光を入
力し、光伝送路122から波長Λbcの信号光を入力す
るが、波長Λcd=Λac=Λbcであっても、光伝送
路123から入力した信号光は伝送経路1cdに対応す
る信号光であり、光伝送路121から入力した信号光は
伝送経路1abに対応する信号光であり、光伝送路12
2から入力した信号光は伝送経路1bcに対応する信号
光であり、信号光がどの伝送経路に対応するものである
かを区別することができる。Further, the optical transmission line 123 includes transmission paths 1bd, 1
Since these transmission paths 1bd, 1be, 1cd and 1ce are used redundantly to configure be, 1cd and 1ce,
The signal light wavelengths used in ce are each different wavelength Λb
d, Λbe, Λcd and Λce. However, since the optical transmission line constituting the transmission route 1cd, the optical transmission line constituting the transmission route 1ac, and the optical transmission line constituting the transmission route 1bc do not overlap, for example, the wavelength Λbc is used redundantly as Λcd=Λac=Λbc. However, it is possible to clearly distinguish which transmission path the signal light corresponds to from two points: which optical transmission path the signal light is transmitted through and which wavelength is the signal light wavelength. For example, the optical communication device 10c includes an optical transmission path 1
23, a signal light with a wavelength Λcd (=Λbc) is inputted, a signal light with a wavelength Λac (=Λbc) is inputted from the optical transmission line 121, a signal light with a wavelength Λbc is inputted from the optical transmission line 122, but the wavelength Λcd Even if =Λac=Λbc, the signal light input from the optical transmission line 123 is the signal light corresponding to the transmission route 1cd, and the signal light input from the optical transmission line 121 is the signal light corresponding to the transmission route 1ab. , optical transmission line 12
The signal light input from 2 is the signal light corresponding to the transmission path 1bc, and it is possible to distinguish which transmission path the signal light corresponds to.
【0031】上述と同様にして、光通信装置10aと残
りの他の光通信装置との間、光通信装置10dと残りの
他の光通信装置との間、光通信装置10eと残りの他の
光通信装置との間での光通信を行なうための信号光の伝
送経路を考えた場合、図2に示す光通信網では、伝送経
路毎に定める信号光波長として全部で4つの異なる波長
を使用するだけで、信号光がどの伝送経路に対応するも
のであるかを明確に区別することができる。In the same manner as described above, there are connections between the optical communication device 10a and the remaining optical communication devices, between the optical communication device 10d and the remaining optical communication devices, and between the optical communication device 10e and the remaining other optical communication devices. When considering the transmission path of signal light for optical communication with optical communication equipment, the optical communication network shown in Figure 2 uses a total of four different wavelengths as signal light wavelengths determined for each transmission path. By simply doing this, it is possible to clearly distinguish which transmission path the signal light corresponds to.
【0032】このように信号光がどの伝送経路に対応す
るものであるかが明確に区別できる状態では、光通信装
置は、信号光を受信する場合、当該光通信装置を送信先
とする伝送経路を構成する光伝送路から入力した信号光
であって、当該光通信装置を送信先とする伝送経路で定
めた波長を有する信号光を受信すれば、当該光通信装置
を送信先とする信号光を確実に受信することができる。[0032] In this state where it is possible to clearly distinguish which transmission path the signal light corresponds to, when receiving the signal light, the optical communication device selects the transmission path to which the optical communication device is the destination. If the signal light input from the optical transmission path constituting the optical communication device is received, and the signal light has the wavelength determined by the transmission path with the optical communication device as the destination, the signal light with the destination of the optical communication device as the destination is received. can be received reliably.
【0033】例えば、光通信装置10cを送信先とする
伝送経路1bcを考えた場合、光通信装置10cは伝送
経路1bcを構成する光伝送路122から伝送経路1a
b、1bc、1bd及び1beに対応する4つの信号光
を入力する。しかしこれら4つの信号光の波長はそれぞ
れ異なるので、光伝送路122からの信号光のうち伝送
経路1bcに対応する波長Λbcを有する信号光を受信
することにより、光通信装置10cを送信先とする信号
光を確実に受信することができる。For example, when considering a transmission path 1bc with the optical communication device 10c as the destination, the optical communication device 10c connects the transmission path 1a from the optical transmission path 122 constituting the transmission path 1bc.
Four signal lights corresponding to b, 1bc, 1bd, and 1be are input. However, since the wavelengths of these four signal lights are different from each other, by receiving the signal light having the wavelength Λbc corresponding to the transmission path 1bc from among the signal lights from the optical transmission line 122, the optical communication device 10c is set as the transmission destination. Signal light can be reliably received.
【0034】また光通信装置は、信号光を中継する場合
、当該光通信装置を送信先とする伝送経路を構成する光
伝送路以外の光伝送路から入力した信号光か又は当該光
通信装置を送信先とする伝送経路で定められた波長以外
の波長を有する信号光を中継し、当該中継信号光を、該
信号光波長に対応する伝送経路を構成する光伝送路へ出
力すれば、中継信号光を確実に送信先へと送り届けるこ
とができる。[0034] Furthermore, when an optical communication device relays signal light, the optical communication device receives either the signal light input from an optical transmission path other than the optical transmission path constituting the transmission route with the optical communication device as the destination, or the optical communication device relays the signal light. If a signal light having a wavelength other than the wavelength determined by the destination transmission route is relayed and the relay signal light is outputted to the optical transmission line that constitutes the transmission route corresponding to the signal light wavelength, the relay signal Light can be reliably delivered to its destination.
【0035】例えば、光通信装置10dは当該装置10
dを送信先とする伝送経路1bd、1cdを構成する光
伝送路123以外の光伝送路124から入力した信号光
を中継し、この中継信号光の波長Λce、Λbeに対応
する伝送経路1ce、1beを構成する光伝送路123
、123へ中継信号光を出力する。また光通信装置10
dは光伝送路123からは伝送経路1cd、1ce、1
bd及び1beに対応する波長の信号光を入力するが、
これら信号光のうち、当該装置10dを送信先とする伝
送経路1cd、1bdで定められた波長Λcd、Λbd
以外の波長Λce、Λbeを有する信号光を中継し、こ
れら波長Λce、Λbeに対応する伝送経路1ce、1
beを構成する光伝送路124、124へ中継信号光を
出力する。信号光の中継は光伝送路の交差部に設けた光
通信装置10a、10c、10d及び10eにより行な
えばよい。For example, the optical communication device 10d is
The signal light inputted from the optical transmission path 124 other than the optical transmission path 123 constituting the transmission path 1bd, 1cd with destination d is relayed, and the transmission path 1ce, 1be corresponding to the wavelengths Λce, Λbe of this relay signal light is transmitted. The optical transmission line 123 that constitutes
, 123 to output relay signal light. Also, the optical communication device 10
d is the transmission path 1cd, 1ce, 1 from the optical transmission line 123.
Input signal light with wavelengths corresponding to bd and 1be,
Among these signal lights, the wavelengths Λcd and Λbd are determined by the transmission paths 1cd and 1bd with the device 10d as the destination.
The signal lights having wavelengths Λce and Λbe other than those shown in FIG.
The relay signal light is output to the optical transmission lines 124, 124 forming the be. The signal light may be relayed by optical communication devices 10a, 10c, 10d, and 10e provided at the intersections of the optical transmission lines.
【0036】また光通信装置は、信号光を送信する場合
、この信号光の送信先に至る伝送経路で定めた波長の信
号光を、当該伝送経路を構成する光伝送路へ送信すれば
、所望の送信先へ信号光を確実に送り届けることができ
る。[0036] Furthermore, when transmitting signal light, the optical communication device transmits the signal light having a wavelength determined by the transmission route leading to the destination of the signal light to the optical transmission line constituting the transmission route. The signal light can be reliably delivered to the destination.
【0037】例えば、光通信装置10cは、送信先を光
通信装置10eとして送信を行なう場合、伝送経路1c
eを構成する光伝送路123へ波長Λceを有する信号
光を送信すればよい。For example, when the optical communication device 10c performs transmission with the destination being the optical communication device 10e, the transmission path 1c
It is sufficient to transmit a signal light having a wavelength Λce to the optical transmission line 123 constituting the wavelength Λce.
【0038】尚、共用される光伝送路を同一の伝送方向
に伝送される信号光が複数ある場合には、これら複数の
信号光をそれぞれ異なる波長とするのが好ましい。しか
し共用される光伝送路を伝送される信号光の伝送方向が
互いに逆方向となる場合には、伝送方向の異なる信号光
に関しては同一の波長を用いることもできる。例えば伝
送経路1bcを光通信装置10bから光通信装置10c
へのみ信号光を伝送する伝送経路とし、伝送経路1bd
を光通信装置10dから光通信装置10bへのみ信号光
を伝送する伝送経路とした場合、伝送経路1bcで使用
する信号光波長Λbcと伝送経路1bdで使用する信号
光波長Λbdとを等しくしてもよい。光通信装置10c
は、伝送経路1bcに対応する信号光を光伝送路122
からは入力するが光伝送路123からは入力せず、また
伝送経路1bdに対応する信号光を光伝送路123から
は入力するが光伝送路122からは入力しない。従って
信号光波長がΛbc=Λbdであっても光伝送路122
及び123のいずれから信号光を入力したかにより信号
光を区別することができる。[0038] When there are a plurality of signal lights transmitted in the same transmission direction through a shared optical transmission line, it is preferable that these plurality of signal lights have different wavelengths. However, if the transmission directions of the signal lights transmitted through the shared optical transmission line are opposite to each other, the same wavelength can be used for the signal lights with different transmission directions. For example, the transmission path 1bc is connected from the optical communication device 10b to the optical communication device 10c.
A transmission route that transmits signal light only to
When is a transmission path that transmits signal light only from the optical communication device 10d to the optical communication device 10b, even if the signal light wavelength Λbc used in the transmission path 1bc is equal to the signal light wavelength Λbd used in the transmission path 1bd, good. Optical communication device 10c
transmits the signal light corresponding to the transmission path 1bc to the optical transmission path 122
The signal light corresponding to the transmission path 1bd is input from the optical transmission path 123 but not from the optical transmission path 122. Therefore, even if the signal light wavelength is Λbc=Λbd, the optical transmission line 122
and 123, the signal light can be distinguished from which one the signal light is inputted from.
【0039】次に第二発明の実施例として、上述した第
一発明の実施例の光通信装置10cの構成例につき説明
する。Next, as an embodiment of the second invention, a configuration example of the optical communication device 10c of the above-mentioned embodiment of the first invention will be described.
【0040】図6は第二発明の実施例の説明に供する機
能ブロック図であり、光通信装置10cの構成例を示す
。同図に示す光通信装置10cは、光伝送路121、1
23及び123に接続する中継器14及び中継器14に
接続する光交換器16から成る。中継器14は光伝送路
121、122及び123毎に設けた複数の光合分波器
181、182及び183から成る。FIG. 6 is a functional block diagram for explaining the embodiment of the second invention, and shows an example of the configuration of the optical communication device 10c. The optical communication device 10c shown in the figure includes optical transmission lines 121, 1
23 and 123, and an optical exchanger 16 connected to the repeater 14. The repeater 14 includes a plurality of optical multiplexers/demultiplexers 181, 182, and 183 provided for each of the optical transmission lines 121, 122, and 123.
【0041】ここでは一例として伝送経路1ab、1b
c、1bd、1be、1ac、1cd及び1ceにおけ
る光通信を考えた場合の構成につき説明する。Here, as an example, transmission paths 1ab, 1b
The configuration when considering optical communication in c, 1bd, 1be, 1ac, 1cd, and 1ce will be explained.
【0042】光合分波器181は光伝送路121から入
力した信号光を分波する。そして光合分波器181は分
波した信号光のうち、光伝送路121を含む伝送経路で
あって光通信装置10cを送信先とする伝送経路1ac
に対応する波長Λacの信号光を光交換器16へ入力し
、波長Λac以外の波長(光通信装置10cを送信先と
しない伝送経路に対応する波長)Λabの信号光を、伝
送経路1abを構成する光伝送路122に接続する光合
分波器182へ入力する。これと共に光合分波器181
は光交換器16又は当該光合分波器181とは別の光合
分波器182から入力した信号光を合波して光伝送路1
21へ出力する。The optical multiplexer/demultiplexer 181 demultiplexes the signal light input from the optical transmission line 121. The optical multiplexer/demultiplexer 181 uses a transmission path 1ac, which is a transmission path including the optical transmission path 121 and whose destination is the optical communication device 10c, out of the demultiplexed signal light.
A signal light having a wavelength Λac corresponding to Λac is inputted to the optical exchanger 16, and a signal light having a wavelength Λab other than the wavelength Λac (a wavelength corresponding to a transmission route that does not have the optical communication device 10c as the destination) is input to the optical exchanger 16 to form the transmission route 1ab. The signal is input to an optical multiplexer/demultiplexer 182 connected to an optical transmission line 122. Along with this, the optical multiplexer/demultiplexer 181
combines the signal light input from the optical exchanger 16 or an optical multiplexer/demultiplexer 182 different from the optical multiplexer/demultiplexer 181 and connects it to the optical transmission line 1.
Output to 21.
【0043】光合分波器182は光伝送路122から入
力した信号光を分波する。そして光合分波器182は分
波した信号光のうち、光伝送路122を含む伝送経路で
あって光通信装置10cを送信先とする伝送経路すなわ
ち伝送経路1bcに対応する波長Λbcの信号光を光交
換器16へ入力し、波長Λbc以外の波長(光通信装置
10cを送信先としない伝送経路に対応する波長)Λa
b、Λbd及びΛbeの信号光をそれぞれ信号光波長に
対応する伝送経路を構成する光伝送路へ入力する。従っ
て光合分波器182は波長Λabの信号光を伝送経路1
abを構成する光伝送路121と接続する光合分波器1
81へ入力し、また波長Λbdの信号光を伝送経路1b
dを構成する光伝送路123と接続する光合分波器18
3へ入力し、さらに波長Λbeの信号光を伝送経路1b
eを構成する光伝送路123と接続する光合分波器18
3へ入力する。そして光合分波器182は光交換器16
又は当該光合分波器182とは別の光合分波器181、
183から入力した信号光を合波して光伝送路122へ
出力する。The optical multiplexer/demultiplexer 182 demultiplexes the signal light input from the optical transmission line 122. Of the demultiplexed signal light, the optical multiplexer/demultiplexer 182 selects a signal light having a wavelength Λbc corresponding to the transmission path including the optical transmission line 122 and having the optical communication device 10c as the transmission destination, that is, the transmission path 1bc. A wavelength other than the wavelength Λbc (a wavelength corresponding to a transmission route that does not have the optical communication device 10c as the destination) Λa is input to the optical exchanger 16.
The signal lights of b, Λbd, and Λbe are respectively input to optical transmission lines constituting transmission paths corresponding to the signal light wavelengths. Therefore, the optical multiplexer/demultiplexer 182 transmits the signal light of wavelength Λab to the transmission path 1.
Optical multiplexer/demultiplexer 1 connected to optical transmission line 121 constituting ab
81, and the signal light of wavelength Λbd is transmitted to transmission path 1b.
An optical multiplexer/demultiplexer 18 connected to the optical transmission line 123 that constitutes d
3, and further transmits the signal light of wavelength Λbe to transmission path 1b.
Optical multiplexer/demultiplexer 18 connected to the optical transmission line 123 configuring e.
Enter to 3. The optical multiplexer/demultiplexer 182 is the optical exchanger 16
or an optical multiplexer/demultiplexer 181 different from the optical multiplexer/demultiplexer 182;
The signal light input from 183 is multiplexed and output to the optical transmission line 122.
【0044】光合分波器183は光伝送路123から入
力した信号光を分波する。そして光合分波器183は分
波した信号光のうち、光伝送路123を含む伝送経路で
あって光通信装置10cを送信先とする伝送経路すなわ
ち伝送経路1cd、1ceに対応する波長Λcd、Λc
eの信号光を光交換器16へ入力し、波長Λcd、Λc
e以外の波長(光通信装置10cを送信先としない伝送
経路に対応する波長)Λbd、Λbeの信号光をそれぞ
れ信号光波長に対応する光伝送路と接続する光合分波器
へ入力する。従って光合分波器183は波長Λbdの信
号光を伝送経路1bdを構成する光伝送路122と接続
する光合分波器182へ入力し、波長Λbeの信号光を
伝送経路1beを構成する光伝送路122と接続する光
合分波器182へ入力する。そして光合分波器183は
光交換器16又は当該光合分波器183とは別の光合分
波器182から入力した信号光を合波して光伝送路18
3へ出力する。The optical multiplexer/demultiplexer 183 demultiplexes the signal light input from the optical transmission line 123. The optical multiplexer/demultiplexer 183 uses wavelengths Λcd and Λc of the demultiplexed signal light corresponding to the transmission route including the optical transmission line 123 and having the optical communication device 10c as the transmission destination, that is, the transmission route 1cd and 1ce.
The signal light of e is input to the optical exchanger 16, and the wavelengths Λcd, Λc
Signal lights of wavelengths other than e (wavelengths corresponding to transmission paths that do not have the optical communication device 10c as the destination) Λbd and Λbe are input to optical multiplexers/demultiplexers connected to optical transmission paths corresponding to the signal light wavelengths, respectively. Therefore, the optical multiplexer/demultiplexer 183 inputs the signal light with the wavelength Λbd to the optical multiplexer/demultiplexer 182 connected to the optical transmission line 122 that constitutes the transmission path 1bd, and inputs the signal light with the wavelength Λbe into the optical transmission line that constitutes the transmission path 1be. The signal is input to an optical multiplexer/demultiplexer 182 connected to 122. The optical multiplexer/demultiplexer 183 multiplexes the signal light input from the optical exchanger 16 or an optical multiplexer/demultiplexer 182 that is different from the optical multiplexer/demultiplexer 183 and connects it to the optical transmission line 18.
Output to 3.
【0045】光交換器16は、送信器20、受信器22
及びマトリクススイッチ24、26から成る。The optical exchanger 16 includes a transmitter 20 and a receiver 22.
and matrix switches 24 and 26.
【0046】送信器20を光通信装置10cを送信元と
する伝送経路1ac、1bc、1cd及び1ce毎に設
け、波長Λacの信号光を送信する送信器20から光合
分波器181へ波長Λacの信号光を入力し、波長Λb
cの信号光を送信する送信器20から光合分波器182
へ波長Λbcの信号光を入力し、波長Λcdの信号光を
送信する送信器20から光合分波器183へ波長Λcd
の信号光を入力し及び波長Λceの信号光を送信する送
信器20から光合分波器183へ波長Λcdの信号光を
入力する。A transmitter 20 is provided for each of the transmission paths 1ac, 1bc, 1cd, and 1ce whose transmission source is the optical communication device 10c, and the transmitter 20 that transmits the signal light of the wavelength Λac sends the signal light of the wavelength Λac to the optical multiplexer/demultiplexer 181. Input signal light, wavelength Λb
from the transmitter 20 to the optical multiplexer/demultiplexer 182 that transmits the signal light of c.
The transmitter 20 inputs the signal light with the wavelength Λbc to the wavelength Λcd, and transmits the signal light with the wavelength Λcd to the optical multiplexer/demultiplexer 183.
A signal light having a wavelength Λcd is input to the optical multiplexer/demultiplexer 183 from a transmitter 20 which inputs a signal light having a wavelength Λce and transmits a signal light having a wavelength Λce.
【0047】また受信器22を光通信装置10cを送信
先とする伝送経路1ac、1bc、1cd及び1ce毎
に設け、光合分波器181から波長Λacの信号光を受
信する受信器22へ波長Λacの信号光を入力し、光合
分波器182から波長Λbcの信号光を受信する受信器
22へ波長Λbcの信号光を入力し、光合分波器183
から波長Λcdの信号光を受信する受信器22へ波長Λ
cdの信号光を入力し及び光合分波器183から波長Λ
ceの信号光を受信する受信器22へ信号光を入力する
。Further, a receiver 22 is provided for each transmission path 1ac, 1bc, 1cd, and 1ce whose transmission destination is the optical communication device 10c. The signal light with the wavelength Λbc is inputted to the receiver 22 which receives the signal light with the wavelength Λbc from the optical multiplexer/demultiplexer 182.
to the receiver 22 which receives the signal light of wavelength Λcd from the wavelength Λ
A CD signal light is input and the wavelength Λ is input from the optical multiplexer/demultiplexer 183.
The signal light is input to the receiver 22 which receives the signal light of ce.
【0048】光合分波器181とこれに対応する送信器
20及び受信器22とをサーキュレータ23を介し接続
し、同様に光合分波器182と送信器20及び受信器2
2とをサーキュレータ23を介し及び光合分波器183
と送信器20及び受信器22とをサーキュレータ23を
介し接続する。The optical multiplexer/demultiplexer 181 and the corresponding transmitter 20 and receiver 22 are connected via the circulator 23, and the optical multiplexer/demultiplexer 182, the transmitter 20, and the receiver 2 are connected in the same way.
2 through the circulator 23 and the optical multiplexer/demultiplexer 183
A transmitter 20 and a receiver 22 are connected via a circulator 23 .
【0049】マトリクススイッチ24は図示しない入力
部から送信電気信号を入力し、当該電気信号を、送信先
の伝送経路に対応する波長の信号光を送信する送信器2
0へ入力する。送信器20は送信電気信号を信号光に変
換する。この信号光は送信電気信号の送信先の伝送経路
に対応する波長を有する。The matrix switch 24 receives a transmission electrical signal from an input section (not shown), and sends the electrical signal to the transmitter 2, which transmits signal light having a wavelength corresponding to the transmission path of the transmission destination.
Enter 0. The transmitter 20 converts the transmitted electrical signal into signal light. This signal light has a wavelength corresponding to the transmission path of the destination of the transmitted electrical signal.
【0050】また受信器22は受信した信号光を受信電
気信号に変換しマトリクススイッチ26に入力する。マ
トリクススイッチ26は入力した受信電気信号を図示し
ない出力部へ出力する。The receiver 22 also converts the received signal light into a received electrical signal and inputs it to the matrix switch 26 . The matrix switch 26 outputs the input received electrical signal to an output section (not shown).
【0051】図7は第二発明の実施例の他の構成例を示
す機能ブロック図である。図6に示した例では、光合分
波器と送信器及び受信器との接続関係を固定しているが
、実用上は、通信量の増減、光ファイバの断線等の事故
を考慮すると、これらの接続関係を可変とするのが好ま
しい。図7の構成はこのような観点から光合分波器と送
信器及び受信器との接続関係を可変としたものである。
以下、図6の実施例と同様の点についてはその詳細な説
明を省略し、図6の実施例と相違する点につき説明する
。FIG. 7 is a functional block diagram showing another example of the configuration of the embodiment of the second invention. In the example shown in Fig. 6, the connection relationship between the optical multiplexer/demultiplexer, transmitter, and receiver is fixed, but in practice, considering increases and decreases in communication volume, accidents such as optical fiber breakage, etc., these connections are fixed. It is preferable to make the connection relationship variable. From this point of view, the configuration shown in FIG. 7 makes the connection relationship between the optical multiplexer/demultiplexer, the transmitter, and the receiver variable. Hereinafter, a detailed explanation of the points similar to the embodiment of FIG. 6 will be omitted, and only points different from the embodiment of FIG. 6 will be explained.
【0052】図7の光通信装置は、中継器14、光交換
器28及び光マトリクススイッチ30から成り、中継器
14及び光交換器28の間に光マトリクススイッチ30
を設けた構成を有する。The optical communication device shown in FIG. 7 includes a repeater 14, an optical exchanger 28, and an optical matrix switch 30.
It has a configuration with.
【0053】光マトリクススイッチ30を用いて、光合
分波器181〜183と光交換器28の送信器20及び
受信器22との間の接続関係を可変制御することにより
、光伝送路121〜123のなかの任意の光伝送路から
の信号光を受信器22へ入力し、送信器20からの信号
光を光伝送路121〜123のなかの任意の光伝送路へ
入力し、さらに光伝送路121〜123のなかの任意好
適なひとつの光伝送路から光伝送路121〜123のな
かの任意好適な他のひとつの光伝送路へ信号光を入力す
ることができるようにする。このため例えば、次に述べ
るように、中継器14、光マトリスクスイッチ32及び
光交換器28を接続する。By using the optical matrix switch 30 to variably control the connection relationship between the optical multiplexers/demultiplexers 181 to 183 and the transmitter 20 and receiver 22 of the optical exchanger 28, the optical transmission lines 121 to 123 A signal light from an arbitrary optical transmission line among the optical transmission lines is inputted to the receiver 22, a signal light from the transmitter 20 is inputted to an arbitrary optical transmission line among the optical transmission lines 121 to 123, and then the signal light from the optical transmission line A signal light can be input from any suitable optical transmission line among the optical transmission lines 121 to 123 to any other suitable optical transmission line among the optical transmission lines 121 to 123. For this purpose, for example, the repeater 14, optical matrix switch 32, and optical exchanger 28 are connected as described below.
【0054】光マトリクススイッチ30を複数の光スイ
ッチエレメント32から構成し、例えば光合分波器18
1、182及び183に対してそれぞれ3個ずつのエレ
メント32を接続する。The optical matrix switch 30 is composed of a plurality of optical switch elements 32, and includes, for example, an optical multiplexer/demultiplexer 18.
Three elements 32 are connected to each of elements 1, 182, and 183.
【0055】また光交換器28を送信器20、受信器2
2及びマトリクススイッチ34から構成する。そして例
えば、1グループの送信器20を3個の送信器20から
構成し3グループの送信器20を設け、同様に1グルー
プの受信器22を3個の受信器22から構成し3グルー
プの受信器22を設ける。Further, the optical exchanger 28 is connected to the transmitter 20 and the receiver 2.
2 and a matrix switch 34. For example, one group of transmitters 20 is configured from three transmitters 20 to provide three groups of transmitters 20, and similarly one group of receivers 22 is configured from three receivers 22 to provide three groups of receivers. A container 22 is provided.
【0056】そして光合分波器181と接続する3個の
エレメント32に対しそれぞれ1個の送信器20及び1
個の受信器22と、光合分波器182及び183とを接
続する。この際、光合分波器181と接続する3個のエ
レメント32をそれぞれ異なるグループの送信器20及
び受信器22と接続する。エレメント32と送信器20
及び受信器22とはサーキュレータ23を介し接続する
。One transmitter 20 and one transmitter 1 are provided for each of the three elements 32 connected to the optical multiplexer/demultiplexer 181.
receivers 22 and optical multiplexer/demultiplexers 182 and 183 are connected. At this time, the three elements 32 connected to the optical multiplexer/demultiplexer 181 are connected to different groups of transmitters 20 and receivers 22, respectively. Element 32 and transmitter 20
and the receiver 22 are connected via a circulator 23.
【0057】また光合分波器182と接続する3個のエ
レメント32に対しそれぞれ1個の送信器20及び1個
の受信器22と、光合分波器182及び183とを接続
する。この際、光合分波器182と接続する3個のエレ
メント32をそれぞれ異なるグループの送信器20及び
受信器22に接続すると共に、光合分波器181のエレ
メント32と接続していない送信器20及び受信器22
に接続する。エレメント32と送信器20及び受信器2
2とはサーキュレータ23を介し接続する。Furthermore, one transmitter 20 and one receiver 22, and optical multiplexers/demultiplexers 182 and 183 are connected to each of the three elements 32 connected to the optical multiplexer/demultiplexer 182. At this time, the three elements 32 connected to the optical multiplexer/demultiplexer 182 are connected to transmitters 20 and receivers 22 of different groups, and the transmitters 20 and receiver 22
Connect to. Element 32, transmitter 20 and receiver 2
2 through a circulator 23.
【0058】さらに光合分波器183と接続する3個の
エレメント32に対しそれぞれ1個の送信器20及び1
個の受信器22と、光合分波器182及び183とを接
続する。この際、光合分波器183と接続する3個のエ
レメント32をそれぞれ異なるグループの送信器20及
び受信器22に接続すると共に、光合分波器181及び
183のエレメント32と接続していない送信器20及
び受信器22に接続する。エレメント32と送信器20
及び受信器22とはサーキュレータ23を介し接続する
。Further, one transmitter 20 and one transmitter 1 are provided for each of the three elements 32 connected to the optical multiplexer/demultiplexer 183.
receivers 22 and optical multiplexer/demultiplexers 182 and 183 are connected. At this time, the three elements 32 connected to the optical multiplexer/demultiplexer 183 are connected to transmitters 20 and receivers 22 of different groups, and the transmitters 32 that are not connected to the elements 32 of the optical multiplexer/demultiplexer 181 and 183 are 20 and receiver 22. Element 32 and transmitter 20
and the receiver 22 are connected via a circulator 23.
【0059】中継器14からの信号光は光マトリクスス
イッチ32を介し受信器22へ入力され、受信器22は
入力した信号光を電気信号に変換する。マトリクススイ
ッチ34は受信器22からの電気信号を入力し、受信器
22からの電気信号を図示しない出力部へ出力する。ま
たマトリクススイッチ34は図示しない入力部からの電
気信号を当該電気信号の送信先の伝送経路に対応する波
長の送信器20へ出力する。送信器20はマトリクスス
イッチ34からの電気信号を、送信先の伝送経路に対応
する波長の信号光に変換し、この信号光を、送信先の伝
送経路を構成する光伝送路と接続するエレメント32へ
入力する。The signal light from the repeater 14 is input to the receiver 22 via the optical matrix switch 32, and the receiver 22 converts the input signal light into an electrical signal. The matrix switch 34 inputs the electrical signal from the receiver 22 and outputs the electrical signal from the receiver 22 to an output section (not shown). Further, the matrix switch 34 outputs an electrical signal from an input section (not shown) to the transmitter 20 of a wavelength corresponding to a transmission path to which the electrical signal is transmitted. The transmitter 20 converts the electrical signal from the matrix switch 34 into a signal light having a wavelength corresponding to the transmission path of the destination, and connects this signal light to an optical transmission path that constitutes the transmission path of the destination. Enter.
【0060】マトリクススイッチ34は受信器22から
入力した電気信号を、図示しない出力部へ出力せずに、
任意好適な所望の伝送経路に対応する波長の信号光を送
信する送信器20へ出力することもできる。The matrix switch 34 does not output the electrical signal input from the receiver 22 to an output section (not shown).
It is also possible to output signal light of a wavelength corresponding to any suitable desired transmission path to the transmitter 20.
【0061】図8は光交換器の他の構成例を示す機能ブ
ロック図である。この例の光交換器36は、送信用光マ
トリクススイッチ38、受信用光マトリクススイッチ4
0、送信器20及び受信器22から成る。図7の光通信
装置において光交換器28にかえて光交換器36を用い
るようにしてもよい。FIG. 8 is a functional block diagram showing another example of the configuration of the optical exchanger. The optical exchanger 36 in this example includes a transmitting optical matrix switch 38 and a receiving optical matrix switch 4.
0, a transmitter 20 and a receiver 22. In the optical communication device of FIG. 7, an optical exchanger 36 may be used instead of the optical exchanger 28.
【0062】図7の光交換器28では送信器20及び受
信器22を3グループ設けるので、この光交換器28で
は送信器20の使用個数が多くなる。そこで図8の光交
換器36では、送信用光マトリクススイッチ38及び受
信用光マトリクススイッチ40を用いることによって、
送信器20及び受信器22の使用個数を低減する。Since the optical exchanger 28 of FIG. 7 includes three groups of transmitters 20 and receivers 22, the number of transmitters 20 used in this optical exchanger 28 increases. Therefore, in the optical exchanger 36 of FIG. 8, by using the transmitting optical matrix switch 38 and the receiving optical matrix switch 40,
The number of transmitters 20 and receivers 22 used is reduced.
【0063】この例では、例えば4個の送信器20と4
個の受信器22とを用いる。送信器20が送信する信号
光の波長を固定した特定の波長のみとしてもよいが、送
信器20の使用効率を高めるためには、送信器20を可
変波長送信器として送信器20が送信する信号光の波長
を可変制御できるようにするのがよい。そして送信器2
0からの信号光を、送信用光マトリクススイッチ38を
介して当該信号光波長に対応する伝送経路の光伝送路と
接続する至るエレメント32へ入力する。マトリクスス
イッチ34は電気信号を信号光に変換する処理を行なっ
ていない非処理中の送信器20へ電気信号を入力する。
また受信用光マトリクススイッチ40はエレメント32
からの信号光を入力し、信号光を電気信号に変換する処
理を行なっていない非処理中の受信器20へ信号光を入
力する。In this example, for example, four transmitters 20 and 4
receivers 22 are used. Although the wavelength of the signal light transmitted by the transmitter 20 may be fixed and limited to a specific wavelength, in order to increase the usage efficiency of the transmitter 20, the signal light transmitted by the transmitter 20 may be changed by using the transmitter 20 as a variable wavelength transmitter. It is preferable to make it possible to variably control the wavelength of light. and transmitter 2
The signal light from 0 is input via the transmission optical matrix switch 38 to the element 32 connected to the optical transmission line of the transmission path corresponding to the signal light wavelength. The matrix switch 34 inputs the electrical signal to the non-processing transmitter 20 which is not processing the electrical signal into signal light. In addition, the receiving optical matrix switch 40 has an element 32.
The signal light is input to the non-processing receiver 20 which is not performing the process of converting the signal light into an electrical signal.
【0064】図9は光交換器の他の構成例を示す機能ブ
ロック図である。この例の光交換器42は送受信用光マ
トリクススイッチ44、送信器20、受信器22及びマ
トリクススイッチ34から成る。FIG. 9 is a functional block diagram showing another example of the configuration of the optical exchanger. The optical exchanger 42 in this example includes a transmitting/receiving optical matrix switch 44, a transmitter 20, a receiver 22, and a matrix switch 34.
【0065】この例では、送受信用光マトリクススイッ
チ44をサーキュレータ23を介し送信器20及び受信
器22と接続し、送受信用光マトリクススイッチ42を
介し送信器20からの信号光をエレメント32へ入力し
エレメント32からの信号光を受信器22へ入力する。
この他は図8の光交換器36と同様の構成である。In this example, the transmitting/receiving optical matrix switch 44 is connected to the transmitter 20 and receiver 22 via the circulator 23, and the signal light from the transmitter 20 is input to the element 32 via the transmitting/receiving optical matrix switch 42. The signal light from the element 32 is input to the receiver 22. Other than this, the configuration is similar to that of the optical exchanger 36 in FIG. 8.
【0066】図10は光交換器の他の構成例を示す機能
ブロック図である。図10の光交換器46は送信用光マ
トリクススイッチ48、受信用光マトリクススイッチ5
0及び送受信器52から成る。FIG. 10 is a functional block diagram showing another example of the configuration of the optical exchanger. The optical exchanger 46 in FIG. 10 includes a transmitting optical matrix switch 48 and a receiving optical matrix switch 5.
0 and a transceiver 52.
【0067】この例では、送受信器52を可変波長変換
素子から構成し、この送受信器52に入力した信号光の
波長を所望の任意好適な波長に変換して出力する。そし
て例えば4個の送受信器52を設ける。In this example, the transceiver 52 is constituted by a variable wavelength conversion element, and the wavelength of the signal light input to the transceiver 52 is converted to a desired arbitrary suitable wavelength and output. For example, four transceivers 52 are provided.
【0068】受信用光マトリクススイッチ50は図示し
ない入力部からの信号光とエレメント32からの信号光
とを入力し、これら入力した信号光を信号光の変換を行
なっていない非処理中の送受信器52に入力する。The reception optical matrix switch 50 inputs signal light from an input section (not shown) and signal light from the element 32, and converts these input signal lights into a non-processing transmitter/receiver that is not converting the signal light. 52.
【0069】送受信器52は受信用光マトリクススイッ
チ50を介し、入力部からの信号光を入力すると、当該
信号光波長を送信先の伝送経路に対応する波長に変換し
て、この波長変換した信号光を送信用光マトリクススイ
ッチ48へ入力する。送信用光マトリクススイッチ48
はエレメント32からの波長変換された信号光を入力す
ると、当該信号光波長に対応する伝送経路を構成する光
伝送路と接続するエレメント32へ信号光を入力する。When the transmitter/receiver 52 receives the signal light from the input section via the receiving optical matrix switch 50, it converts the wavelength of the signal light into a wavelength corresponding to the transmission path of the destination, and outputs the wavelength-converted signal. The light is input to the optical matrix switch 48 for transmission. Transmission optical matrix switch 48
When inputting the wavelength-converted signal light from the element 32, the element 32 inputs the signal light to the element 32 connected to an optical transmission line forming a transmission path corresponding to the signal light wavelength.
【0070】また送受信器52は受信用光マトリクスス
イッチ50を介し、エレメント32からの信号光を入力
すると、当該信号光波長を図示しない出力部に対応する
波長に変換し、この波長変換した信号光を送信用光マト
リクススイッチ48へ入力する。送信用光マトリクスス
イッチ48は波長変換されたエレメント32からの信号
光を入力すると、当該信号光波長に対応する出力部へ信
号光を出力する。When the transmitter/receiver 52 receives the signal light from the element 32 via the receiving optical matrix switch 50, it converts the wavelength of the signal light into a wavelength corresponding to an output section (not shown), and outputs the wavelength-converted signal light. is input to the transmission optical matrix switch 48. When the transmission optical matrix switch 48 receives the wavelength-converted signal light from the element 32, it outputs the signal light to an output section corresponding to the signal light wavelength.
【0071】尚、エレメント32からの信号光を受信用
光マトリクススイッチ50を介し送受信器52に入力し
、送受信器52で任意好適な所望の送信先の伝送経路に
対応する波長に変換し、この波長変換した信号光を送信
用光マトリクススイッチ48を介し送信先の伝送経路を
構成する光伝送路と接続するエレメント32へ入力する
ようにしてもよい。The signal light from the element 32 is input to the transmitter/receiver 52 via the receiving optical matrix switch 50, where it is converted into a wavelength corresponding to a transmission path of an arbitrary desired destination. The wavelength-converted signal light may be inputted via the transmission optical matrix switch 48 to the element 32 connected to the optical transmission line forming the transmission path of the destination.
【0072】図11は光交換器の他の構成例を示す機能
ブロック図である。図11の光交換器54は、送信用光
マトリクススイッチ48、受信用光マトリクススイッチ
50、送受信器52、送信器56及び受信器58から成
る。送信器56及び受信器58は可変波長変換素子から
成る。FIG. 11 is a functional block diagram showing another example of the configuration of the optical exchanger. The optical exchanger 54 in FIG. 11 includes a transmitting optical matrix switch 48, a receiving optical matrix switch 50, a transceiver 52, a transmitter 56, and a receiver 58. The transmitter 56 and receiver 58 are comprised of variable wavelength conversion elements.
【0073】この光交換器54では、図示しない入力部
からの信号光の波長を送信器56により送信先の伝送経
路に対応する波長に変換し、この波長変換した信号光を
送信用光マトリクススイッチ48に入力する。またエレ
メント32からの信号光を受信用光マトリクススイッチ
50を介して受信器58に入力し、受信器58により信
号光の波長を変換し、この波長変換した信号光を図示し
ない出力部へ出力する。この他の構成は図10の光交換
器46と同様である。In this optical exchanger 54, the wavelength of the signal light from an input section (not shown) is converted by the transmitter 56 into a wavelength corresponding to the transmission path of the destination, and this wavelength-converted signal light is sent to the optical matrix switch for transmission. 48. Further, the signal light from the element 32 is input to the receiver 58 via the receiving optical matrix switch 50, the wavelength of the signal light is converted by the receiver 58, and this wavelength-converted signal light is output to an output section (not shown). . Other configurations are similar to the optical exchanger 46 in FIG. 10.
【0074】これら発明は上述した実施例にのみ限定さ
れるものではなく、従って各構成成分の対応関係、接続
関係、動作、構成、配設個数、結合関係及びその他の条
件を任意好適に変更することができる。These inventions are not limited to the above-described embodiments; therefore, the correspondence, connection, operation, configuration, number of components, connection, and other conditions of each component may be changed as desired. be able to.
【0075】[0075]
【発明の効果】上述した説明からも明らかなように、第
一発明の光通信方法によれば、送信元の光通信装置から
送信先の光通信装置へ至る信号光の伝送経路を1個の光
伝送路又は複数個の光伝送路の組合せにより構成し、伝
送経路毎に、使用される信号光波長を予め定める。従っ
て信号光の伝送経路と、使用される信号光波長及び信号
光の伝送に供する光伝送路とは予め対応付けられており
、これらの対応関係を利用することにより、網状に結合
した光伝送路を備える光通信網による波長多重通信が可
能となる。また波長多重通信に用いる波長の数を少なく
することができる。Effects of the Invention As is clear from the above description, according to the optical communication method of the first invention, the transmission path of the signal light from the source optical communication device to the destination optical communication device is It is constructed by an optical transmission line or a combination of a plurality of optical transmission lines, and the signal light wavelength to be used is determined in advance for each transmission path. Therefore, the transmission path of the signal light, the wavelength of the signal light to be used, and the optical transmission path used for the transmission of the signal light are associated in advance, and by using these correspondences, the optical transmission path connected in a network can be created. It becomes possible to perform wavelength division multiplexing communication using an optical communication network equipped with Furthermore, the number of wavelengths used for wavelength multiplex communication can be reduced.
【0076】また第二発明の光通信装置によれば、複数
の光合分波器を光伝送路毎に設ける。そして、この光合
分波器により、光伝送路から入力した信号光を分波し所
定波長の信号光を光交換器へ入力すると共に所定波長以
外の残りの波長の信号光を該信号光波長に対応付けられ
た光伝送路と接続する光合分波器へ入力し、これと共に
光交換器又は当該光合分波器とは別の光合分波器から入
力した信号光を合波して光伝送路へ出力する。According to the optical communication device of the second invention, a plurality of optical multiplexers/demultiplexers are provided for each optical transmission line. The optical multiplexer/demultiplexer demultiplexes the signal light input from the optical transmission line, inputs the signal light of a predetermined wavelength to the optical exchanger, and converts the signal light of the remaining wavelengths other than the predetermined wavelength into the signal light wavelength. The signal light is input to an optical multiplexer/demultiplexer connected to the associated optical transmission line, and the signal light input from an optical exchanger or another optical multiplexer/demultiplexer is combined with the optical multiplexer/demultiplexer to create an optical transmission line. Output to.
【0077】従って受信すべき信号光及び中継すべき信
号光を、同一の光伝送路から入力した場合でも、信号光
の受信処理及び中継処理を、信号光の波長に応じて簡略
に行なえ、特に信号光の中継処理を高速に行なえる。Therefore, even when the signal light to be received and the signal light to be relayed are input from the same optical transmission path, the reception processing and relay processing of the signal light can be easily performed according to the wavelength of the signal light. Signal light relay processing can be performed at high speed.
【図1】第一発明の実施例の説明図であって、信号光の
伝送経路の例を示す図である。FIG. 1 is an explanatory diagram of an embodiment of the first invention, and is a diagram showing an example of a transmission path of signal light.
【図2】第一発明の実施例の説明図であって、網目状の
光通信網の例を示す図である。FIG. 2 is an explanatory diagram of the embodiment of the first invention, and is a diagram showing an example of a mesh-like optical communication network.
【図3】第一発明の実施例の説明図であって、図2の光
通信網に光伝送路を追加した状態を示す図である。FIG. 3 is an explanatory diagram of the embodiment of the first invention, showing a state in which an optical transmission line is added to the optical communication network of FIG. 2;
【図4】第一発明の実施例の説明図であって、信号光の
伝送経路の例を示す図である。FIG. 4 is an explanatory diagram of the embodiment of the first invention, and is a diagram showing an example of a signal light transmission path.
【図5】第一発明の実施例の説明図であって、信号光の
伝送経路の例を示す図である。FIG. 5 is an explanatory diagram of the embodiment of the first invention, and is a diagram showing an example of a signal light transmission path.
【図6】第二発明の実施例の光通信装置の構成を概略的
に示す図である。FIG. 6 is a diagram schematically showing the configuration of an optical communication device according to an embodiment of the second invention.
【図7】第二発明の他の実施例の光通信装置の構成を概
略的に示す図である。FIG. 7 is a diagram schematically showing the configuration of an optical communication device according to another embodiment of the second invention.
【図8】第二発明の光通信装置が備える光交換器の構成
例を示す図である。FIG. 8 is a diagram showing an example of the configuration of an optical exchanger included in the optical communication device of the second invention.
【図9】第二発明の光通信装置が備える光交換器の構成
例を示す図である。FIG. 9 is a diagram showing an example of the configuration of an optical exchanger included in the optical communication device of the second invention.
【図10】第二発明の光通信装置が備える光交換器の構
成例を示す図である。FIG. 10 is a diagram showing a configuration example of an optical exchanger included in the optical communication device of the second invention.
【図11】第二発明の光通信装置が備える光交換器の構
成例を示す図である。FIG. 11 is a diagram showing a configuration example of an optical exchanger included in an optical communication device according to a second invention.
10a〜10e:光通信装置
121〜126:光伝送路
1ab、1ac、1bc、
1bd、1be、1cd、1ce:伝送経路14:中継
器
16、28、36、42、46、54:光交換器181
〜183:光合分波器
30:光マトリクススイッチ10a to 10e: Optical communication devices 121 to 126: Optical transmission paths 1ab, 1ac, 1bc, 1bd, 1be, 1cd, 1ce: Transmission path 14: Repeaters 16, 28, 36, 42, 46, 54: Optical exchanger 181
~183: Optical multiplexer/demultiplexer 30: Optical matrix switch
Claims (5)
該光伝送路に設けた光通信装置とから光通信網を構成し
、該光通信網を用いて波長多重光通信を行なうに当り、
送信元の光通信装置から送信先の光通信装置へ至る信号
光の伝送経路を1個の光伝送路又は複数個の光伝送路の
組合せにより構成し、前記伝送経路毎に、使用される信
号光波長を予め定め、複数の伝送経路で共用される1個
の光伝送路は、当該光伝送路を共用する伝送経路毎に定
めた波長の信号光を波長多重で伝送し、前記光通信装置
は、信号光を送信する場合、該信号光の送信先に至る伝
送経路で定めた波長の信号光を、当該伝送経路を構成す
る光伝送路へ送信し、前記光通信装置は、信号光を受信
する場合、当該光通信装置を送信先とする伝送経路を構
成する光伝送路から入力した信号光であって、当該光通
信装置を送信先とする伝送経路で定めた波長を有する信
号光を受信し、前記光通信装置は、信号光を中継する場
合、当該光通信装置を送信先とする伝送経路を構成する
光伝送路以外の光伝送路から入力した信号光か又は当該
光通信装置を送信先とする伝送経路で定められた波長以
外の波長を有する信号光を中継し、当該中継信号光を、
該信号光波長に対応する伝送経路を構成する光伝送路へ
出力することを特徴とする光通信方法。[Claim 1] A plurality of optical transmission lines coupled in a network,
When constructing an optical communication network from optical communication devices provided on the optical transmission line and performing wavelength division multiplexing optical communication using the optical communication network,
The transmission path of signal light from the source optical communication device to the destination optical communication device is configured by one optical transmission path or a combination of multiple optical transmission paths, and the signals used for each transmission path are One optical transmission line with a predetermined optical wavelength and shared by a plurality of transmission paths transmits signal light of a wavelength determined for each transmission path that shares the optical transmission line by wavelength multiplexing, and the optical communication device When transmitting signal light, the optical communication device transmits the signal light with a wavelength determined by the transmission route to the destination of the signal light to the optical transmission line that constitutes the transmission route, and the optical communication device transmits the signal light. When receiving, the signal light is input from the optical transmission path that constitutes the transmission path with the optical communication device as the destination, and has a wavelength determined by the transmission path with the optical communication device as the destination. When the optical communication device receives the signal light and relays the signal light, the optical communication device receives the signal light from an optical transmission path other than the optical transmission path constituting the transmission path with the optical communication device as the destination, or the optical communication device relays the signal light. Relays a signal light having a wavelength other than the wavelength determined by the destination transmission route, and transmits the relayed signal light,
An optical communication method characterized by outputting to an optical transmission line constituting a transmission path corresponding to the signal light wavelength.
、共用される光伝送路は、同一の伝送方向に伝送される
信号光の波長を、それぞれ異なる波長として伝送するこ
とを特徴とする光通信方法。2. The optical communication method according to claim 1, wherein the shared optical transmission path transmits the wavelengths of the signal lights transmitted in the same transmission direction as different wavelengths. Communication method.
、前記信号光の中継を、複数の光伝送路が結合する交差
部に設けた光通信装置により行なうことを特徴とする光
通信方法。3. The optical communication method according to claim 1, wherein the signal light is relayed by an optical communication device provided at an intersection where a plurality of optical transmission lines are coupled.
器に接続する光交換器を備え、前記中継器を光伝送路毎
に設けた複数の光合分波器から構成し、光合分波器は、
光伝送路から入力した信号光を分波し所定波長の信号光
を光交換器へ入力すると共に所定波長以外の残りの波長
の信号光を該信号光波長に対応付けられた光伝送路と接
続する光合分波器へ入力し、これと共に光交換器又は当
該光合分波器とは別の光合分波器から入力した信号光を
合波して光伝送路へ出力することを特徴とする光通信装
置。4. A repeater connected to an optical transmission line and an optical exchanger connected to the repeater, the repeater comprising a plurality of optical multiplexers/demultiplexers provided for each optical transmission line, and an optical multiplexer/demultiplexer. The vessel is
Demultiplexes the signal light input from the optical transmission line, inputs the signal light of a predetermined wavelength to the optical exchanger, and connects the signal light of the remaining wavelengths other than the predetermined wavelength to the optical transmission line associated with the signal light wavelength. An optical signal input to an optical multiplexer/demultiplexer, which is input to an optical multiplexer/demultiplexer, and combined with signal light input from an optical exchanger or an optical multiplexer/demultiplexer other than the optical multiplexer/demultiplexer and output to an optical transmission line. Communication device.
、前記中継器及び光交換器の間に光マトリクススイッチ
を設けて成ることを特徴とする光通信装置。5. The optical communication device according to claim 4, further comprising an optical matrix switch provided between the repeater and the optical exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02402052A JP3124298B2 (en) | 1990-12-13 | 1990-12-13 | Optical communication method and optical communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02402052A JP3124298B2 (en) | 1990-12-13 | 1990-12-13 | Optical communication method and optical communication device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04215393A true JPH04215393A (en) | 1992-08-06 |
JP3124298B2 JP3124298B2 (en) | 2001-01-15 |
Family
ID=18511859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02402052A Expired - Fee Related JP3124298B2 (en) | 1990-12-13 | 1990-12-13 | Optical communication method and optical communication device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3124298B2 (en) |
-
1990
- 1990-12-13 JP JP02402052A patent/JP3124298B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3124298B2 (en) | 2001-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7620321B2 (en) | Optical transmitting apparatus, method of increasing the number of paths of the apparatus, and optical switch module for increasing the number of paths of the apparatus | |
EP0762689B1 (en) | Optical branching apparatus and tranmission line setting method therefor | |
US7720383B2 (en) | Optical transmission apparatus having OADM function | |
US11487063B2 (en) | Pair routing between three undersea fiber optic cables | |
US20020197000A1 (en) | Optical cross-connect switch using programmable multiplexers/demultiplexers | |
JP5287993B2 (en) | Optical signal transmitter, optical signal receiver, wavelength division multiplexing optical communication device, and wavelength path system | |
JP2010081374A (en) | Optical cross connect device, and optical network | |
KR20000018285A (en) | Optical cross connector | |
US11652563B2 (en) | Optical demultiplexer, optical separation device, optical transmission system, and optical transmission method | |
EP2982066B1 (en) | Optical switch | |
EP0818089B1 (en) | Optical node in an optical bus network | |
US8406625B2 (en) | Apparatus and method for cross-connecting optical path in wavelength division multiplexing system | |
EP1407568B1 (en) | Wdm ring network for flexible connections | |
EP1043847B1 (en) | Wavelength-division multiplex transmission network device using a transceiver having a 2-input/2-output optical switch | |
JP3292843B2 (en) | Optical wavelength division multiplexing transmission network equipment | |
US5675676A (en) | Optical branching apparatus and transmission line switching method | |
US6931175B2 (en) | Optical node with add-drop or cross-connect functionality | |
EP1427122B1 (en) | Bidirectional wavelength division multiplexing self-healing ring network | |
JPH04215393A (en) | Optical communication method and optical communication equipment | |
JPH1041920A (en) | Optical network | |
JP3971331B2 (en) | Optical wavelength division multiplexing network device, wavelength router, and transmitter / receiver | |
US7277638B1 (en) | Add-drop-multiplexer and optical wavelength division multiplex transmission system | |
JP6735928B1 (en) | Optical communication system and optical communication device | |
JP2006060734A (en) | Optical transmission system | |
JP2003101484A (en) | Optical branching and multiplexing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001017 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |